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ABSTRACT Indoor localization technologies are actively investigated to realize location-based appli-
cations in various environments, and indoor localization methods based on whether the received signal
strength indicator (RSSI) is less than a threshold have been proposed previously. Such a proximity/non-
proximity binary value is used in digital contact tracing applications to reduce the coronavirus disease
effects. We proposed two indoor pedestrian localization methods based on contact information using
bluetooth low energy (BLE) beacons, namely multilateration and cooperative localization. This study
attempts to demonstrate the effectiveness of the proposed methods using only contact information. Through
simulation experiments, we found that the proposed methods can achieve comparable accuracy to existing
methods when the attenuation model is accurate. The difference in average localization error was 0.1 m
between the proposed method 1 and range-based method, and 0.2 m between the proposed method 2
and fingerprinting method. We confirmed that the proposed methods using only contact information are
robust against environmental changes even when the attenuation model is inaccurate. We consider that
these contributions have added a new perspective on the use of contact information in the field of indoor
localization, which aims to realize power-saving and cost reduction.

INDEX TERMS Contact information, Indoor positioning, Nonlinear optimization, Proximity

I. INTRODUCTION

INDOOR localization has attracted increasing interest
from industry to realize location-based applications in

different environments. Recently, many studies have inves-
tigated indoor localization using BLE beacons [1]. Among
these studies, a range-based method using trilateration or
multilateration based on distances estimated from the RSSI
of several BLE beacons is widely used. In addition, indoor
localization based on “whether RSSI measurement is lower
than the threshold 𝑃𝑡ℎ” rather than just the RSSI value has
been studied [2]–[5]. In this method, the proximity relation
between nodes is expressed by a binary value representing
proximity or non-proximity.

proximity =

{
0, RSS ≤ 𝑃𝑡ℎ,

1, RSS > 𝑃𝑡ℎ .
(1)

This proximity/non-proximity binary value is also used in
digital contact tracing smartphone applications to reduce the

effects of the coronavirus disease (COVID-19) pandemic.
These smartphone applications notify the user of contact
history with registered infected individuals using wireless
communication technologies, e.g., such as Bluetooth and
BLE [6]. In addition, digital contact tracing has been studied
extensively [7], [8]. Contact information expressed as prox-
imity or non-proximity is suitable for smartphones; thus, we
consider that contact information between smartphones can
be used for indoor pedestrian localization.

In a previous study, we proposed two indoor pedestrian
localization methods based on contact information using
BLE beacons [9]. The first method is multilateration and
the second one is cooperative localization, which is an
improved version of the sensor response-based localization
technique [10], [11] for wireless sensor networks (WSNs).
The sensor response-based localization technique uses prox-
imity relations between nodes recognized from sensor re-
sponses to estimate the sensor position. Accordingly, this
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study attempts to demonstrate the effectiveness of the pro-
posed methods, which only use contact information.

BLE-based indoor localization methods can be classified
into four types: range-based, fingerprinting, closest-beacon,
and proximity methods. The accuracy of range-based meth-
ods, which use distances estimated directly from RSSI,
would particularly deteriorate when the attenuation model
used to calculate the distance between a pedestrian and a
BLE beacon is inaccurate due to environmental changes.
The proposed methods do not require a specific attenuation
model. In fingerprinting methods, accurately estimating a po-
sition when the environment changes from the one where the
RSSI map was measured in advance is difficult. However, the
proposed methods have the advantage of being robust against
environmental changes. Closest-beacon methods, which use
the strongest beacon signal, require numerous BLE beacons
for accurate localization, whereas the proposed methods re-
quire fewer BLE beacons. Further, the existing proximity-
based methods focus on the one-hop proximity between a
BLE beacon and a smartphone. Meanwhile, the proposed
methods use the number of hops obtained from the proximity
relation between smartphones for localization. The major
contributions of this study are summarized as follows.

• We confirmed that the sensor response-based localiza-
tion method [10], [11] for WSNs could be applied to
indoor localization.

• Through simulation experiments, we found that the pro-
posed methods could obtain comparable accuracy to ex-
isting methods when the attenuation model is accurate.

• We confirmed that the proposed methods were robust
against environmental changes even when the attenua-
tion model is inaccurate.

The remainder of this paper is organized as follows.
Section II overviews previous studies on BLE-based indoor
localization and other related works. Section III outlines
the target problem and the proposed localization methods,
and Section IV describes experiments conducted using real
devices. In Section V, we discuss the effectiveness of the
proposed methods through simulation experiments. Finally,
conclusions are presented in Section VI.

II. RELATED WORK
Technologies that can be implemented on smartphones for
indoor localization include radio frequency, self-contained
sensors, indoor maps, and magnetic field fingerprinting [12].
Among these technologies, smartphone-based indoor posi-
tioning systems using radio frequency have been widely
studied [13].

BLE was released in June 2010 as Bluetooth version 4.0.
The features of BLE are short-range wireless communication
and low power consumption. These features are suitable for
mobile devices, e.g., smartphones and tablets, which are
rapidly becoming ubiquitous. Thus, BLE is used for COVID-
19 digital contact tracing applications, and in recent years,
many studies have investigated indoor localization methods
using BLE beacons.

As mentioned in Section I, BLE-based indoor localization
methods can be classified into four types, and many meth-
ods that combine these techniques have been studied. The
range-based method estimates the position by trilateration
or multilateration based on the distances calculated from the
RSSI value of BLE beacons. In recent years, the range-based
method has been used for indoor positioning using BLE
beacons in a smart museum [14]. However, the localization
accuracy of the range-based method using RSSI is largely de-
pendent on the radio propagation environment. Thus, meth-
ods to suppress the influence of RSSI fluctuations have also
been studied [15]–[17]. The RSSI of the BLE measured by
three frequency channels is different, and the attenuation
model is different depending on the channel. To improve the
adaptability and robustness of the BLE positioning system,
Huang et al. proposed an indoor positioning method using the
information of three BLE advertising channels [17]. Despite
the above studies, the problem of the range-based methods
associated with an attenuation model has not been completely
solved. The proposed methods do not have such a problem
because the methods do not require a specific attenuation
model for localization.

The fingerprinting method determines the best matching
coordinates by comparing RSSI measurements with a pre-
measured RSSI map. A previous study [18] investigated the
key parameters required to realize accurate indoor position-
ing using BLE radio signals. Another study [19] proposed a
fingerprinting algorithm based on the general and weighted
k-nearest neighbor algorithms. The fingerprinting method
is expected to be used in a BLE-based indoor positioning
system developed for monitoring the daily living patterns of
the elderly or disabled [20]. In the fingerprinting method,
it is difficult to estimate a position accurately when the
environment changes from the one where the RSSI map was
measured in advance. By contrast, the proposed methods
have the advantage of being robust to environmental changes.

The closest-beacon method identifies the strongest signal
received by the pedestrian and estimates the position of the
source of that signal as the pedestrian’s probable position.
For example, Apple’s iBeacon protocol [21] is a BLE-based
short-range wireless communication technology designed
for proximity detection and proximity-based service. The
closest-beacon method has been widely studied [22]–[25],
including zone-level occupancy detection [26]. Instead of
identifying the strongest signal source, a method has been
proposed to identify the source of the signal received by
the pedestrian most times and estimate the position of that
source as the pedestrian’s probable position [27]. Although
the closest-beacon method is simple and easily feasible, it
requires numerous BLE beacons for accurate localization,
whereas the proposed methods require fewer BLE beacons
because the number of hops obtained from the proximity
relation between smartphones is used for localization.

As well as our proposed methods, several existing studies
have proposed proximity-based localization methods based
on positional relationships with beacons represented by the
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FIGURE 1. Problem settings.

binary value of proximity/non-proximity. In these studies, the
proximity relation is determined by whether the RSSI mea-
surement is less than a given threshold. For example, Fazio
et al. proposed a proximity-based navigation system using
BLE in a smart building [2], and Zhao et al. developed an
RSS-proximity report-based particle filtering algorithm [3].
In addition, RSS threshold optimization techniques using
a Gaussian process [4] and theoretical bounds for proxim-
ity report-based indoor positioning have been proposed [5].
These methods focus on the one-hop proximity between a
BLE beacon and a smartphone. Meanwhile, the proposed
methods use the number of hops obtained from the proximity
relation between smartphones for localization.

Similar to our proposed methods, connectivity-based lo-
calization is being studied in the field of WSNs [28], [29].
This method defines two sensors that receive wireless sig-
nals as “proximity” and then localizes the sensors based
on the connection relation expressed by the binary value.
However, the application of this method to indoor pedes-
trian localization is limited; thus, it is unclear whether this
method would be effective for indoor pedestrian localization
because it is assumed that the sensor is fixed. The previously
proposed sensor response-based localization technique [10],
[11] is based on connectivity-based localization [28], [29]
and cooperative localization [30], [31]. Furthermore, we have
proposed two indoor pedestrian localization methods based
on contact information using BLE beacons [9]. Note that our
proposed methods target pedestrian localization rather than
fixed sensor devices. The distance estimation method is simi-
lar to DV-HOP [32]; however, our methods are characterized
by solving a mathematically backed nonlinear optimization
problem.

III. PROBLEM SETTINGS AND CONTACT-BASED
LOCALIZATION METHODS
A. PROBLEM SETTINGS
In this study, we consider pedestrian position estimation in
a two-dimensional indoor area. The pedestrians in the area
carry a smartphone that can transmit and receive BLE signals.

FIGURE 2. Overview of proposed methods.

FIGURE 3. Graph representing the proximity relation of nodes (left) and the
matrix of hops (right).

In addition, several BLE beacons (i.e., anchor nodes) are
placed at known positions. In the following, both the pedes-
trian’s smartphone and the anchor nodes are referred to as
nodes for simplicity. Each node periodically sends a wireless
signal containing a list of identifiers and RSSI values of all
nodes. Then, the server recognizes all node identifiers in the
observation area and proximity relation. Here, if the RSSI
value meets or exceeds a threshold, the server recognizes the
proximity relation between the sender’s listed nodes. Fig. 1
illustrates the problem settings.

We assume that the proximity relation between nodes is a
binary value of 0 or 1. The proximity relation between nodes
𝑖 and 𝑗 at time 𝑡 is expressed as follows.

proximity𝑖, 𝑗 (𝑡)

=

{
0, RSSI𝑖 ≤ 𝑅𝑡ℎ and RSSI 𝑗 ≤ 𝑅𝑡ℎ,

1, RSSI𝑖 > 𝑅𝑡ℎ or RSSI 𝑗 > 𝑅𝑡ℎ,
(2)

where RSSI𝑖 is the RSSI from node 𝑖, and 𝑅𝑡ℎ is the
given RSSI threshold. Note that RSSI𝑖 uses the aggre-
gated RSSI rather than the channel separated RSSI. When
proximity𝑖, 𝑗 (𝑡) = 1, nodes 𝑖 and 𝑗 are proximity, and when
proximity𝑖, 𝑗 (𝑡) = 0, nodes 𝑖 and 𝑗 are non-proximity.
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Then, the server expresses the proximity relation at each
time as an undirected graph. The number of hops between the
nodes in the undirected graph is then calculated by solving
the shortest path problem. Fig. 2 shows an overview of the
proposed methods, and Fig. 3 shows a graph representing the
proximity relation of nodes and their matrix of hops. We then
estimate the unknown position of the pedestrian.

B. ESTIMATING DISTANCE BETWEEN NODES BASED
ON PROXIMITY RELATION
We calculate the average distance per hop and the distance
between nodes from the proximity relation. Here, 𝒩 is the
set of pedestrian identifying numbers, and 𝒜 represents the
set of the anchor node identifying numbers. Let 𝒂𝑖 denote
the known coordinates of anchor node 𝑖. 𝒫𝑎 gives the set
of anchor node pairs that are connected in the undirected
graph, and the number of hops between anchor nodes 𝑖 and
𝑗 ((𝑖, 𝑗) ∈ 𝒫𝑎) is denoted ℎ𝑖 𝑗 . The average distance per hop
𝑑avg is calculated as follows.

𝑑avg =

∑
(𝑖, 𝑗 ) ∈𝒫𝑎

|𝒂𝑖 − 𝒂 𝑗 |∑
(𝑖, 𝑗 ) ∈𝒫𝑎

ℎ𝑖 𝑗
. (3)

Then, we estimate the distance between nodes. Here, 𝒫
denotes the set of node pairs connected in the undirected
graph, and the number of hops between nodes 𝑖 and 𝑗

((𝑖, 𝑗) ∈ 𝒫) is denoted ℎ𝑖 𝑗 . The matrix of hops is then
multiplied by the average distance per hop 𝑑avg, and the result
is used for localization as a distance matrix {𝑑𝑖 𝑗 }. Using
the average distance per hop 𝑑avg, we calculate the distance
between nodes 𝑑𝑖 𝑗 as follows.

𝑑𝑖 𝑗 = 𝑑avgℎ𝑖 𝑗 . (4)

C. PROPOSED METHOD 1: MULTILATERATION
We estimate the pedestrian’s position from the distance be-
tween nodes 𝑑𝑖 𝑗 . Proposed method 1 employs multilateration
based on the distance between a pedestrian and three or more
anchor nodes. In the following, the estimated coordinates of
pedestrian 𝑖(∈ 𝒩) are represented by 𝒓𝑖 , which is expressed
as follows.

𝒓𝑖 = arg min
𝒙

𝑓 (𝒙), 𝑓 (𝒙) def
=

∑︁
𝑗∈𝒜𝑖

( |𝒙 − 𝒂 𝑗 | − 𝑑𝑖 𝑗 )2, (5)

𝒜𝑖
def
= { 𝑗 ∈ 𝒜; (𝑖, 𝑗) ∈ 𝒫}.

𝒜𝑖 is a set of anchor node identifying numbers connected
to pedestrian 𝑖 in the undirected graph. Equation (5) is used
to find an estimated position that reproduces the distance
between the pedestrian and the anchor nodes as accurately
as possible.

The right-hand side of (5) is a nonlinear optimization
problem; thus, it is difficult to find its optimal global solution.
Therefore, we employ a numerical calculation method to ob-
tain a local optimum solution. The initial solution is defined
as follows.

𝒓 (0)
𝑖

=
1

|𝒜𝑖 |
∑︁
𝑗∈𝒜𝑖

𝒂 𝑗 . (6)

The initial solution 𝒓 (0)
𝑖

is the centroid of the anchor nodes
included in 𝒜𝑖 . Then, assuming that the 𝑘 − 1th solution is
fixed, the 𝑘th solution can be obtained as follows.

𝒓 (𝑘 )
𝑖

=
1

|𝒜𝑖 |
∑︁
𝑗∈𝒜𝑖

𝑑𝑖 𝑗 (𝒓 (𝑘−1)
𝑖

− 𝒓 𝑗 )
|𝒓 (𝑘−1)

𝑖
− 𝒓 𝑗 |

+ 𝒓 (0)
𝑖

. (7)

Solutions 𝒓 (1)
𝑖

, 𝒓 (2)
𝑖

, . . . can be obtained recursively from the
initial solution 𝒓 (0)

𝑖
using (7). Note that the 𝑘th solution 𝒓 (𝑘 )

𝑖

converges to the local minimum solution on the right-hand
side of (5) at the limit of 𝑘 → ∞. This method is effective
when |𝒜𝑖 | ≥ 2. When |𝒜𝑖 | = 0, the center of the observation
area is the estimated position, and when |𝒜𝑖 | = 1, the position
of the anchor node connected on the undirected graph is the
estimated position.

D. PROPOSED METHOD 2: COOPERATIVE
LOCALIZATION
In proposed method 1, the position of each pedestrian is
estimated independently based on the distance between the
pedestrian and the anchor nodes. Thus, proposed method
1 does not consider the distance between the pedestrians.
In proposed method 2, which is an improved version of
the sensor response-based localization method [10], [11] for
WSNs, the distance between other pedestrians is considered,
in addition to the distance between the pedestrian and anchor
nodes. As a result, proposed method 2 improves the localiza-
tion accuracy of proposed method 1.

First, we delete elements of the distance matrix {𝑑𝑖 𝑗 } that
correspond to the elements of three or more hops in the
matrix of hops. If the distance between nodes 𝑖 and 𝑗 is
deleted, it is assumed that node 𝑖 ∉ 𝒩𝑗 and node 𝑗 ∉ 𝒩𝑖 . Here,
𝒩𝑖 is a set of the pedestrian identifying numbers connected
to pedestrian 𝑖 in the undirected graph. As a result, proposed
method 2 considers the distance of neighboring nodes within
two or fewer hops. Here, we assume that each pedestrian
is numbered from 1 to 𝑁 (𝑁 = |𝒩 |). In cooperative local-
ization, we find the position of a pedestrian by solving the
following optimization problem.

(𝒓1, . . . , 𝒓𝑁 ) = arg min
(𝒙1 ,...,𝒙𝑁 )

𝑔(𝒙1, . . . , 𝒙𝑁 ), (8)

where

𝑔(𝒙1, . . . , 𝒙𝑁 )
def
=

1
2

∑︁
𝑖∈𝒩

∑︁
𝑗∈𝒩𝑖

( |𝒙𝑖 − 𝒙 𝑗 | − 𝑑𝑖 𝑗 )2

+
∑︁
𝑖∈𝒩

∑︁
𝑗∈𝒜𝑖

( |𝒙𝑖 − 𝒂 𝑗 | − 𝑑𝑖 𝑗 )2, (9)

𝒩𝑖
def
= { 𝑗 ∈ 𝒩; (𝑖, 𝑗) ∈ 𝒫}.

The estimated positions (𝒓1, . . . , 𝒓𝑁 ) are determined by
minimizing the function 𝑔(𝒙1, . . . , 𝒙𝑁 ). We employ stress
majorization [33], which is a descent method, to recursively
find the solution. In addition, proposed method 2 uses the
estimated position obtained by proposed method 1 as the
initial solution because stress majorization requires an initial
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TABLE 1. Main environment settings of Raspberry Pi.

Operating system Raspbian ver. 11 (bullseye)
Execution environment Node.js ver. 9.2.1

Library npm ver. 5.5.1
Library bleacon ver. 0.5.1
Library date-utils ver. 1.2.21
Library csv-writer ver. 1.6.0

FIGURE 4. Overview of the laboratory floor.

solution. Refer to the APPENDIX for details about how we
formulate the optimization problem and its solution.

E. SMOOTHING
Finally, we employ the exponential smoothing technique to
absorb the time variation of the estimated position of each
node. The estimated position of node 𝑖 at time 𝑡 (𝑡 = 1, 2, . . . )
is defined as 𝒓𝑖 (𝑡), and we calculate the estimated position
after smoothing 𝒓smth

𝑖
(𝑡) as follows.

𝒓smth
𝑖 (𝑡) =

{
𝒓𝑖 (𝑡), 𝑡 = 1,
(1 − 𝛼)𝒓smth

𝑖
(𝑡 − 1) + 𝛼𝒓𝑖 (𝑡), 𝑡 = 2, 3, . . . ,

(10)
where 𝛼 is learning rate (here, 𝛼 = 0.2).

IV. EXPERIMENTAL EVALUATION
A. ATTENUATION MODEL
Here, we define an attenuation model from RSSI measure-
ments taken in a real-world indoor environment to demon-
strate that localization is possible using real devices. We
adopted a commonly used log-distance path loss model.
In this model, the relationship between RSSI (dBm) and
distance (m) is expressed as follows.

RSSI(𝑑) = −10𝑛 log10

(
𝑑

𝑑0

)
+ RSSI(𝑑0), (11)

where RSSI(𝑑) is the RSSI value at distance 𝑑, and RSSI(𝑑0)
is the RSSI value at the reference distance 𝑑0. 𝑛 is the
path loss exponent, which has a theoretical value of 𝑛 =
2 in free space without obstacles. Note that obstacles, e.g.,
furniture and pedestrians, we present in indoor measurement
environment, and the measured RSSI contained noise.

B. PRELIMINARY RSSI MEASUREMENT EXPERIMENTS
We conducted a preliminary RSSI measurement experiment
on a laboratory floor. Fig. 4 shows an overview of the
laboratory floor. Situation A was a corridor, and situation B

FIGURE 5. Preliminary experimental environment of situation A.

FIGURE 6. Preliminary experimental environment of situation B.

was a laboratory area, including walls. Here, we used a
Raspberry Pi 4 model B [34] to send and receive BLE signals.
The Raspberry Pi was used in this preliminary experiment
because it is inexpensive and easy to handle. In this experi-
ment, the Raspberry Pi employed iBeacon [21] to send BLE
signals at 100-ms intervals and received the signals from
another Raspberry Pi. Then, the measured RSSI, received
time, and sender identifier were recorded in an external CSV
file. Table 1 shows the main environment settings of the
Raspberry Pi.

We estimated the attenuation model parameters 𝑛 and
RSSI(𝑑0) from actual measurements using least squares esti-
mation. The preliminary experimental environments for situ-
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FIGURE 7. Parameter estimation results for situation A.

FIGURE 8. Parameter estimation results for situation B.

ations A and B are shown in Fig. 5 and Fig. 6, respectively.
In situation A, RSSI measurements were collected when the
distance between the two Raspberry Pi devices was varied
from 0.1 to 20.0 m in the corridor environment. Then, param-
eter estimation was performed using 55,100 measurements
from 29 unique distances. Here, the reference distance 𝑑0
was set to 1.0 m. In situation B, we installed 15 Raspberry
Pi devices on desks in the laboratory area and collected RSSI
measurements. The laboratory area was surrounded by walls,
and some desktop computers and furniture were present in
the laboratory. Raspberry Pi devices at the lower left and right
sides in Fig. 6 communicated through the wall with the door
closed. We collected 62,000 measurements from 31 unique
distances from 1.0 to 18.4 m, and estimated the parameters
of the attenuation model. Here, the reference distance 𝑑0 was
set to 1.0 m. Fig. 7 and Fig. 8 shows the parameter estimation
results for situation A and B, respectively.

According to the estimation results for situation A shown
in Fig. 7, 𝑛 = 1.21, RSSI(𝑑0) = −49.27 dBm, and the

FIGURE 9. The attenuation models A and B.

correlation coefficient between RSSI and distance between
nodes was 0.85. In Fig. 8, which shows the estimation results
for situation B, 𝑛 = 2.56, RSSI(𝑑0) = −46.90 dBm, and the
correlation coefficient between RSSI and distance between
nodes was 0.72. These two situations are referred to as atten-
uation models A and B, respectively. The path loss exponent
of the attenuation model B (𝑛 = 2.56) is much larger than
that of the attenuation model A (𝑛 = 1.21). This result seems
reasonable because there are some obstacles (like walls) in
situation B, but no obstacles in situation A. Fig. 9 shows the
attenuation models A and B.

As shown in Fig. 9, the RSSI attenuates as the distance
between nodes increases. When the distance between the
Raspberry Pi devices was greater than 7 m, the RSSI value
obtained from the attenuation model A was in a narrow range,
i.e., −60 to −65 dBm. When the distance is relatively long
(>7 m), there will be a significant error in estimating the
distance from the fluctuating RSSI measurement. At short
distances (≤6 m), the RSSI was widely distributed from −37
to −60 dBm. Thus, if the distance between nodes is relatively
short (e.g., 6 m), the proximity relation between nodes can
be estimated correctly from the RSSI measurement and RSSI
threshold. This is why we focused on indoor localization
based on contact information (i.e., the proximity relation)
between the nodes.

The attenuation models differ according to the surround-
ing, as shown by the attenuation models A and B. Note
that the BLE signal is transmitted on one of three BLE
advertising channels that use different frequencies. The at-
tenuation models A and B are aggregated models of the three
advertising channels, although the propagation characteris-
tics of the advertising channels should be different. Three
BLE advertising channel’s information were used to develop
three independent attenuation models for each BLE advertis-
ing channel in an indoor positioning approach proposed by
Huang et al. [17]. However, a previous study [7] stated that a
smartphone is typically not given access to information on
which about the advertising channel from which a packet
has been received. The attenuation model for each BLE
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TABLE 2. Conditions of the attenuation model used in the real-world
experiment and the simulations.

Result Attenuation model used Actual radio
in existing methods propagation env.

Real-world laboratory Model B (accurate) Model B
env. (Fig. 10) Model A (inaccurate)

Effect of RSSI Model A (accurate) Model A
threshold (Fig. 13) Model B (inaccurate)

Dependence on # of Model A Model A
anchors (Fig. 16)

Dependence on path Model A Model A (accurate)
loss exp. 𝑛 (Fig. 17) 𝑛=1.4-2.6 (inaccurate)

advertising channel was not established in this study since it
was assumed that pedestrian’s smartphones could not identify
the BLE advertising channel. Note that our proposal can be
extended to where pedestrian’s smartphones can identify the
advertising channel by setting different RSSI thresholds for
each channel.

C. LOCALIZATION EXPERIMENT CONDITIONS
We also conducted a localization experiment using 15 fixed
Raspberry Pi devices to confirm that localization is possible
in a real-world environment. Here, the 15 Raspberry Pi
devices were positioned on desks in the laboratory (Fig. 6).
The five nodes represented by red squares in Fig. 6 are the
anchor nodes. Note that the Raspberry Pi devices employed
iBeacon to send BLE signals at 100-ms intervals and received
the signals from the other Raspberry Pi. Then, the measured
RSSI, received time, and sender identifier were recorded in
an external CSV file. Here, the proximity relation was recog-
nized from the given RSSI threshold 𝑅𝑡ℎ, RSSI𝑖 and RSSI 𝑗
using (2). The average value of the RSSI measurements for
1 s was used the RSSI𝑖 and RSSI 𝑗 for proximity recognition,
and localization was performed at 1-s intervals.

In the proposed methods using the proximity relation, the
recognized proximity relation depends on RSSI threshold
𝑅𝑡ℎ. For example, when 𝑅𝑡ℎ is high, the rate of proximity
node pairs decreases, and when 𝑅𝑡ℎ is low, the rate of
proximity node pairs increases. We evaluated the localization
accuracy of the proposed methods by varying the value of
RSSI threshold 𝑅𝑡ℎ from −50 to −70 dBm.

We compared the proposed methods with the range-based
method, one of the well-known methods for localization. In
the range-based method, a pedestrian’s smartphone estimates
its distance to the anchor nodes based on the strength of
the signal transmitted by the anchor nodes and estimates
the position using a multilateration technique. The distance
between the pedestrian and the anchor node 𝑑 is estimated
by the following equation.

𝑑 = 𝑑0 × 10

(
RSSI(𝑑0 )−RSSI

10𝑛

)
. (12)

where, RSSI is the RSSI of the average strength of radio
signals from the anchor node. For 𝑑0, 𝑛, and RSSI(𝑑0), the
parameters of the attenuation model A or B were used.

FIGURE 10. Results obtained in real-world laboratory environment.

We evaluated the accuracy of the localization methods at
time 𝑡 in terms of the average localization error, denoted by
err(𝑡), defined below.

err(𝑡) = 1
|𝒩 |

∑︁
𝑖∈𝒩

|𝒓smth
𝑖 (𝑡) − 𝒓actual

𝑖 (𝑡) |. (13)

Here, 𝒓actual
𝑖

(𝑡) is the actual position of node 𝑖 at time 𝑡.
We compared the average localization error for 100 s in this
localization experiment.

The characteristics of the area, such as the furniture ar-
rangement and the population in the area, which frequently
vary over time, have a substantial impact on the accuracy
of the range-based method. The accuracy of the range-based
method would particularly suffer when the attenuation model
used to calculate the distance between the pedestrian and the
anchor node was inaccurate. As described in Section IV-D,
we evaluated the range-based method under two scenarios.
The first scenario is where the attenuation model used for
the distance estimation was accurate. In this scenario, the
distance between the pedestrian and the anchor node was
estimated by the attenuation model B. Note that the atten-
uation model B was identified in situation B (Fig. 8), where
the experiment was conducted. In the second scenario, the
attenuation model was inaccurate; the distance between the
pedestrian and the anchor node was estimated by the atten-
uation model A. The simulation experiments in Section V
also used these scenarios. Table 2 shows the conditions of the
attenuation model used in the experiment and simulations.

D. RESULTS IN REAL-WORLD LABORATORY
ENVIRONMENT
Fig. 10 shows the average localization errors of the proposed
methods and the range-based method. In particular, the figure
shows the average localization error of the proposed methods
by changing the RSSI threshold 𝑅𝑡ℎ from −50 to −70 dBm.
As shown in Fig. 10, when the attenuation model used in
the range-based method is accurate, the localization accuracy
of the range-based method and the proposed methods are
similar. However, when the attenuation model is inaccurate,
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FIGURE 11. Indoor exhibition hall.

the localization accuracy of the range-based method is much
worse than that of the proposed methods. Note that the pro-
posed methods do not require a specific attenuation model.

Fig. 10 also shows that the localization accuracy of the
proposed methods are fairly robust against the change in the
RSSI threshold 𝑅𝑡ℎ. However, when 𝑅𝑡ℎ was set from −50
to −56 dBm, the rate of the proximity node pairs was 10%
or less. With the proposed method 1, when |𝒜𝑖 | = 0, the
center of the observation area was the estimated position.
Thus, with these threshold values, the estimated position was
the center of the area, and the average localization error was
approximately 6 m. When 𝑅𝑡ℎ was set from −58 to −70 dBm,
the average localization error of the proposed methods was
reduced to 2.3 m.

We confirmed that the sensor response-based localization
method for WSNs could be applied to indoor localization
in the real-world laboratory environment. However, Fig. 10
shows the result obtained using a small number of nodes.
Accordingly, it is necessary to evaluate localization accuracy
using a large number of nodes in a wide area to confirm the
effect of the RSSI threshold.

V. SIMULATION EXPERIMENTS AND DISCUSSIONS
A. SIMULATION CONDITIONS
Here, through large-scale simulation experiments, we
demonstrate that the proposed methods can obtain com-
parable accuracy to the existing methods. In addition, we
confirmed that the proposed methods were robust against
environmental changes even when the attenuation model is
inaccurate.

In this evaluation, we considered a two-dimensional in-
door exhibition hall with two doorways and five exhibits.
Fig. 11 shows the indoor exhibition hall. Pedestrians with
smartphones entered the observation area according to a
Poisson process with an average arrival interval. The pedes-
trians visited the five exhibits in random order and viewed
them for an average of 10 s according to an exponential
distribution. Then, they exited through a doorway (different
from the entrance). Here, the pedestrians moved according to

FIGURE 12. Example localization result obtained by proposed method 2. The
average localization error was 1.2 m.

the social force model [35], [36] via self-driving force and
repulsive force from other pedestrians and walls. We set the
maximum pedestrian speed to 0.25 m/s. In addition, a BLE
beacon device was installed as an anchor node at each exhibit.
We assumed that a pedestrian’s smartphone and the anchor
node can receive the signals transmitted by neighbor nodes.

In these simulation experiments, we assumed that the
average strength of the radio signal from a pedestrian’s
smartphone or an anchor node at a distance of 𝑑 is determined
by (11). Note that radio signals in an actual environment are
affected by fading. Here, we assumed that the received power
distribution follows an exponential distribution via Rayleigh
fading. The proximity relation between all pairs of nodes,
where a node is a pedestrian or an anchor, is recognized
in terms of (2) based on the strength of the radio signal
exchanged between the two nodes. The pedestrian’s positions
were estimated at 1-s intervals based on the recognized
proximity relations. In the simulation results shown below,
the average localization error from 1000 to 1500 s from the
start of the simulation was used. Fig. 12 shows an example
localization result.

We compared the proposed methods with the fingerprint-
ing and range-based methods. The fingerprinting method
determines the best matching coordinates by compareing
RSSI measurements with a premeasured RSSI map. The
observation area is divided into grids of 0.5 m, and let 𝒑𝑖
denote the coordinates of point 𝑖. First, a pedestrian at point
𝑖 and the anchor node 𝑗 are measured, and the average value
of 1000 RSSI values between them is recorded as RSSI(𝑖)

𝑗
.

Then, 𝒑𝑖 that minimizes the function 𝑚 is calculated from the
average value RSSI 𝑗 of 10 RSSI measurements between the
pedestrian and anchor node 𝑗 using the following equation.

𝒑𝑖 = arg min
𝑖

𝑚(𝑖), 𝑚(𝑖) def
=

∑︁
𝑗∈𝒜

|RSSI(𝑖)
𝑗

− RSSI 𝑗 |. (14)

B. EFFECT OF RSSI THRESHOLD
In the fingerprinting method, it is difficult to estimate the
position accurately when the environment changes from the
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FIGURE 13. Comparison results of the RSSI threshold value effects.

one where the RSSI map was measured in advance. In other
words, the attenuation model should be accurate for both the
range-based and the fingerprinting methods.

We compared the proposed methods to the aforementioned
two existing methods. The proposed methods do not require a
specific attenuation model, and only the RSSI threshold must
be determined appropriately. We assumed that the RSSI from
pedestrian and anchor node at a distance of 𝑑 is given by (11)
with the parameter of attenuation model A (𝑑0 = 1.0 m, 𝑛 =
1.21, RSSI(𝑑0) = −49.27 dBm). Here, a simple smoothing
technique was applied to suppress RSSI fluctuation using the
average value of 10 RSSI measurements. Here, the value of
pedestrian density 𝜌 was 0.125 /𝑚2, and the average arrival
interval was 10 s. We evaluated the localization accuracy of
the proposed methods by varying the RSSI threshold 𝑅𝑡ℎ

from −50 to −66 dBm. Fig. 13 shows comparison results of
the RSSI threshold value effects. The result obtained using
the existing methods when the attenuation model is accurate
or inaccurate are also shown for comparison. The attenuation
model B was used for distance estimation and premeasured
RSSI map generation when the attenuation model was as-
sumed to be inaccurate. For path loss exponent dependencies,
refer Section V-E for detailed results.

As shown in Fig. 13, the proposed methods with 𝑅𝑡ℎ

set to −58 dBm can obtain comparable accuracy to the
existing methods when the attenuation model is accurate. The
difference in average localization error was 0.1 m between
the proposed method 1 and range-based method, and 0.2 m
between the proposed method 2 and fingerprinting method.
On the other hand, the localization accuracy of the proposed
methods outperform to existing methods when the attenua-
tion model is inaccurate. Note that the proposed methods do
not require a specific attenuation model; thus, the localiza-
tion accuracy of the proposed methods does not depend on
attenuation model. Furthermore, we found that localization
accuracy was the best when the rate of the proximity node
pairs was approximately 20%. In the following results, we
set the RSSI threshold 𝑅𝑡ℎ such that the rate of proximity
node pairs was 20%.

FIGURE 14. Comparison results of the pedestrian density effects.

FIGURE 15. Identifiers of the anchor nodes and their positions.

C. EFFECT OF PEDESTRIAN DENSITY

We considered that the localization accuracy of the proposed
methods is dependent on pedestrian density because the prox-
imity relation depends on the number of pedestrians. Thus,
we investigated the localization accuracy of the proposed
methods for three pedestrian densities; 0.125 /𝑚2, 0.25 /𝑚2,
and 0.5 /𝑚2; corresponding to the cases where the pedestrians
arrived at the exhibition hall with average arrival intervals of
10 s, 6 s, and 4 s, respectively. Fig. 14 shows comparison
results of the pedestrian density effects.

As shown in Fig. 14, there was almost no effect on the
average localization error due to pedestrian density changes.
The proposed method 1 uses RSSI measurements between
the pedestrian and anchor nodes; thus, we considered that
the pedestrian density had a minor effect on the localization
accuracy. When the pedestrian density was increased from
0.125 /𝑚2 to 0.25 /𝑚2, the average localization error de-
creased by 0.1 m in the proposed method 2, which considered
the distance between the pedestrians.
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FIGURE 16. Comparison results of the number of anchor nodes effects
obtained when the attenuation model is accurate.

D. DEPENDENCE ON NUMBER OF ANCHOR NODES
WHEN THE ATTENUATION MODEL IS ACCURATE
We considered that the localization accuracy also depends on
the number of anchor nodes because the proposed methods
estimate the distance from the proximity relation between the
nodes. We investigated the effect of the number of the anchor
nodes on localization error. Here, the pedestrian density 𝜌

was 0.125 /𝑚2. The anchor nodes were given identifiers
from 1 to 15. Fig. 15 shows the identifiers of the anchor
nodes and their positions. We changed the number of the
anchor nodes in order of the identifiers and compared the
average localization errors. Fig. 16 shows comparison results
of the number of anchor nodes effects obtained when the
attenuation model is accurate.

As shown in Fig. 16, as the number of anchor nodes
increases, the average localization error decreases for all
methods. However, when the number of the anchor nodes
is seven or greater, the error reduction range is only 0.2 to
0.3 m. Thus, we found that seven anchor nodes are sufficient
to estimate the node positions under the conditions of this
study. Note that using additional anchor nodes may effec-
tively improve the localization accuracy when the attenuation
model is inaccurate.

E. DEPENDENCE ON THE PATH LOSS EXPONENT OF
THE ATTENUATION MODEL WHEN THE ATTENUATION
MODEL IS INACCURATE
In Sections V-B to V-D, we assumed a case where the ac-
tual radio propagation environment is fixed and the advance
assumed attenuation model is accurate and inaccurate when
using the existing methods. However, when pedestrians use
position estimation applications, environmental conditions,
e.g., the furniture arrangement and the population in the area,
often change over time. Here, we considered a case where the
actual radio propagation environment is changed and the ad-
vance assumed attenuation model is fixed. In this evaluation,
we considered a situation where the path loss exponent 𝑛 is
changed from 1.4 to 2.6 from the preset attenuation model A.

FIGURE 17. Comparison results of the path loss exponent value effects
obtained when the attenuation model is inaccurate.

In the proposed methods, we used an RSSI threshold of
−58 dBm, which is the rate of proximity node pairs of 20%
assumed in Section V-B with the attenuation model A. In
the fingerprinting method, we used the RSSI generated using
the attenuation model A when the RSSI map was measured
in advance. The proposed methods were compared with the
existing methods. Fig. 17 shows comparison results of the
path loss exponent values when the attenuation model is
inaccurate.

As shown in Fig. 17, the average localization error in-
creases with the increasing path loss exponent 𝑛 for all meth-
ods. In particular, the average localization error of the range-
based method increased significantly when 𝑛 ≥ 1.4. When 𝑛

was changed from 1.2 to 1.8, the average localization error of
the fingerprinting method increased by 3.5 times, while those
of proposed method 1 and proposed method 2 increased by
1.4 times and 2.0 times, respectively. We confirmed that the
proposed methods using only contact information are robust
against environmental changes.

In the proposed methods, the server recognizes the proxim-
ity relation between nodes from the RSSI and RSSI threshold
𝑅𝑡ℎ; thus, the server can dynamically determine 𝑅𝑡ℎ such
that 20% of node pairs are considered to be in proximity. If
such dynamical adjustment of the RSSI threshold is applied,
the localization accuracy of the proposed methods will be
improved.

VI. CONCLUSIONS
Recently, indoor localization based on “proximity/non-
proximity” binary values has been studied. The binary value
is also employed as contact information in COVID-19 digital
contact tracing applications.

In this paper, we have attempted to demonstrate the effec-
tiveness of using only binary contact information. The results
of a localization experiment conducted using real devices and
those of simulation experiments have shown that the sensor
response-based localization method can be applied to indoor
localization tasks. Through the simulation experiments, we
found that the proposed methods can obtain comparable
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accuracy to the existing methods when the attenuation model
is accurate. In addition, we have confirmed that the proposed
methods, which only consider contact information, are robust
against environmental changes even when the attenuation
model is inaccurate.

We consider that these contributions have added a new
perspective on the use of contact information in the field
of indoor localization, which aims to realize power-saving
and cost reduction. The simulation results show that setting
an optimal RSSI threshold value is required to improve
localization accuracy. Thus, in the future, we plan to devise
an algorithm to dynamically determine an effective RSSI
threshold to realize an optimal rate of proximity nodes.

APPENDIX

A. FORMULATION FOR OPTIMIZATION PROBLEMS

Here, we present the formulation of the optimization prob-
lem and the solution of the cooperative localization in
Section III-D. We define the observation area as a two-
dimensional field with 𝑁 (𝑁 = |𝒩 |) pedestrians. Let 𝒂𝑖
denote the known coordinates of anchor node 𝑖, and the
distance between nodes 𝑖 and 𝑗 is expressed as 𝑑𝑖 𝑗 .

The function 𝑔(𝒙1, . . . , 𝒙𝑁 ) is defined as follows.

𝑔(𝒙1, . . . , 𝒙𝑁 )
def
=

1
2

∑︁
𝑖∈𝒩

∑︁
𝑗∈𝒩𝑖

( |𝒙𝑖 − 𝒙 𝑗 | − 𝑑𝑖 𝑗 )2

+
∑︁
𝑖∈𝒩

∑︁
𝑗∈𝒜𝑖

( |𝒙𝑖 − 𝒂 𝑗 | − 𝑑𝑖 𝑗 )2 (15)

Here, 𝑔(𝒙1, . . . , 𝒙𝑁 ) is minimized by 𝒙𝑚𝑖𝑛
1 , . . . , 𝒙𝑚𝑖𝑛

𝑁
. In

other words, if

∀𝒙1, . . . , 𝒙𝑁 , 𝑔(𝒙𝑚𝑖𝑛
1 , . . . , 𝒙𝑚𝑖𝑛

𝑁 ) ≤ 𝑔(𝒙1, . . . , 𝒙𝑁 )

holds, we consider 𝒙𝑚𝑖𝑛
1 , . . . , 𝒙𝑚𝑖𝑛

𝑁
to be the estimated po-

sition of the pedestrians calculated from distance 𝑑𝑖 𝑗 . The
estimation of 𝒙𝑚𝑖𝑛

1 , . . . , 𝒙𝑚𝑖𝑛
𝑁

is discussed in the following.

B. SOLVING THE OPTIMIZATION PROBLEM

Function 𝑔(𝒙1, . . . , 𝒙𝑁 ) is a nonconvex nonlinear function,
and the global minimum value cannot be obtained analyt-
ically; thus, one of the local minimum values obtained by
the descent method is employed as the estimated position
𝒙1, . . . , 𝒙𝑁 . Here, we introduce an efficient solution to find
the local minimum value recursively. First, note that any 𝒗𝑖
and 𝒗 𝑗 have the following relationship:

( |𝒙𝑖 − 𝒙 𝑗 | − 𝑑𝑖 𝑗 )2

= |𝒙𝑖 − 𝒙 𝑗 |2 + 𝑑2
𝑖 𝑗 − 2|𝒙𝑖 − 𝒙 𝑗 |𝑑𝑖 𝑗

≤ |𝒙𝑖 − 𝒙 𝑗 |2 + 𝑑2
𝑖 𝑗 − 2(𝒙𝑖 − 𝒙 𝑗 ) (𝒗𝑖 − 𝒗 𝑗 )⊤

𝑑𝑖 𝑗

|𝒗𝑖 − 𝒗 𝑗 |
.(16)

The function 𝑠(𝒙1, . . . , 𝒙𝑁 ; 𝒗1, . . . , 𝒗𝑁 ) is defined as fol-
lows:

𝑠(𝒙1, . . . , 𝒙𝑁 ; 𝒗1, . . . , 𝒗𝑁 )
def
=

∑︁
𝑖∈𝒩

∑︁
𝑗∈𝒩𝑖

{
|𝒙𝑖 − 𝒙 𝑗 |2 + 𝑑2

𝑖 𝑗 −
2𝑑𝑖 𝑗 (𝒙𝑖 − 𝒙 𝑗 ) (𝒗𝑖 − 𝒗 𝑗 )⊤

|𝒗𝑖 − 𝒗 𝑗 |

}
+
∑︁
𝑖∈𝒩

∑︁
𝑗∈𝒜𝑖

{
|𝒙𝑖 − 𝒂 𝑗 |2 + 𝑑2

𝑖 𝑗 −
2𝑑𝑖 𝑗 (𝒙𝑖 − 𝒂 𝑗 ) (𝒗𝑖 − 𝒂 𝑗 )⊤

|𝒗𝑖 − 𝒂 𝑗 |

}
.

Note that 𝑔(𝒙1, . . . , 𝒙𝑁 ) = 𝑠(𝒙1, . . . , 𝒙𝑁 ; 𝒙1, . . . , 𝒙𝑁 ). In
addition,

𝑔(𝒙1, . . . , 𝒙𝑁 ) ≤ 𝑠(𝒙1, . . . , 𝒙𝑁 ; 𝒗1, . . . , 𝒗𝑁 )

holds from (16). Assume that 𝑔(𝒙1, . . . , 𝒙𝑁 ; 𝒗1, . . . , 𝒗𝑁 ) is
minimized at 𝒙𝑚𝑖𝑛

1 , . . . , 𝒙𝑚𝑖𝑛
𝑁

for the given 𝒗1, . . . , 𝒗𝑁 . In
other words,

𝑠(𝒙𝑚𝑖𝑛
1 , . . . , 𝒙𝑚𝑁 ; 𝒗1, . . . , 𝒗𝑁 ) ≤ 𝑠(𝒙1, . . . , 𝒙𝑁 ; 𝒗1, . . . , 𝒗𝑁 )

holds for any 𝒙1, . . . , 𝒙𝑁 . Then, we obtain the following:

𝑔(𝒙𝑚𝑖𝑛
1 , . . . , 𝒙𝑚𝑖𝑛

𝑁 ) ≤ 𝑠(𝒙𝑚𝑖𝑛
1 , . . . , 𝒙𝑚𝑖𝑛

𝑁 ; 𝒗1, . . . , 𝒗𝑁 )
≤ 𝑠(𝒗1, . . . , 𝒗𝑁 ; 𝒗1, . . . , 𝒗𝑁 )
= 𝑔(𝒗1, . . . , 𝒗𝑁 ). (17)

From the above, the local minimum value of the func-
tion 𝑔(𝒙1, . . . , 𝒙𝑁 ) can be obtained recursively as follows.
First, we set the initial solution 𝒙 (1)

1 , . . . , 𝒙 (1)
𝑁

. We then find
𝒙1, . . . , 𝒙𝑁 , which minimizes 𝑠(𝒙1, . . . , 𝒙𝑁 ; 𝒙 (1)

1 , . . . , 𝒙 (1)
𝑁

),
and let it be the second solution 𝒙 (2)

1 , . . . , 𝒙 (2)
𝑁

. Using
this procedure, we obtain 𝒙 (𝑘 )

1 , . . . , 𝒙 (𝑘 )
𝑁

(𝑘 = 1, 2, . . . )
recursively. When 𝑔𝑘

def
= 𝑔(𝒙 (𝑘 )

1 , . . . , 𝒙 (𝑘 )
𝑁

) is defined,
𝑔1, 𝑔2, . . . becomes a decreasing sequence by (17), and
𝑔(𝒙 (𝑘 )

1 , . . . , 𝒙 (𝑘 )
𝑁

) converges to the local minimum value of
𝑔(𝒙1, . . . , 𝒙𝑁 ) at the limit of 𝑘 → ∞. Note that the con-
vergence destination is not necessarily the global minimum
value of function 𝑔.

C. MINIMUM VALUE OF FUNCTION S
In the above procedure, we must find 𝒙𝑚𝑖𝑛

1 , . . . , 𝒙𝑚𝑖𝑛
𝑁

that
minimizes 𝑠(𝒙1, . . . , 𝒙𝑁 ; 𝒗1, . . . , 𝒗𝑁 ) for a given 𝒗1, . . . , 𝒗𝑁 ,
and this method is explained as follows. Here, function
𝑠(𝒙1, . . . , 𝒙𝑁 ; 𝒗1, . . . , 𝒗𝑁 ) is decomposed as follows:

𝑠(𝒙1, . . . , 𝒙𝑛; 𝒗1, . . . , 𝒗𝑁 )
= 𝑠1 (𝒙1, . . . , 𝒙𝑁 ; 𝒗1, . . . , 𝒗𝑁 ) + 𝑠2 (𝒙1, . . . , 𝒙𝑁 ; 𝒗1, . . . , 𝒗𝑁 ),

𝑠1 (𝒙1, . . . , 𝒙𝑁 ; 𝒗1, . . . , 𝒗𝑁 )
def
=

∑︁
𝑖∈𝒩

∑︁
𝑗∈𝒩𝑖

{
|𝒙𝑖 − 𝒙 𝑗 |2 + 𝑑2

𝑖 𝑗 −
2𝑑𝑖 𝑗 (𝒙𝑖 − 𝒙 𝑗 ) (𝒗𝑖 − 𝒗 𝑗 )⊤

|𝒗𝑖 − 𝒗 𝑗 |

}
,

𝑠2 (𝒙1, . . . , 𝒙𝑁 ; 𝒗1, . . . , 𝒗𝑁 )
def
=

∑︁
𝑖∈𝒩

∑︁
𝑗∈𝒜𝑖

{
|𝒙𝑖 − 𝒂 𝑗 |2 + 𝑑2

𝑖 𝑗 −
2𝑑𝑖 𝑗 (𝒙𝑖 − 𝒂 𝑗 ) (𝒗𝑖 − 𝒂 𝑗 )⊤

|𝒗𝑖 − 𝒂 𝑗 |

}
.
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Here, 𝑠(𝒙1, . . . , 𝒙𝑁 ; 𝒗1, . . . , 𝒗𝑁 ) is minimized by 𝒙𝑚𝑖𝑛
1 , . . . , 𝒙𝑚𝑖𝑛

𝑁
;

thus, we obtain

𝜕𝑠(𝒙1, . . . , 𝒙𝑁 ; 𝒗1, . . . , 𝒗𝑁 )
𝜕𝒙𝑖

���𝒙𝑖=𝒙𝑚𝑖𝑛
𝑖

= 0 (18)

for all 𝑖 ∈ 𝒩. In addition,

𝜕𝑠1 (𝒙1, . . . , 𝒙𝑁 ; 𝒗1, . . . , 𝒗𝑁 )
𝜕𝒙𝑖

=
∑︁
𝑗∈𝒩𝑖

{
(𝒙𝑖 − 𝒙 𝑗 ) −

𝑑𝑖 𝑗 (𝒗𝑖 − 𝒗 𝑗 )
|𝒗𝑖 − 𝒗 𝑗 |

}
, (19)

for all 𝑖 ∈ 𝒩, and

𝜕𝑠2 (𝒙1, . . . , 𝒙𝑛; 𝒗1, . . . , 𝒗𝑁 )
𝜕𝒙𝑖

=
∑︁
𝑗∈𝒜𝑖

{
(𝒙𝑖 − 𝒂 𝑗 ) −

𝑑𝑖 𝑗 (𝒗𝑖 − 𝒂 𝑗 )
|𝒗𝑖 − 𝒂 𝑗 |

}
. (20)

We substitute (19) and (20) into (18).

𝜷𝑖 = ( |𝒩𝑖 +𝒜𝑖 |)𝒙𝑚𝑖𝑛
𝑖 −

∑︁
𝑗∈𝒩𝑖

𝒙𝑚𝑖𝑛
𝑗 , 𝑖 ∈ 𝒩, (21)

𝜷𝑖

def
=

∑︁
𝑗∈𝒩𝑖

𝑑𝑖 𝑗 (𝒗𝑖 − 𝒗 𝑗 )
|𝒗𝑖 − 𝒗 𝑗 |

+
∑︁
𝑗∈𝒜𝑖

𝑑𝑖 𝑗 (𝒗𝑖 − 𝒂 𝑗 )
|𝒗𝑖 − 𝒂 𝑗 |

+
∑︁
𝑗∈𝒜𝑖

𝒂 𝑗 .

Note that (21) are simultaneous linear equations for
𝒙𝑚𝑖𝑛

1 , . . . , 𝒙𝑚𝑖𝑛
𝑁

; thus, 𝒙𝑚𝑖𝑛
1 , . . . , 𝒙𝑚𝑖𝑛

𝑁
can be calculated by

solving the simultaneous equations. For example, we define
a vector 𝑿𝑟

def
= (𝑥𝑥,1, . . . , 𝑥𝑥,𝑁 )⊤ with the 𝑥 components of

𝒙𝑚𝑖𝑛
1 , . . . , 𝒙𝑚𝑖𝑛

𝑁
and vector 𝑿𝛽

def
= (𝛽𝑥,1, . . . , 𝛽𝑥,𝑁 )⊤ with the

𝑥 components of 𝜷1, . . . , 𝜷𝑁 ,

𝑿𝛽 = 𝐵𝑿𝑟 ,

where

𝐵
def
=

©«
|𝒩1 +𝒜1 | −𝐴12 . . . −𝐴1𝑁
−𝐴21 |𝒩2 +𝒜2 | . . . −𝐴2𝑁
...

...
. . .

...

−𝐴𝑁1 −𝐴𝑁2 . . . |𝒩𝑁 +𝒜𝑁 |

ª®®®®¬
,

𝐴𝑖 𝑗
def
=

{
0, 𝑗 ∉ 𝒩𝑖

1, 𝑗 ∈ 𝒩𝑖 .

Here, 𝐵 has an inverse matrix; thus, 𝑿𝑟 = 𝐵−1𝑿𝛽 holds.
Similarly, (𝑥𝑦,1, . . . , 𝑥𝑦,𝑁 )⊤ = 𝐵−1 (𝛽𝑦,1, . . . , 𝛽𝑦,𝑁 )⊤. In the
above procedure, 𝒗1, . . . , 𝒗𝑁 corresponds to the 𝑘-th solu-
tion, and 𝒙𝑚𝑖𝑛

1 , . . . , 𝒙𝑚𝑖𝑛
𝑁

corresponds to the (𝑘 + 1)-th solu-
tion. Note that these change with each recursive calculation;
however, 𝐵 is invariant, and the inverse matrix of 𝐵 only
needs to be calculated once.
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