Contact Geometry and Non-linear Differential Equations

ALEXEI KUSHNER, VALENTIN LYCHAGIN AND VLADIMIR RUBTSOV

۰_

Contents

	Preface				
Pa	Part I Symr		netries and Integrals	1	
1	Dist	ribution	S .	3	
	1.1	Distrib	outions and integral manifolds	3	
		1.1.1	Distributions	3	
		1.1.2	Morphisms of distributions	4	
		1.1.3	Integral manifolds	5	
	1.2	Symm	etries of distributions	11	
	1.3	Charac	cteristic and shuffling symmetries	15	
	1.4	Curvat	ure of a distribution	18	
	1.5	Flat di	stributions and the Frobenius theorem	20	
1.6 Complex distributions on real manifolds				23	
	1.7	The Lie–Bianchi theorem		24	
		1.7.1	The Maurer–Cartan equations	24	
		1.7.2	Distributions with a commutative symmetry		
			algebra	. 27	
		1.7.3	Lie-Bianchi theorem	30	
2	Ord	inary di	fferential equations	32	
	2.1	Symm	etries of ODEs	. 32	
		2.1.1	Generating functions	32	
		2.1.2	Lie algebra structure on generating functions	37	
		2.1.3	Commutative symmetry algebra	38	
	2.2	Non-li	near second-order ODEs	40	
		2.2.1	Equation $y'' = y' + F(y)$	43	
		2.2.2	Integration	46	
		2.2.3	Non-linear third-order equations	48	

Contents

	2.3	Linear	differential equations and linear symmetries	50
		2.3.1	The variation of constants method	50
		2.3.2	Linear symmetries	51
	2.4	Linear	symmetries of self-adjoint operators	54
	2.5	Schröd	inger operators	56
		2.5.1	Integrable potentials	58
		2.5.2	Spectral problems for KdV potentials	65
		2.5.3	Lagrange integrals	73
3	Mode	el differ	ential equations and the	
	Lie s	uperpos	sition principle	76
	3.1	Symme	etry reduction	76
		3.1.1	Reductions by symmetry ideals	76
		3.1.2	Reductions by symmetry subalgebras	77
	3.2	Model	differential equations	78
		3.2.1	One-dimensional model equations	80
		3.2.2	Riccati equations	82
	3.3	Model	equations: the series A_k, D_k, C_k	83
		3.3.1	Series A_k	83
		3.3.2	Series D_k	86
		3.3.3	Series C_k	87
	3.4	The Lie	e superposition principle	89
		3.4.1	Bianchi equations	92
	3.5	\mathcal{AP} -str	uctures and their invariants	94
. -		3.5.1	Decomposition of the de Rham complex	94
		3.5.2	Classical almost product structures	96
		3.5.3	Almost complex structures	98
		3.5.4	\mathcal{AP} -structures on five-dimensional manifolds	98
Pa	rt II	Symp	olectic Algebra	101
4	Line	ar algeh	ora of symplectic vector spaces	103
-	4.1	-	ectic vector spaces	103
		4.1.1	Bilinear skew-symmetric forms on vector spaces	103
		4.1.2	•	105
		4.1.3		107
	4.2		lectic transformations	108
		4.2.1	Matrix representation of symplectic	
			transformations	110

			Contents	vii	
	4.3	Lagran	igian subspaces	113	
		4.3.1	Symplectic and Kähler spaces	117	
5	Exte	erior alg	ebra on symplectic vector spaces	119	
	5.1	Operat	fors \perp and \top	119	
	5.2	Effecti	ve forms and the Hodge–Lepage theorem	125	
		5.2.1	\mathfrak{sl}_2 -method	132	
6			c classification of exterior 2-forms in		
	dim	ension 4		135	
	6.1	Pfaffia	n	135	
	6.2	Norma	ll forms	137	
	6.3	Jacobi	planes	142	
		6.3.1	Classification of Jacobi planes	143	
		6.3.2	Operators associated with Jacobi planes	145	
7	Sym	-	classification of exterior 2-forms	147	
	7.1	Pfaffia 2-form	ns and linear operators associated with	147	
	7.2	• •	ectic classification of 2-forms with distinct real teristic numbers	149	
	7.3	Sympl	ectic classification of 2-forms with distinct	152	
	7.4	complex characteristic numbers Symplectic classification of 2-forms with multiple			
	7.4		teristic numbers	154	
	7.5	Symplectic classification of effective 2-forms in			
		dimen	sion 6	160	
8	Clas	sificatio	n of exterior 3-forms on a six-dimensional		
	sym	plectic s	pace	162	
	8.1	1 A symplectic invariant of effective 3-forms			
		8.1.1	The case of trivial invariants	165	
		8.1.2	The case of non-trivial invariants	167	
		8.1.3	Hitchin's results on the geometry of		
			3-forms	173	
	8.2	The st	abilizers of orbits and their prolongations	175	
		8.2.1	Stabilizers	175	
		8.2.2	Prolongations	178	

Pa	rt III	[Mong	ge-Ampère Equations	181
9	Sym	plectic n	nanifolds	183
	9.1	-	ectic structures	183
		9.1.1	The cotangent bundle and the standard	
			symplectic structure	184
		9.1.2	Kähler manifolds	186
		9.1.3	Orbits and homogeneous symplectic spaces	187
	9.2	Vector	fields on symplectic manifolds	189
		9.2.1	Poisson bracket and Hamiltonian vector fields	189
		9.2.2	Canonical coordinates	191
	9.3	Subma	nifolds of symplectic manifolds	192
		9.3.1	Presymplectic manifolds	192
		9.3.2	Lagrangian submanifolds	194
		9.3.3	Involutive submanifolds	197
		9.3.4	Lagrangian polarizations	198
10	Cont	act man	lifolds	201
	10.1	Contac	t structures	201
		10.1.1	Examples	202
	10.2		t transformations and contact vector fields	208
		10.2.1	Examples	209
			Contact vector fields	215
	10.3	Darbou	ix theorem	219
	10.4	A local	description of contact transformations	221
-		10.4.1	Generating functions of Lagrangian	
			submanifolds	221
		10.4.2	A description of contact transformations in \mathbb{R}^3	222
11	Mon	ge–Amp	bère equations	224
	11.1	Monge	–Ampère operators	224
	11.2	Effectiv	ve differential forms	226
	11.3	Calcult	as on $\Omega^*(C^*)$	230
			ler operator	233
	11.5	Solutio	ns	236
	11.6	Monge	-Ampère equations of divergent type	241
12	Sym	metries	and contact transformations of Monge–Ampè	re
	equa	tions		243
	12.1	Contac	t transformations	243

•)

	12.2	Lie equations for contact symmetries	251			
	12.3	Reduction	256			
	12.4	Examples	259			
		12.4.1 The boundary layer equation	259			
		12.4.2 The thermal conductivity equation	261			
		12.4.3 The Petrovsky-Kolmogorov-Piskunov				
		equation	262			
		12.4.4 The Von Karman equation	264			
	12.5	Symmetries of the reduction	267			
	12.6	Monge–Ampère equations in symplectic geometry	270			
13	Cons	servation laws	273			
	13.1	Definition and examples	273			
	13.2	Calculus for conservation laws	274			
	13.3	Symmetries and conservations laws	279			
	13.4	-				
		condition	280			
		13.4.1 Shock Waves for ODEs	280			
		13.4.2 Discontinuous solutions	281			
		13.4.3 Shock waves	283			
	13.5	Calculus of variations and the Monge-Ampère				
		equation	285			
		13.5.1 The Euler operator	285			
		13.5.2 Symmetries and conservation laws in				
		variational problems	286			
		13.5.3 Classical variational problems	287			
	13.6	Effective cohomology and the Euler operator	288			
14	Monge-Ampère equations on two-dimensional					
	mani	nifolds and geometric structures 29				
	14.1	Non-holonomic geometric structures associated with				
		Monge–Ampère equations	295			
		14.1.1 Non-holonomic structures on contact				
		manifolds	295			
		14.1.2 Non-holonomic fields of endomorphisms				
		on generated by Monge-Ampère				
		equations	295			
		14.1.3 Non-degenerate equations	298			
		14.1.4 Parabolic equations	302			

Contents

	14.2		ediate integrals	304	
		14.2.1	Classical and non-holonomic intermediate		
			integrals	304	
		14.2.2	Cauchy problem and non-holonomic		
			intermediate integrals	307	
	14.3	• -	ctic Monge–Ampère equations	308	
		14.3.1	A field of endomorphisms A_{ω} on T^*M	308	
		14.3.2	Non-degenerate symplectic equations	310	
		14.3.3	Symplectic parabolic equations	312	
		14.3.4	Intermediate integrals	313	
	14.4	Cauchy	problem for hyperbolic Monge–Ampère		
		equatio	ns	313	
		14.4.1	Constructive methods for integration of		
			Cauchy problem	314	
15	Svete	me of fi	rst-order partial differential equations on		
15	-		onal manifolds	318	
	15.1			510	
	15.1	Non-linear differential operators of first order on two-dimensional manifolds			
	15.0			319 321	
			equations		
		•	etries of Jacobi equations	328	
	15.4		tric structures associated with	220	
	15 5		s equations	330	
			vation laws of Jacobi equations	332	
	15.6	Cauchy	problem for hyperbolic Jacobi equations	334	
Pa	rt IV	Appli	cations	337	
16	Non-	linear a	coustics	339	
	16.1	Symme	etries and conservation laws of the KZ equation	340	
		16.1.1	KZ equation and its contact symmetries	340	
			The structure of the symmetry algebra	342	
			Classification of one-dimensional subalgebras	of	
			$\mathfrak{sl}(2,\mathbb{R})$	345	
		16.1.4	Classification of symmetries	347	
			Conservation laws	348	
	16.2		arities of solutions of the KZ equation	349	
		-	Caustics	349	
			Contact shock waves	351	

17	Non-linear thermal conductivity					
	17.1	Symmetries of the TC equation	356			
		17.1.1 TC equation	356			
		17.1.2 Group classification of TC equation	357			
	17.2	Invariant solutions	363			
18	Meteorology applications					
	18.1	Shallow water theory and balanced dynamics	372			
	18.2	A geometric approach to semi-geostrophic theory	374			
	18.3	Hyper-Kähler structure and Monge–Ampère				
		operators	376			
	18.4	Monge–Ampère operators with constant				
		coefficients and plane balanced models	380			
Pa	rt V	Classification of Monge–Ampère				
		equations	383			
19		sification of symplectic MAOs on two-dimensional				
	mani		385			
		<i>e</i> -Structures	386			
	19.2	Classification of non-degenerate Monge-Ampère				
		operators	388			
		19.2.1 Differential invariants of non-degenerate				
		operators	388			
		19.2.2 Hyperbolic operators	392			
		19.2.3 Elliptic operators	401			
	19.3	Classification of degenerate Monge-Ampère				
		operators	406			
		19.3.1 Non-linear mixed-type operators	406			
		19.3.2 Linear mixed-type operators	416			
20						
		folds	422			
	20.1	Monge–Ampère equations with constant				
		coefficients	422			
		20.1.1 Hyperbolic equations	423			
		20.1.2 Elliptic equations	425			
		20.1.3 Parabolic equations	426			
	20.2	Non-degenerate quasilinear equations	428			
	20.3	Intermediate integrals and classification	429			

.

Contents

xi

	20.4	.4 Classification of generic Monge–Ampère equations		430	
		20.4.1	Monge–Ampère equations and <i>e</i> -structures	430	
		20.4.2	Normal forms of mixed-type equations	436	
	20.5	Applica	ations	440	
		20.5.1	The Born–Infeld equation	440	
		20.5.2	Gas-dynamic equations	442	
		20.5.3	Two-dimensional stationary irrotational		
			isentropic flow of a gas	445	
21	Cont	act class	sification of MAEs on two-dimensional		
	mani	ifolds		447	
	21.1	Classes	$H_{k,l}$	447	
	21.2	Invaria	nts of non-degenerate Monge-Ampère equations	454	
		21.2.1	Tensor invariants	454	
		21.2.2	Absolute and relative invariants	456	
	21.3	The pro	oblem of contact linearization	459	
	21.4	The pro	oblem of equivalence for non-degenerate		
		equation	ons	464	
		21.4.1	e-Structure for non-degenerate equations	464	
		21.4.2	Functional invariants	470	
22	Symplectic classification of MAEs on three-dimensional				
	manifolds			472	
	22.1	Jets of	submanifolds and differential equations on		
		submai		473	
	22.2	Prolongations of contact and symplectic manifolds and			
		overde	termined Monge–Ampère equations	476	
		22.2.1	Prolongations of symplectic manifolds	476	
		22.2.2	Prolongations of contact manifolds	479	
	22.3	Differe	ntial equations for symplectic equivalence	482	
	Refer	rences		487	
	Index	÷		493	