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ABSTRACT
Robot manipulations require mechanical interaction with

the environment (i.e., the object being manipulated) which can
constrain the robot endpoint in some or all directions. A sufficient
condition for the stability of robot manipulators in constrained
maneuvers is derived in the work presented here. Attention is
focused on the class of direct drive robots whose rigid links dominate
the robot's dynamic behavior; compared to the robot, the environment
is assumed to be infinitely rigid. The stability of the manipulator-
environment system is investigated, and a bound for stable

manipulation is determined. This bound is verified experimentally

on the Minnesota direct drive robot.

1. UNCONSTRAINED ANALYSIS
The dynamic behavior of direct drive robots with n degrees of

freedom is expressed by equation 1:

M(e)!j+C(e,9)='t"-JTf (1)

where ~. ~ , e are vectors containing the joints' accelerations,
velocities, and positions; M(e) is the inertia matrix; C(e.~) is the
vector representing the coriolis, centrifugal; and gravity forces; 't" is
the vector of joint torques; JT is the Jacobian transpose matrix; and f

is the vector of external forces applied at the robot endpoint
(Hollerbach 1980). Trajectory control of the manipulator is

performed by a digital implementation of a feedforward torque

controller, which torque is given by:

't" = Kp (ed -e) + K" (~d -~) + "" (ed) §d + ~ (ed. ~d) (2)

where 't" is the vector of joint torques; (ed -e) is the error between the
command position, ed, and the actual position, e, and (~d-~) is the

error between the respective velocities; Kp is an n"n matrix
containing the position gains; K" is an n"n matrix containing the

velocity gains; r1 (ed) and e (ed.~ d), which can be found
experimentally or analytically, are educated guesses for M(e) and

C(e.~). The nonlinear feedforward terms, ",,(ed) and e(ed.~d)'
cancel the nonlinear effects of M(e) and C(e.~) in the robot's

dynamics and result in a nearly uncoupled linear system (Spong
and Vidyasagar, 1985). In feedforward torque control, the robot

trajectory is specified in joint coordinates, and the joint positions,
velocities, and accelerations for a given trajectory are computed and
stored before the trajectory is executed. The Kln(,) operator in the
diagram represents the forward kinematics, while Kln-1(,)

represents the inverse kinematics. When the trajectory is specified
in Cartesian space as a function of time, e(t), inverse kinematics
and numerical differentiation transform it into the joint space,

ed(t).

1. INTRODUCTION
Both fast motion in unconstrained space and mechanical

interaction with the environment (i.e., the object being manipulated)
are required in most robotic manufacturing tasks. Robotic
assembly is an example of such a task where the robot must follow a
trajectory when unconstrained by the environment, but, during the
insertion process, the robot must comply with the environmental
constraints. Robotic deburring (Kazerooni et al. 1986b) is another

example of such a task where the interaction forcel must be

accommodated rather than resisted.
Whitney (1987) suggested two methods for implementing

compliant motion. The first method controls force and position in a
nonconflicting way (Mason 1981, Mills and Goldenberg 1989, Paul
and Shimano 1976, Raibert and Craig 1981, Whitney 1977): force is

commanded along those directions constrained by the environment,
while position is commanded along those directions in which the
manipulator is free to move. The second method develops a

relationship between the interaction force and the manipulator
position (Hogan 1985 and 1987, Kazerooni 1986a, 1989b, Kazerooni
and Tsay 1988, Salisbury 1980): by controlling the manipulator
position and specifying its relationship with the interaction force, a
designer ensures that the manipulator can maneuver in a
constrained space while maintaining appropriate contact force.

This paper analyzes the stability of the robot-environment system
when the second method is employed to control robot compliancy. A
sufficient condition for system stability is derived analytically and

verified experimentally on a direct drive robot arm. References 5,
11,12, and 13 give some preliminary results on the stability of robotic
constrained maneuvers. An and Hollerbach (1987) and Colgate

(1988) discuss stability analysis for linear, single-degree-of-

freedom systems.

(3)

(4)

eJtJ = kin-' [ e(tJ

y(tJ = kIn [e(tJ ]

1 In this article, "force" implies force and torque, and "position"

implies position and orientation.



When the robot contacts an infinitely stiff and stationary
environment, the environment dictates the robot's position: in the
constrained directions, the environment deflection, x, is zero and
the robot position is the same as the environment position. In this
analysis, the robot endpoint is assumed to be constrained by the
environment in all directions; this represents the "worst" robot
maneuver. Instability in this worst case is characterized by the
unbounded oscillations of the contact forces while e remains a
bounded quantity. The above are reflected in the following two

equations:

that only a modest amount of computation must be performed in real
time and the sampling time is correspondingly reduced.

Although computation ally efficient, feedforward torque
control does not achieve perfect uncoupling of each joint. Using
equations 1 and 2 and assuming that e(ed'~d)~C(e.~) and ~(ed) ~

M(e). a differential equation in terms of the joint accelerations is
obtained:

JT f = Kp (ed -eJ + KI/ (6d -6J + M(eJ (ed -eJ
(5)

where H[e) is a symmetric, positive definite matrix whose inverse
exists for all robot configurations, e. Despite the assumption that the
robot dynamics are accurately known, the joints are not perfectly
uncoupled, and the degree of coupling varies as a function of the robot
configuration. If Kp and K" are chosen as positive definite matrices,
the robot dynamic behavior will be L2 stable, and [ed- e) will be an

L2 bounded quantity even in the presence of nonzero, but bounded,

uncertainties in computing C[ed.8d) and ~(ed).

kin [e(tJ ] = Xo (6)

~(tJ=§(tJ=O (7J

Substituting ed, e, ~ (tJ, and §(tJfrom equations 3, 6, and 7 into
equation 5 and replacing e with (r- H*(f}) results in equation 8
where H*(f} implies the convolution of the impulse response of H
and f.

f = ~T Kp Kln-1 ( r -H*(f)) -~T Kp Kln-1 (xo )

+ ~TKy (~d) + ~TM(e) §d (8)

When the robot is not in contact with the environment (i.e., the outer
feedback loops in Figure 1 do not exist), the position of the robot
endpoint is governed by equation 5. When the robot is in contact with
the environment, the contact force follows r according to equation 8.
If the trajectory command, r, extends a small distance beyond the
solid environment, kln-1 can be replaced by ~1 and equation 8 can
be written as:

f = J-T Kp ~1 ( r -H*(f) -xo) + J-TKy (~d)

+ J-TM(e) §d (9)

Since the environment is infinitely stiff, E cannot be assumed to be
an l2 stable operator. This prevents substituting for f (via the

operator E as a function of x or e) in equation 9. Instead, f is treated
as the test parameter for the closed loop stability; if f is bounded in the
l2 sense, then the system will be stable. In the case of finite E, one
can substitute for f, and an equation similar to equation 5 can be

obtained for stability analysis. The truncated l2 norm2 of equation
9 is written as:

3. CONSTRAINED ANALYSIS
Figure 1 shows the robot interacting with the environment

where the robot compliancy is created by an H compensator. The
environment produces a force, f, which is expressed in the global
Cartesian coordinate frame as f= E(x). In many applications, f
may be zero if x is negative. For example, in the grinding of a
surface, if positive fl is "pushing" and negative fl is "pulling",
the robot and the environment contact each other only along those
directions where fl>O for 1=1, n. In some applications, such as

turning a bolt, the interaction force can be either positive or negative,
meaning that the interaction torque can be either clockwise or
counterclockwise. The nonlinear discriminator block diagram in
Figure 1 is drawn with a dashed line to represent the above concept;
the block is present only when the interaction forces are

compressive. Reference 10 represents (I S2 + Ds + K) for the
environment dynamics, E, where I, D and K are symmetric
matrices and S=Jc.> (Lancaster 1966). I is the positive definite
inertia matrix, and D and K are the positive semi-definite damping
matrix and the stiffness matrix.

Although the trajectory controller operates in the manipulator
joint space, H is implemented as a transfer function matrix. H
accepts the Cartesian force and produces a signal representing a
Cartesian displacement which subtracts from the commanded
trajectory such that e(t)=r(tI-Hf(t). The input command vector, r,
is used differently for the two types of maneuvers: as a command to
specify the input trajectory in unconstrained maneuvers and as a
command to control force in constrained maneuvers. This method is
referred to as Impedance Control because it accepts a position vector
as input and it returns a force vector as output. There is no hardware
or software switch in the control system when the robot travels
between unconstrained space and constrained space. When the robot
encounters the environment, the feedback loop on the contact force
closes naturally. The contact force is shaped by the robot dynamics
and the designers' choice of H. Depending on the task, H can take on
various values in different directions. A small H generates a stiff
robot and a large H results in a compliant robot (Kazerooni 1988).
However, H cannot be arbitrarily large; the stability of the closed-
loop system of Figure 1 must be guaranteed.

.,It:rtt) tc

k_~ ~~- -~ -.o.-tCI 6,)r-

II f 11r2.s O"max(J-TKpJ-1) II H*(f} 11r2

+ II J-T Kp J-1 (r- xo) 11r2

+ II ~TKy (6d) + ~TM(8) 6d IIT2 (10)

Since e is dictated by the environment, M(e) in equation 9 is a
function of Xc and consequently will be bounded. Since r. Xc. ed,
and M (e) are bounded quantities, then the last two norms of
inequality 10 will be bounded by a positive scalar, ~, and inequality
10 can be written as:

(11)II f 11r2 S O"max(J-T KpJ-I) II H*(f) 11r2 + P

}~~

2 The L2-norm of an nx1 vector function f[t) is defined as

[Vidyasagar 1978, Vidyasagar and Desoer, 1975]:

~ 1/2

IIfl~ .[I If[tJ12 dt ]
0

Where I f(tJI is the Euclidean norm evaluated at a given time t. If
IIfl~$ 00, then feL2n. For functions that may grow unboundedly,
a truncated L2-norm is defined:

,---,
.-1-"
'I~'._-'
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', Figure 1: In constrained maneuvers, the contact force, f,

affects the robot via two feedback loops.
IIfliT2 ~ II f(t)I~, O(t<T



A reinforced aluminum wall is mounted vertically in the
robot workspace, as shown in Figure 2, to simulate a stiff
environment. Motor 2 is mechanically locked while motors 1 and 3
maneuver the robot endpoint horizontally. A piezoelectric force
sensor is mounted on the manipulator endpoint to measure contact
forces.

~~,

IIH*(f}11r2 can be replaced with t1'max(Q) IIfl1r2 where t1'max(Q) is

the maximum singular value3 of Q and Q is a matrix whose entry
OJ) is given by (Q)IJ -sup.., 1 H(joo)IJ I. The closed loop system of
Figure 1 is L2 stable (f is L2 bounded) if inequality 12 is satisfied

over the commanded trajectory.

t1'max(J-TKpJ-I)t1'max(Q) < 1 (12)

---

~""-~
--

~

O"m.x (Q) <

0" m.x(J~l Kp J-l) (over the commanded tr~ectory] (13)

Equivalently, one can satisfy inequality 14.
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force sensor

~()
mo~r2~G

O"max (Q) <

infimum of O"mln(J Kp-1 JT)

(over the commanded trajectory) (14)

The minimum singular value of (J Kp-1 JT) must be calculated at
each point in the commanded trajectory. The infimum is the lowest
of all the minimum singular values. The gain of H, expressed in
terms of 0" mix (Q), must be chosen to be smaller than this infimum.
From inequality 14, the stability region will approach zero when the
robot maneuvers near a singular point (det(J)--O) and/or when the
position gains approach infinity. Both cases are representative of
"infinite stiffness" for the robot; the first is due to the robot
configuration, while the second is due to the tracking controller.
The above stability condition has been extended to robots with
unstructured models (Kazerooni and Tsay 1988).
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Plgure 2: The dashed line is the desired endpoint
trajectory while the lolid line is the actual trajectory.

Since the experiments are all two-dimensional. H is a 2x2 matrix
operating on contact forces which are normal and tangential to the
wall. (The endpoint force measurements are resolved into the global
coordinate frame.) In these experiments, only the compliancy in the
direction normal to the wall is supplemented, so the following form
of H is chosen:

Ho 1T6"'+""1 0

H= (15)

[.

0

4. EXPERIMENTAL RESULTS
To evaluate the nonlinear stability condition, a compliance

controller is implemented on a direct-drive, three-degree-of-
freedom robot (Kazerooni and Kim 1988 and 1989a). The University
of Minnesota direct drive robot (Figure 2) uses a four-bar linkage
and is statically balanced without any counter weights. As a result
of the elimination of the gravity forces, smaller actuators and, thus,
smaller amplifiers were chosen to drive this robot. The motors yield
acceleration of 5g at the endpoint without overheating. High torque,
low speed motors power the robot; specifically, the motors are

neodymium (NdFeB) magnet AC brushless synchronous motors.
Due to the high magnetic field strength (maximum energy products:
35 MGOe) of the rare earth NdFeB magnets, the motors have high
torque-to-weight ratios. Pancake-type resolvers are used as position
and velocity sensors. The peak torque of motors I, 2, and 3 are 118
Nm, 78 Nm, and 58 Nm, respectively. The robot links are made of'
graphite-epoxy composite material. A microcomputer, which hosts a
4-node parallel processor with a PC/AT bus interface, is the main
robot controller. Each node is an independent 32-bit processor with
local memory and communication links to the other nodes in the

system.
Because this robot has no gears, frictional losses are small

and the manipulator can be modeled by equation 1. For a sufficient
stability condition, if the condition is satisfied, stability is
guaranteed; however, if the condition is violated, no conclusion can
be made. Two experiments are performed to demonstrate that
inequality 14 is a sufficient condition for stability: one experiment
in which the satisfaction of the condition leads to a stable maneuver
and one experiment in which parameters for an unstable maneuver
violate the condition. In the first experiment, an H is designed such
that inequality 14 is satisfied and it is shown, through experiment,
that the system is stable. In the second experiment, it is shown that
an H which destabilizes the system also violates inequality 14.

where T is an empirical constant and filters high frequency noise in
the force measurement. T is {"lXed at 0.05 for all the experiments.
The function r(t), shown in Figure 2 by the dashed line, is the
trajectory assigned to the robot. Since H has only one non-zero
member, then iF m a x (Q) will be the maximum value of the
magnitude of Ho/[T Joo + 1). The maximum value of H is Ho and

occurs at DC (00=0).
In the first experiment, it is shown that if inequality 14 is

satisfied for the maneuver shown in Figure 2, then the robot can have
stable interaction with the environment. Ho is chosen to be .0003 so
H[s) is smaller than iFmln[J Kp-1 JT) for all configurations within
the maneuver. Figure 3 shows the experimental values of the normal
contact force. Stable contact is indicated by the absence of undamped
oscillations in the normal force.

In the second experiment, Ho is set to .0015. Figure 4 shows
the experimental normal contact force as a function of time. The
contact force oscillates throughout the maneuver, indicating that the
compliance controller is unstable. Comparison with the singular
,value plots of J Kp-1 JT shows that Ho exceeds the lower bound on

iFmln[J Kp-1 JT); hence, the stability condition is violated. Since
inequality 14 is a sufficient condition for stability, violation of this
condition does not lead to any conclusion. The system can be stable
even if the stability condition is not satisfied as in Figure 5, which
shows the experimental contact forces when Ho=0.0005.

3 The maximum singular value of a matrix H. IT mix (H) is defined

as:

~ITmlx(H) = mcx Iz I .z-O
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Ho= 0.0015 does not satisfy the stability
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Figure 5: Ho. 0.0005 violates the stability condition;

however, the system is stable.

5. SUMMARY AND CONCLUSION
An architecture for compliance control of direct drive robot

manipulators is presented. The control approach allows not only
tracking the input command vector in unconstrained space, but also
compliancy in constrained maneuvers. A bound for the global
stability of the robot and infinitely stiff environment, taken
together, is derived. The stability region theoretically will approach
zero when the robot maneuvers near its singular point and/or the
position gain approaches infinity. Both cases are representative of
infinite stiffness for the robot. Through both simulation and
experimentation, the sufficiency of this condition is demonstrated.
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