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Abstract. We present without proofs some basic theory about contact hypersurfaces in

Kähler manifolds. We then discuss the classification problem for some Hermitian symmet-

ric spaces.

1 Introduction

A contact manifold is a smooth (2n−1)-dimensional manifold M together with a
one-form η satisfying η∧ (dη)n−1 6= 0, n ≥ 2. The one-form η on a contact manifold
is called a contact form. The kernel of η defines the so-called contact distribution C

in the tangent bundle TM of M .

A standard example is a round sphere in an even-dimensional Euclidean space.
Consider the sphere S2n−1(r) with radius r ∈ R+ in Cn and denote by 〈·, ·〉 the
inner product on Cn given by

〈z, w〉 = Re

n∑
ν=1

zνw̄ν .

By defining

ξz = −1

r
iz

we obtain a unit tangent vector field ξ on S2n−1(r). We denote by η the dual
one-form given by

η(X) = 〈X, ξ〉

and by ω the Kähler form on Cn given by

ω(X,Y ) = 〈iX, Y 〉.
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A straightforward calculation gives

dη(X,Y ) = −2

r
ω(X,Y ).

Since the Kähler form ω has rank 2(n− 1) on the kernel of η it follows that

η ∧ (dη)n−1 6= 0.

Thus S2n−1(r) is a contact manifold with contact form η.

Note that if η is a contact form on a smoth manifold M , then ρη is also a contact
form on M for each smooth function ρ on M which is nonzero everywhere.

2 Contact hypersurfaces in Kähler manifolds

Let M̄ be a Kähler manifold of complex dimension n and let M be a connected
oriented real hypersurface of M̄ . The hypersurface M can be equipped with what
is known as an almost contact metric structure (φ, ξ, η, g) which consists of

1. a Riemannian metric g on M which is induced canonically from the Kähler
metric (also denoted by g) on M̄ ;

2. a tensor field φ on M which is induced canonically from the complex structure
J on M̄ : for all vectors fields X on M the vector field φX is obtained by
projecting orthogonally the vector field JX onto the tangent bundle TM ;

3. a unit vector field ξ which is induced canonically from the orientation of M :
if N is the unit normal vector field on M which determines the orientation
of M then ξ = −JN ;

4. a one-form η which is defined as the dual of the vector field ξ with respect to
the metric g, that is, η(X) = g(X, ξ) for all X ∈ TM .

The vector field ξ is also known as the Reeb vector field on M . The maximal complex
subbundle C of the tangent bundle TM of M is equal to ker(η).

Let A be the shape operator of M defined by

AX = −∇̄XN,

where ∇̄ denotes the Levi Civita covariant derivative on M̄ . Denote by ω the
fundamental 2-form on M given by

ω(X,Y ) = g(φX, Y ).

Proposition 2.1. The fundamental 2-form ω on a real hypersurface in a Kähler

manifold is closed, that is, dω = 0.
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The real hypersurface M is said to be a contact hypersurface of M̄ if there exists
an everywhere nonzero smooth function ρ on M such that

dη = 2ρω

on M (Okumura ([11]). It is clear that if this equation holds then η ∧ (dη)n−1 6= 0,
that is, every contact hypersurface in a Kähler manifold is a contact manifold. Note
that the equation dη = 2ρω means that

dη(X,Y ) = 2ρg(φX, Y )

for all tangent vector fields X,Y on M .

Proposition 2.2. Let M be a connected real hypersurface of an n-dimensional

Kähler manifold M̄n and assume that there exists an everywhere nonzero smooth

function ρ on M such that dη = 2ρω. If n ≥ 3, then ρ is constant.

The following proposition gives a useful characterization of contact hypersur-
faces in terms of the shape operator and the tensor field φ.

Proposition 2.3. Let M be a connected orientable real hypersurface of a Kähler

manifold M̄ . Then M is a contact hypersurface if and only if there exists an every-

where nonzero smooth function ρ on M such that

Aφ+ φA = 2ρφ.

A real hypersurface M of a Kähler manifold is called a Hopf hypersurface if the
flow of the Reeb vector field is geodesic, that is, if every integral curve of ξ is a
geodesic in M . This condition is equivalent to

Aξ = αξ

with the smooth function

α = g(Aξ, ξ),

that is, the Reeb vector field is a principal curvature vector of M at each point. The
following result gives an expression for the mean curvature of a contact hypersurface
in a Kähler manifold.

Proposition 2.4. (Okumura [11]) Let M be a contact hypersurface of an n-

dimensional Kähler manifold M̄ . Then M is a Hopf hypersurface and

tr(A) = α+ 2(n− 1)ρ.
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We denote by R̄ the Riemannian curvature tensor of M̄ . For p ∈ M and
Z ∈ TpM̄ we denote by ZC the orthogonal projection of Z onto C. The following
proposition gives a useful relation between the shape operator of a contact hyper-
surface and the curvature of the Kähler manifold.

Proposition 2.5. Let M be a contact hypersurface of a Kähler manifold M̄ . Then

we have

2A2X − 4ρAX + 2αρX = (R̄(JN,N)JX)C

for all vector fields X on M which are tangent to the contact distribution C.

We know from Proposition 2.2 that ρ is constant for a contact hypersurface M
in M̄n provided that n ≥ 3. From Proposition 2.4 we see that in this situation
M has constant mean curvature if and only if the principal curvature function α
corresponding to the Reeb vector field ξ is constant. Using Proposition 2.5 one can
prove the following result:

Proposition 2.6. Let M be a contact hypersurface of a Kähler manifold M̄n,

n ≥ 3. Then we have

d(tr(A))(X) = g(R̄(JN,N)N, JX)

for all vector fields X on M which are tangent to the contact distribution C.

This readily implies the following result:

Proposition 2.7. Let M be a connected contact hypersurface of a Kähler manifold

M̄ , n ≥ 3. Then the following statements are equivalent:

(i) M has constant mean curvature;

(ii) the principal curvature function α = g(Aξ, ξ) corresponding to the Reeb vector

field ξ is constant;

(iii) the Reeb vector field ξ = −JN is an eigenvector of the normal Jacobi operator

R̄N = R̄(·, N)N everywhere.

It is a natural problem to determine all contact hypersurfaces in a given Kähler
manifold. We are going to discuss this in the next section for the complex space
forms.
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3 Contact hypersurfaces in complex space forms

The Riemannian curvature tensor R̄ of an n-dimensional complex space form
M̄n(c) with constant holomorphic sectional curvature 4c is given by

R̄(X,Y )Z = c
(
g(Y, Z)X−g(X,Z)Y +g(JY, Z)JX−g(JX,Z)JY −2g(JX, Y )JZ

)
.

This implies
R̄(JN,N)N = 4cJN

and hence ξ = −JN is an eigenvector of the normal Jacobi operator R̄N everywhere.
We thus get from Proposition 2.7:

Proposition 3.1. Let M be a connected contact hypersurface of a complex space

form M̄n(c), n ≥ 3. Then the functions α and ρ are constant and M has constant

mean curvature.

The contact hypersurfaces in complex Euclidean spaces Cn were classified by
Okumura for n ≥ 3:

Theorem 3.2. (Okumura [11]) Let M be a connected orientable real hypersurface

of Cn and n ≥ 3. Then M is a contact hypersurface if and only if M is congruent

an open part of one of the following contact hypersurfaces of Cn:

(i) the sphere S2n−1(r) of radius r ∈ R+ in Cn;

(ii) the tube of radius r ∈ R+ around the totally geodesic Rn in Cn.

Outline of proof: We did already show above that S2n−1(r) is a contact hyer-
surface of Cn for all n ≥ 2. We will now prove that the tube Mr of radius r ∈ R+

around Rn is a contact hypersurface of Cn for all n ≥ 2. Let x ∈ Rn and let iy ∈ iRn
be a unit normal vector of Rn at x. Denote by p the point on Mr at distance r
from Rn and in direction iy. With the usual identifications we can regard iy also
as a unit normal vector of Mr at p. The principal curvatures of Mr with respect
to iy are 0 and − 1

r and the corresponding principal curvature spaces are Rn and
i(Rn 	 Ry), respectively. We can easily see now that the shape operator Ar of Mr

satisfies

Arφ+ φAr = −1

r
φ.

It then follows from Proposition 2.3 that Mr is a contact hypersurface of Cn.
Conversely, let M be a connected contact hypersurface of Cn. It follows from

Proposition 3.1 that ρ and α are constant and then from Proposition 2.5 that M has
constant principal curvatures. Thus M is an isoparametric hypersurface of Cn. The
isoparametric hypersurfaces in Euclidean spaces were classified by Segre in [12]. Any
such hypersurface is either a totally geodesic Euclidean hyperplane, a round sphere,
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or a tube around a totally geodesic Euclidean subspace. A totally geodesic Euclidean
hyperplane satisfies Aφ+φA = 0 and therefore cannot be contact hypersurface. We
therefore have to investigate the tubes around totally geodesic Rk ⊂ R2n ∼= Cn for
k ∈ {1, . . . , 2n − 2}. Any such tube has exactly two distinct constant principal
curvatures 0 and − 1

r with multiplicites k and 2n− k − 1 respectively. A necessary
condition for a contact hypersurface is that it must be a Hopf hypersurface. A tube
around Rk is a Hopf hypersurface if and only if the complex structure i maps the
normal spaces of Rk either to the normal spaces of Rk or to the tangent spaces
of Rk. In the first case Rk is embedded in Cn as a complex submanifold, that is,
k is even, say k = 2m and Rk ∼= Cm ⊂ Cn. Since the tube around Cm has an
m-dimensional i-invariant principal curvature space with corresponding principal
curvature 0 it follows that Aφ+φA = 0 on that space. Therefore a tube around Cm
in Cn cannot be a contact hypersurface. In the second case, when i maps normal
spaces of Rk to tangent spaces of Rk, the Euclidean space must be of the form

Rk ∼= Cm ⊕ Rn−m.

In this case the principal curvatures of the tube are 0 and − 1
r with multiplicities

n+m and n−m−1 respectively. The principal curvature space of 0 is Cm⊕Rn−m
and we get Aφ+ φA = 0 on the Cm-part of this space. Thus we must have m = 0
and therefore we get a tube around Rn which is a contact hypersurface. This finishes
the proof of Theorem 3.2.

Next we consider the n-dimensional complex projective space CPn equipped
with the Fubini Study metric of constant holomorphic sectional curvature 4.

Theorem 3.3. (Okumura [11]) Let M be a connected orientable real hypersurface

of CPn and n ≥ 3. Then M is a contact hypersurface if and only if M is congruent

an open part of one of the following contact hypersurfaces of CPn:

(i) the geodesic hypersphere of radius r ∈ (0, π2 ) in CPn;

(ii) the tube of radius r ∈ (0, π4 ) around the totally geodesic RPn in CPn.

Outline of proof: It follows from Proposition 3.1 that α and ρ are constant.
From Proposition 2.5 we conclude that A restricted to C has at most two distinct
and constant principal curvatures. Thus M is a Hopf hypersurface with constant
principal curvatures. Such hypersurfaces in CPn were classified by Kimura in [9].
He proved that any such hypersurface is locally congruent to a homogeneous hy-
persurface in CPn. The principal curvatures and principal curvature spaces of the
homogeneous hypersurfaces in CPn were explicitly calculated by Takagi in [14].
Using this information it is a straightforward calculation to verify that among the
homogeneous hypersurfaces in CPn with at most three distinct constant principal
curvatures the contact hypersurfaces are precisely those listed in Theorem 3.3.

We finally consider the n-dimensional complex hyperbolic space CHn equipped
with the Bergman metric of constant holomorphic sectional curvature −4.
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Theorem 3.4. (Vernon [15]) Let M be a connected orientable real hypersurface of

CHn and n ≥ 3. Then M is a contact hypersurface if and only if M is congruent

an open part of one of the following contact hypersurfaces of CHn:

(i) the geodesic hypersphere of radius r ∈ R+ in CHn;

(ii) a horosphere in CHn;

(iii) the tube of radius r ∈ R+ around the totally geodesic CHn−1 in CHn;

(iv) the tube of radius r ∈ R+ around the totally geodesic RHn in CHn.

Outline of proof: The proof is analogous to the one for CPn, applying the classi-
fication of Hopf hypersurfaces with constant principal curvatures in CHn obtained
by the author in [1].

4 Contact hypersurfaces and homogeneous hypersurfaces in Hermitian

symmetric spaces

The complex space forms that we discussed in the previous section are the Eu-
clidean Hermitian symmetric spaces and the Hermitian symmetric spaces of rank
one. The classification of contact hypersurfaces in other Hermitian symmetric spaces
is still an open problem. One complication here is that the structure of the Rie-
mannian curvature tensor of a Hermitian symmetric space of higher rank is more
complicated. No analogon of Proposition 3.1 for higher rank Hermitian symmetric
spaces is known yet. In particular, it is an open problem whether or not a contact
hypersurface in a Hermitian symmetric space has constant mean curvature.

All the examples of contact hypersurfaces we discussed above are open parts
of homogeneous hypersurfaces. It is therefore a natural problem to classify first
the homogeneous contact hypersurfaces in Hermitian symmetric spaces. Homoge-
neous hypersurfaces are orbits of cohomogeneity one actions. On irreducible simply
connected symmetric spaces such actions were classified by Kollross in [10] for the
compact case and investigated thoroughly by the author and Tamaru in [5], [6], [7]
and [8] for the noncompact case.

We discuss this now for some irreducible Hermitian symmetric spaces of compact
type:

1. The complex Grassmannian Gp(Cp+q) = SUp+q/S(UpUq) of p-dimensional
complex subspaces in Cp+q, 1 ≤ p ≤ q has complex dimension n = pq and its rank
is equal to p. For p = 1 we get the q-dimensional complex projective space CP q
which we discussed in the previous section.

For p = 2 we have the complex 2-plane Grassmannian G2(Cq+2). There are two
types of homogeneous hypersurfaces in G2(Cq+2):
Type (A): Tubes around the totally geodesic G2(Cq+1) ⊂ G2(Cq+2).
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Type (B): (only if q = 2m is even) Tubes around the totally geodesic HPm ⊂
G2(C2m+2).

The contact hypersurfaces with constant mean curvature in G2(Cq+2) were
classified by Suh:

Theorem 4.1. (Suh [13]) Let M be a connected real hypersurface with constant

mean curvature in G2(Cq+2), q ≥ 3. Then M is a contact hypersurface if and only

if q is even, say q = 2m, and M is congruent to an open part of a tube around the

totally geodesic HPm ⊂ G2(C2m+2).

It is not known if the assumption of constant mean curvature is really necessary
here.

For p ≥ 3 no examples are known of contact hypersurfaces in Gp(Cp+q). The
only homogeneous hypersurfaces in Gp(Cp+q) are the tubes around Gp−1(Cp+q), or
equivalently, around Gp(Cp+q−1) since Gp(Cp+q−1) is the focal set of Gp−1(Cp+q).

2. The complex quadric Qn = SOn+2/SOnSO2 has complex dimension n and
its rank is equal to 2. For n = 1 this is a 2-sphere S2 and for n = 2 this is the
product of two 2-spheres, so we consider only n ≥ 3. The complex quadric can be
realized as a complex hypersurface in CPn+1 given by the homogeneous equation
z21 + . . . + z2n+2 = 0. Using the Gauss equation for the embedding Qn ⊂ CPn+1

one can easily derive an explicit expression for the Riemannian curvature tensor of
Qn in terms of the Riemannian metric, the complex structure and a particular real
structure on Qn. There is in fact an S1-family of real structures on Qn coming from
the shape operators of Qn with respect to unit normal vectors in CPn+1 which can
be used to describe the curvature of Qn.

There are five types of homogeneous hypersurfaces in complex quadrics:

Type (A): Tubes around the totally geodesic Qn−1 ⊂ Qn−2. The focal set of Qn−1

is an n-dimensional sphere Sn which is embedded in Qn as a real form, that is, as
a totally geodesic and totally real submanifold of half dimension. Therefore these
hypersurfaces can also be considered as tubes around the real form Sn of Qn. The
author and Suh proved in [3] that every tube around Sn in Qn is a homogeneous
contact hypersurface of Qn.

Type (B): (n = 2m even) Tubes around the totally geodesic CPm in Q2m. These
are the principal orbits of the action of Um+1 ⊂ SO2m+2 on Q2m.

Type (C): (n = 4m − 2) The action of SpmSp1 ⊂ SO4m on Q4m−2 is of cohomo-
geneity one and the principal orbits are homogeneous hypersurfaces of Q4m−2.

Type (D): (n = 6) The 6-dimensional quadric Q6 can be written as a homogeneous
space Q6 = SO8/SO6SO2 = SO8/U4 = SO7/U3. The exceptional Lie group
G2 ⊂ SO7 acts on Q6 with cohomogeneity one and therefore the principal orbits of
this action are homogeneous hypersurfaces of Q6.

Type (E): (n = 14) The spin representation of Spin9 on R16 yields an embedding
of Spin9 into SO16. The induced action of Spin9 on Q14 is of cohomogeneity one
and the principal orbits are homogeneous hypersurfaces of Q14.
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3. The Hermitian symmetric space SO2n/Un has complex dimension n(n−1)/2
and its rank is equal to [n/2]. For n = 2 we have SO4/U2 = CP 1, for n = 3
we have SO6/U3 = CP 3 and for n = 4 we have SO8/U4 = Q6, and therefore
we assume n ≥ 5. The subgroup SO2n−2SO2 ⊂ SO2n acts on SO2n/Un with
cohomogeneity one. The principal orbits are tubes around the totally geodesic
SO2n−2/Un−1 ⊂ SO2n/Un. These tubes are the only homogeneous hypersurfaces
in SO2n/Un.

4. The Hermitian symmetric space Spn/Un has complex dimension n(n+ 1)/2
and its rank is equal to n. For n = 2 we have Sp2/U2 = Q3 and therefore we assume
n ≥ 3. The subgroup Spn−1Sp1 ⊂ Spn acts on Spn/Un with cohomogeneity one
and the principal orbits are tubes around the totally geodesic Spn−1/Un−1 × S2 ⊂
Spn/Un. These tubes are the only homogeneous hypersurfaces in Spn/Un.

5. The exceptional Hermitian symmetric space E6/Spin10U1 has complex di-
mension 16 and its rank is equal to 2. The subgroup F4 ⊂ E6 acts on E6/Spin10U1

with cohomogeneity one. The principal orbits are the tubes around the real form
OP 2 = F4/Spin9 of E6/Spin10U1. There are no other homogeneous hypersurfaces
in E6/Spin10U1.

6. The exceptional Hermitian symmetric space E7/E6U1 has complex dimension
27 and its rank is equal to 3. This symmetric space does not admit any homogeneous
hypersurfaces.

There are many examples of cohomogeneity one actions on noncompact Her-
mitian symmetric spaces, also on the noncompact dual E−25

7 /E6E1 of E7/E6U1.
This makes the problem of classifying homogeneous contact hypersurfaces on these
spaces more difficult. For example, one class of homogeneous hypersurfaces in sym-
metric spaces of noncompact type which have no analogue in the compact case are
horospheres. The author and Suh investigated in [4] the geometry of horospheres in
the noncompact Grassmannian G∗

2(Cm+2) = SU2,m/S(U2Um). This Grassmannian
has two distinguished geometric structures, a Kähler structure J and a quater-
nionic Kähler structure J. Horospheres can be seen as spheres with center at in-
finity with respect to the geodesic compactification, and geodesics correspond to
tangent vectors. The Grassmannian G∗

2(Cm+2) has two types of singular tangent
vectors X which can be characterized by the two geometric properties JX ∈ JX
and JX ⊥ JX. All other tangent vectors are regular. This gives a corresponding
concept of singular and regular points at infinity. From the results in [4] one can
easily conclude:

Theorem 4.2. Let M be a horosphere in G∗
2(Cm+2) = SU2,m/S(U2Um), m ≥ 3.

Then M is a contact hypersurface if and only if M is a horosphere whose center at

infinity is a singular point of type JX ⊥ JX.

In recent work with Lee and Suh [2] the author investigated contact hypersur-
faces in G∗

2(Cm+2), and from their result and Proposition 2.7 one can deduce the
following classification result:
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Theorem 4.3. Let M be a connected orientable real hypersurface with constant

mean curvature in G∗
2(Cm+2) = SU2,m/S(U2Um), m ≥ 3. Then M is a contact

hypersurface if and only if M is a horosphere whose center at infinity is a singular

point of type JX ⊥ JX, or m is even, say m = 2k, and M is an open part of a

tube around a totally geodesic quaternionic hyperbolic space HHk ⊂ G∗
2(C2k+2).
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