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Abstract A contact interaction is used to calculate an array
of pion twist-two, -three and -four generalised transverse
light-front momentum dependent parton distribution func-
tions (GTMDs). Despite the interaction’s simplicity, many
of the results are physically relevant, amongst them a state-
ment that GTMD size and shape are largely prescribed by
the scale of emergent hadronic mass. Moreover, proceeding
from GTMDs to generalised parton distributions, it is found
that the pion’s mass distribution form factor is harder than its
electromagnetic form factor, which is harder than the gravi-
tational pressure distribution form factor; the pressure in the
neighbourhood of the pion’s core is commensurate with that
at the centre of a neutron star; the shear pressure is maxi-
mal when confinement forces become dominant within the
pion; and the spatial distribution of transversely polarised
quarks within the pion is asymmetric. Regarding transverse
momentum dependent distribution functions, their magni-
tude and domain of material support decrease with increasing
twist. The simplest Wigner distribution associated with the
pion’s twist-two dressed-quark GTMD is sharply peaked on
the kinematic domain associated with valence-quark domi-
nance; has a domain of negative support; and broadens as the
transverse position variable increases in magnitude.

1 Introduction

It is anticipated that an electron ion collider will be operating
in the USA by 2030 [1,2]; construction of a similar machine is
being discussed in China [3,4]; new capabilities are expected
at Conseil Européen pour la Recherche Nucléaire (CERN)
[5]; and the Jefferson Laboratory (JLab) is currently oper-
ating at 12 GeV [6]. Each of these facilities has given high
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priority to experiments that can yield data that may be used
to draw three-dimensional (3D) images of hadrons, i.e. mea-
surements interpretable in terms of generalised or transverse
momentum dependent parton distributions: GPDs or TMDs,
respectively.

Hadron physics has long focused on one dimensional (1D)
imaging of hadrons. It is an ongoing effort, which remains
crucial because many puzzles and controversies are unre-
solved. For instance, even considering what may seem to
be the simplest strong interaction system, the pion valence-
quark distribution has been studied for roughly thirty years,
both experimentally [7–11] and theoretically [12–19]; yet, it
still attracts vigorous debate. Moreover, the pion’s glue and
sea distributions are empirically unknown, with theoretical
predictions only now becoming available; and kaon distribu-
tions are just beginning to receive renewed attention [20–22].
The challenge of producing solid predictions for parton dis-
tributions within baryons is even greater.

Notwithstanding the need for new, precise data on 1D dis-
tributions and associated predictions with a traceable con-
nection to quantum chromodynamics (QCD), the allure of
GPDs and TMDs is difficult to resist, given that 3D imaging
may enable entirely new aspects of hadron structure to be
revealed. Such functions serve as tools with which to probe
the multidimensional structure of hadron light-front wave
functions (LFWF), thereby providing access to, inter alia:
the distributions of mass, pressure and spin within a hadron,
both in longitudinal and transverse directions; the sharing of
these qualities amongst the various bound-state constituents;
and to the spacetime volumes occupied by these constituents,
i.e. to their potentially different “confinement” radii.

In order to fully capitalise on 3D imaging data obtained
at modern and anticipated facilities, using it to understand
the many correlated phenomena which emerge from strong
interactions in QCD, methods must be developed that enable
GPDs and TMDs to be calculated within frameworks that are
mathematically linked to the fundamental theory. To see the
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importance of this, one need look no further than the thirty
year controversy over the pion’s valence quark distribution
function [21–31].

Herein we explore and illustrate the capacity of gener-
alised parton correlation functions (GPCFs) [32] to serve
as a framework for the unified calculation of GPDs and
TMDs. As this is a first step, we choose to study the pion
and work with a confining, symmetry-preserving treatment
of a vector × vector contact interaction (CI) as the founda-
tion for our analysis [33]. A merit of this approach is that, by
enabling a largely algebraic treatment of relevant processes
and quantities, it provides for an insightful assessment of
all results. Moreover, when considered judiciously [33–40],
such results may often be interpreted from a QCD perspec-
tive because this treatment of the CI preserves many qualities
of the leading-order truncation of QCD’s Dyson-Schwinger
equations (DSEs), itself a sound approach to many hadron
observables [41–47].

Our analysis begins in Sect. 2 with a brief review of
the GPCF for a J = 0 hadron. Section 3, augmented by
“Appendix A”, then describes our CI treatment of the pion
and its coupling to photons. The pion GPCF is used in Sect. 4
as the basis for calculating the four twist-two generalised
transverse momentum dependent parton distribution func-
tions (GTMDs) associated with dressed-quarks within the CI
pion. The discussion highlights the role played by emergent
hadronic mass (EHM) in determining the properties of each
GTMD. (CI results for all twist-three and twist-four GTMDs
are provided in “Appendices B, C”, respectively.) In Sect. 5,
the twist-two GTMDs are integrated over their light-front-
transverse momentum argument, k2

⊥, to yield results for the
pion’s vector and tensor GPDs. Features of the derived elec-
tromagnetic, gravitational, and transverse-spin distributions
are also canvassed. Section 6 shows how one proceeds from
GTMDs to TMDs. It provides explicit formulae for all four
TMDs supported by the CI in the absence of an adequate
model for the Wilson line and highlights their relative sizes
and domains of material k2

⊥-support. Section 7 emphasises
and illustrates the connection between GPCFs and Wigner
distributions by presenting the CI result for a Wigner distri-
bution associated with pion twist-two GPDs and TMDs. A
summary and perspective is provided in Sect. 8.

2 Generalised parton correlation function

We begin by considering the following in-pion quark–quark
correlator [32]:

Wi j (P, k,�, N̄ ; η) =
∫

d4z

(2π)4
eik·z ×

〈

π(p′)
∣

∣ ψ̄ j (− 1
2 z)

× W
(

− 1
2 z, 1

2 z; n̄
)

ψi

( 1
2 z

) ∣

∣π(p)
〉

,

(1)

Fig. 1 Momentum-space conventions used in defining the in-pion
quark–quark correlator in Eq. (1)

where:

P = (p′ + p)/2 , � = p′ − p , P · � = 0 ; (2)

and k is the relative quark-antiquark momentum. These con-
ventions are illustrated in Fig. 1.

The hitherto undefined quantity in Eq. (1) is the Wilson
line, W (− 1

2 z, 1
2 z; n̄), where n̄ is a light-like four-vector, n̄2 =

0, antiparallel to P , n̄ · P = P−, and the path is chosen as a
sequence of line segments [32,48]:

− z

2
→ − z

2
+ 1

ǫ
n̄ → z

2
+ 1

ǫ
n̄ → z

2
, ǫ → 0+. (3)

The same path is achieved by rescaling n̄ → λn̄, λ ∈ R,
λ > 0; hence, with P̂2 = 1, Eq. (1) only depends on

N̄ = n̄/n̄ · P̂ . (4)

The quantity η in Eq. (1) expresses the one remaining degree
of freedom, viz. η = sign(n̄0), in which case η = ±1
describe, respectively, future and past Wilson line trajecto-
ries.

One passes to generalised transverse-momentum depen-
dent parton distribution functions (GTMDs) by first consid-
ering the following partially integrated quantity:

Wi j (P, x, k⊥,�, N ; η) =
∫

d4z

(2π)4
eik·z δ(n · z)×

〈

π(p′)
∣

∣ ψ̄ j (− 1
2 z)

× W
(

− 1
2 z, 1

2 z; n̄
)

ψi

(

1
2 z

) ∣

∣π(p)
〉

, (5)

where n is a light-like four-vector for which n · P = P+.
The object in Eq. (5) is a Dirac-matrix valued function and,

as usual, contributions at various orders in a twist expan-
sion can be obtained by appropriate projection operations.
Namely, with H being some suitably chosen combination
of Dirac matrices, then the scalar functions of interest – the
GTMDs – are obtained via

W [H ](P, x, k⊥,�, N ; η) = 1

2
Wi j (P, x, k⊥,�, N ; η)H j i

=
∫

d4z

2(2π)4
eik·x δ(n · z)

〈

π(p′)
∣

∣ ψ̄ j

(

− 1
2 z

)

× H j i W
(

− 1
2 z, 1

2 z; n̄
)

ψi

(

1
2 z

) ∣

∣π(p)
〉

. (6)
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Referring to Fig. 1, this operation corresponds to the insertion
of H as a connection between the open quark and antiquark
lines: ψ(k ∓ �/2), respectively.

As defined by Eq. (6), a given GTMD is a complex-valued
function: the real part is even under the time-reversal opera-
tion (T -even), whereas the imaginary part is T -odd. Equally,
they are even (odd) under η → −η. (Recall η = ±1 speci-
fies the time-direction of the Wilson line used to define the
GTMD.) Beginning with Eq. (6), GPDs are obtained by inte-
gration over k⊥: only the T -even piece survives, which is
independent of η; and the array of TMDs is obtained by set-
ting � = 0, which entails ξ = 0.

3 Contact interaction

When formulating the continuum bound-state problem for
hadrons, the basic element is the quark–quark scattering ker-
nel; and at leading-order in the symmetry-preserving trunca-
tion scheme introduced in Refs. [49,50], that is the rainbow-
ladder (RL) kernel (k = p1 − p′

1 = p′
2 − p2):1

Kα1α
′
1,α2α′

2
= Gμν(k)[iγμ]α1α

′
1
[iγν]α2α

′
2
, (7a)

Gμν(k) = G̃(k2)Tμν(k) , (7b)

where k2Tμν(k) = k2δμν − kμkν . The key element is G̃ ;
and two decades of study, using a combination of continuum
and lattice methods [52–55], have revealed that owing to the
dynamical generation of a gluon mass-scale in QCD [52,56–
67], G̃ saturates at infrared momenta:

G̃(k2)
k2≃0= 4πα0

m2
G

. (8)

In QCD [55]: α0 ≈ π and mG ≈ 0.5 GeV ≈ m N /2, where
m N is the nucleon mass.

To proceed, we follow Ref. [40]; namely, retaining mG =
0.5 GeV but setting α0/π = 0.36. This combination ensures
a good description ofπ -meson properties. Furthermore, since
a momentum-independent interaction cannot support relative
momentum between bound-state constituents, we simplify
the tensor structure in Eqs. (7), defining the CI RL kernel as
follows:

K
CI

α1α
′
1,α2α′

2
= 4πα0

m2
G

[iγμ]α1α
′
1
[iγμ]α2α

′
2
. (9)

When using Eq. (9) in a DSE, it is necessary to impose
an ultraviolet regularisation scheme. It should be symmetry

1 From this point onwards, we use the Euclidean metric and Dirac-
matrix conventions described in Ref. [51, Appendix A].

preserving so that the results maintain a meaningful connec-
tion with the Standard Model. Moreover, since a CI does
not produce a renormalisable theory, the associated regular-
isation mass-scale, uv, is an additional physical parameter.
It may be interpreted as an upper bound on the momentum
domain within which the properties of the associated system
are practically momentum-independent.

As the final step in defining the CI, we include an infrared
regularisation scale, ir, when computing all integrals con-
nected with bound-state problems [68]. Since chiral symme-
try is dynamically broken by Eq. (9), ensuring the absence
of infrared divergences, ir is not a necessary part of the
CI’s definition. Notwithstanding that, by excising momenta
k < ir, one achieves a rudimentary expression of confine-
ment via elimination of quark production thresholds [67,69–
75]. A natural choice for this scale is ir ∼ QCD. We set
ir = 0.24 GeV.

Assuming isospin symmetry, it only remains to fix the
current-mass, m, of the light quarks. That may be achieved
by solving the pion bound state problem specified by the
kernel in Eq. (9). In this case, the gap equation for the dressed
light-quark propagator is

S−1(p) = iγ · p + m + 16π

3

α0

m2
G

∫

d4q

(2π)4
γμS(q)γμ .

(10)

The integral is quadratically divergent. When it is regularised
in a Poincaré-invariant manner, the gap equation solution is

S(p)−1 = iγ · p + M , (11)

where M is the dressed-quark mass, momentum-independent
in the CI, determined by

M = m + M
4α0

3πm2
G

[∫ ∞

0
ds s

1

s + M2

]

reg
. (12)

We define the regularised integral by writing [68]

1

s + M2
=

∫ ∞

0
dτ e−τ(s+M2)

→
∫ τ 2

ir

τ 2
uv

dτ e−τ(s+M2) (13a)

= e−(s+M2)τ 2
uv − e−(s+M2)τ 2

ir

s + M2
, (13b)

where τir,uv = 1/ir,uv are, respectively, the infrared and
ultraviolet regulators described above. Consequently, the gap
equation becomes
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M = m + M
4α0

3πm2
G

C0(M2) , (14)

where

C0(σ ) =
∫ ∞

0
ds s

∫ τ 2
ir

τ 2
uv

dτ e−τ(s+σ)

= σ
[

Ŵ(−1, σ τ 2
uv) − Ŵ(−1, σ τ 2

ir)
]

, (15)

with Ŵ(α, y) being the incomplete gamma-function.
In an internally consistent treatment of a vector × vector

CI, the Bethe–Salpeter amplitude for the π -meson has the
following form [33,35,36]:

Ŵπ (Q) = γ5

[

i Eπ (Q) + 1

M
γ · QFπ (Q)

]

. (16)

Here, Q is the pion’s total momentum, Q2 = −m2
π , mπ is

the pion mass; M is obtained from the contact-interaction
gap equation, Eq. (14); and Eπ , Fπ do not depend on the
relative quark-antiquark momentum.

The amplitude, Ŵπ , is obtained from the following homo-
geneous Bethe–Salpeter equation:

Ŵπ (Q) = −16π

3

α0

m2
G

∫

d4ℓ

(2π)4
γμS(ℓ + Q)Ŵπ (Q)S(ℓ)γμ .

(17)

Employing the symmetry-preserving regularisation scheme
of Refs. [33,36], which emulates dimensional regularisation
and requires

0 =
∫ 1

0
dα

[

C0(ω(α, Q2)) + C1(ω(α, Q2))
]

, (18)

where C1 is given in Eqs. (A.1), (A.2) and

ω(α, Q2) = M2 + αᾱQ2 , (19)

ᾱ = 1 − α, one arrives at the following pair of coupled
equations:

[

Eπ (Q)

Fπ (Q)

]

= 4α0

3πm2
G

[

K
π
E E K

π
E F

K
π
F E K

π
F F

] [

Eπ (Q)

Fπ (Q)

]

, (20)

with the matrix elements {Kπ
E E ,Kπ

E F ,Kπ
F E ,Kπ

F F } defined
in Eqs. (A.4). Evidently, the kernel is only defined after the
gap equation has been solved.

Inspection of Eqs. (20), (A.4) reveals that a nonzero value
for Eπ enforces Fπ �= 0, i.e. any theory with a traceable con-
nection to a vector-boson exchange interaction must retain
both Eπ , Fπ . (When the interaction is momentum depen-
dent, then two other amplitudes are also nonzero [76,77].) If

Table 1 With input parameters [35,40] mG = 0.5 GeV, α0 = 0.36π ,
ir = 0.24 GeV,uv = 0.905 GeV, solving the coupled gap and Bethe–
Salpeter equations yields the results listed here. (Dimensioned quanti-
ties in GeV.)

m M mπ fπ Eπ Fπ

0.007 0.368 0.14 0.10 3.64 0.481

Fπ is omitted, then one arrives at a model, which although it
may be useful for parametrising data, cannot contribute to the
development of insights into characteristics of the Standard
Model’s Nambu-Goldstone modes [34,36].

Equation (20) is an eigenvalue problem. It has a solu-
tion when Q2 = −m2

π , at which point the eigenvector
is the meson’s Bethe–Salpeter amplitude. Working with
the on-shell solution, normalised canonically according to
Eqs. (A.5), (A.6), the pion’s leptonic decay constant is given
by (Nc = 3):

fπ = Nc

2π2

1

M

[

EπK
π
F E + FπK

π
F F

]

Q2=−m2
π

. (21)

In the chiral limit, i.e. using solutions obtained with m = 0
in Eq. (10), this reduces to [33]

f 0
π = Nc

4π2

1

M
C1(M2)[Eπ − 2Fπ ] . (22)

Solving Eqs. (10), (20), we obtain the results listed in
Table 1, reproducing those reported elsewhere [35,40].

For subsequent use, here we also introduce the dressed
photon-quark vertex, Ŵ

γ
μ. Using Eq. (9), one has ℓ±� = ℓ ±

�/2

Ŵγ
μ(�) = γμ − 16πα0

3m2
G

∫

d4ℓ

(2π)4
γα S(ℓ+�) Ŵγ

μ(�) S(ℓ−�)γα . (23)

Owing to the vector Ward-Green-Takahashi identity (WGTI),
preserved in our regularisation of the contact interaction, the
solution takes the form [34]

Ŵγ
μ(�) = γ T

μ PT(�2) + γ L
μ , (24)

where � · γ T
μ = 0, γ T

μ + γ L
μ = γμ,

PT(�2) = 1

1 + Kγ (�2)
, (25a)

Kγ (�2) = 4α0�
2

3πm2
G

∫ 1

0
dα αᾱ C̄1(ω(α,�2) . (25b)

As expected of RL truncation studies of the photon-quark ver-
tex [78,79], the dressing function, PT(�2), exhibits a simple
pole at �2 = −m2

ρ , where mρ is the mass of the ρ-meson
that is generated by the interaction.
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4 Pion twist-two GTMDs

There are three twist-two pion GTMDs. They are obtained
with the following choices in Eq. (6):

H → {H1 = in · γ , H2 = in · γ γ5 , H3 = iσ jμnμ}. (26)

The simplest is that associated with H1, which relates to the
pion valence-quark distribution function and electromagnetic
form factor. We therefore use it to illustrate the computational
techniques.

Mapping into Euclidean metric:

W [H1](P, x, k⊥,�, N ; η) → F1

(

x, k2
⊥, ξ, t

)

; (27)

and since a RL truncation was used to solve the Bethe–
Salpeter equation, then internal consistency and preservation
of symmetries requires a kindred truncation for the GTMD,
in which case

F1(x, k2
⊥, ξ, t) = 2NctrD

∫

dk3dk4

(2π)4
δx

n (k) Ŵπ (−p′)

× S(k+�) n · Ŵγ (�) S(k−�) Ŵπ (p) S(k − P) ,

(28)

where trD indicates a trace over spinor indices, δx
n (k) = δ(n ·

k − xn · P),

k±� = k ± �/2 t = −�2, p · � = −�2/2 = −p′ · �,

(29)

and the “skewness” ξ = [−n · �]/[2n · P], |ξ | ≤ 1.
Two observations are important here. (A). When using a

contact interaction, Eq. (9), the pion Bethe–Salpeter ampli-
tude is independent of relative momentum, Eq. (16). Hence,
on D = {x | x < −ξ ∪ x > ξ ∩ |x | ≤ 1}, the leading-
twist corrections to Eq. (28) that were identified in Ref. [80]
and exploited in Refs. [21,22,24,25] can be neglected. How-
ever, additional contributions should be considered on the
complementary domain, E = {x | − ξ < x < ξ} [81]. (B).
Using a realistic, momentum-dependent interaction, the ana-
logue of Eq. (28) can be a useful approximation to the pion
GTMD at an hadronic scale, ζH < uv, at which the dressed
quasiparticles obtained as solutions to the quark gap equation
express all properties of the bound state under consideration,
e.g. they carry all the hadron’s momentum at ζH . In this case
[21,22,24,25,41,82–84], predictions appropriate to experi-
ments at ζ > ζH are obtained using the ζ -evolution equations
appropriate to the distribution under consideration [85–92].
Despite the fact that the contact interaction does not define a
renormalisable model, we maintain this perspective herein.

In proceeding with a WGTI-preserving evaluation of
Eq. (28), we first compute the spinor trace; then using the

following identities [D(k2) = k2 + M2]:

2k · p = D(k2
−�) − D((k − P)2) + P2 − �2/4 , (30a)

2k · p′ = D(k2
+�) − D((k − P)2) + P2 − �2/4 , (30b)

2k2 = D(k2
+�) + D(k2

−�) − 2M2 − �2/2 , (30c)

2k · � = D(k2
+�) − D(k2

−�)] , (30d)

cancel each common numerator and denominator factor; and
finally use Feynman parametrisations to simplify all remain-
ing denominators. In this way, one arrives at

F1(x, k2
⊥, ξ, t) = P̄T

[

E2
π F E E

1 + Eπ Fπ F E F
1 + F2

π F F F
1

]

, (31)

where P̄T = [θξ̄ ξ + PT(−t)(1 − θξ̄ ξ )] and (r = k2
⊥):

F E E
1 (x, r, ξ, t) = T E E

1 + T E E
2 + Nc

8π3

1

σ r
2

C̄2(σ
r
2 )

θξ̄ ξ x

ξ
, (32a)

F E F
1 (x, r, ξ, t) = −2 T E E

1 − 4T E E
2 , (32b)

F F F
1 (x, r, ξ, t) = 4T E E

2 − Nc

8π3

1

σ r
2

C̄2(σ
r
2 )

θξ̄ ξ t

M2ξ

[

1 − x2

ξ2

]

, (32c)

with

T E E
1 (x, r, ξ, t) = Nc

4π3

[

θξ̄1

σ
r,1
1

C̄2

(

σ
r,1
1

)

+ θξ1

σ
r,−1
1

C̄2

(

σ
r,−1
1

)

]

,

(33a)

T E E
2 (x, r, ξ, t) = 3Nc

8π3

[

2x

ξ
m2

π + 1 − x

ξ
t

] ∫ 1

0
dα

θαξ

[σ r
3 ]2

C̄3(σ
r
3 ) ,

(33b)

and

θξ̄1 = x ∈ [−ξ, 1] , (34a)

θξ1 = x ∈ [ξ, 1] , (34b)

θξ̄ ξ = x ∈ [−ξ, ξ ] , (34c)

θαξ = x ∈ [α(1 + ξ) − ξ, α(1 − ξ) + ξ ] ∩ x ∈ [−1, 1] .

(34d)

For later use, we note that one can write θξ̄ ξ/ξ = �(1 −
x2/ξ2), where �(x) is the Heaviside function, and θαξ/ξ

= �((1 − α)2 − (x − α)2/ξ2)�(1 − x2). Under ξ → −ξ :
θξ̄1 ↔ θξ1; and θξ̄ ξ/ξ , θαξ/ξ are invariant.

Here it is worth recalling a Goldberger-Treiman relation
that emerges in a WGTI-preserving treatment of the CI.
Namely, in the absence of a Higgs mechanism – so that m = 0
in the gap equation, Eq. (10), and one is dealing with the chi-
ral limit [33]:

E0
π = M0

f 0
π

, (35)

where the superscript “0” indicates evaluation in the chiral-
limit. Both M0 and f 0

π are order parameters for dynami-
cal chiral symmetry breaking (DCSB) [79], which itself is
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an expression of EHM in the Standard Model [45]. More-
over, Eq. (35) is practically unchanged at physical light-
quark current masses. (Similar statements also hold in QCD
[93,94].) Consequently, the strength of the pion’s canonically
normalised Bethe–Salpeter amplitude is a direct measure of
EHM; hence, the CI formulae presented above and those to
follow reveal that the size and shape of every one of the pion’s
GTMDs are largely determined by the character of EHM.

Consider H2 = in · γ γ5 and define ε⊥
i j = εαβi j n̄αnβ , then

W [H2](P, x, k⊥,�, N ; η) → iε⊥
i j ki� j G̃(x, k2

⊥, ξ, t) ,

(36)

where (r = k2
⊥):

G̃1(x, r, ξ, t) = Nc

4π3ξ
P̄T

[

F2
π

M2

θξ̄ ξ

σ r
2

C̄2(σ
r
2 ) − R (x, r, ξ, t)

]

,

(37a)

R (x, r, ξ, t) = 3NE F

∫ 1

0
dα θαξ

1

[σ r
3 ]2

C3(σ
r
3 ) , (37b)

with NE F = (E2
π −4Eπ Fπ +4F2

π ) and, for subsequent use,
ÑE F = Fπ (Eπ − 2Fπ ), N̄E F = Fπ (Eπ − Fπ ).

Insertion of H3 = iσ jμnμ into Eq. (6) produces two terms:

W [H3](P, x, k⊥,�, N ; η)

→ k j H k
1 + n · P� j − n · �Pj

n · P
H�

1 , (38)

where (r = k2
⊥):

H�
1 (x, k2

⊥, ξ, t) = P̄T
Nc

4π3

[

− F2
π

M
θξ̄ ξ

1

ξ

C2(σ
r
2 )

σ r
2

+3NE F

∫ 1

0
dα θαξ

M

ξ

C̄3(σ
r
3 )

[σ r
3 ]2

]

, (39a)

H k
1 (x, k2

⊥, ξ, t) = Nc

2π3

⎡

⎣

ÑE F

M

⎛

⎝θξ1

C̄2

(

σ
r,−1
1

)

σ
r,−1
1

−θξ̄1

C̄2

(

σ
r,1
1

)

σ
r,1
1

⎞

⎠ + 2N̄E F

M
θξ̄ ξ

C̄2(σ
r
2 )

σ r
2

⎤

⎦ . (39b)

Evidently, H k
1 (x, k2

⊥, ξ, t) vanishes unless one uses the com-
plete pion Bethe–Salpeter amplitude in Eq. (16), i.e. Fπ �= 0.
In this connection it is worth recalling that inspection of
Eqs. (20), (A.4) shows that a nonzero value for Eπ forces
Fπ �= 0, i.e. the strength of Fπ is also set by EHM.

5 Pion twist-two GPDs

5.1 Algebraic results

As noted in closing Sect. 2, one proceeds from a GTMD to a
GPD by integrating over k⊥; and focusing first on the leading
twist GTMDs, one therefrom obtains two GPDs:

Hπ (x, ξ, t) =
∫

d2k⊥F1

(

x, k2
⊥, ξ, t

)

, (40a)

E
T
π (x, ξ, t) =

∫

d2k⊥H�
1

(

x, k2
⊥, ξ, t

)

, (40b)

where Hπ , ET
π may respectively be called the vector (no

spin-flip) and tensor (spin-flip) GPDs. The former is directly
related to the pion’s elastic electromagnetic form factor and
gravitational form factors (mass and pressure/stress) [95],
whereas the latter provides access to the dependence of the
pion’s quark distributions on their polarisation perpendicular
to the pion’s direction of motion (transversity) [96,97].

Inserting Eq. (31) into Eq. (40a) yields

Hπ (x, ξ, t) = P̄T

[

E2
π F

E E
1 + Eπ Fπ F

E F
1 + F2

π F
F F
1

]

,

(41)

where

F
E E
1 (x, ξ, t) = T

E E
1 + T

E E
2 + Nc

8π2
θξ̄ ξ

x

ξ
C̄1(σ

0
2 ) , (42a)

F
E F
1 (x, ξ, t) = −2T

E E
1 − 4T

E E
2 , (42b)

F
F F
1 (x, ξ, t) = 4T

E E
2 − Nc

16π2
C̄1(σ

0
2 )

θξ̄ ξ t

ξ M2

[

1− x2

ξ2

]

, (42c)

with

T
E E
1 (x, ξ) = Nc

8π2

[

θξ̄1C̄1(σ
0,1
1 ) + θξ1C̄1

(

σ
0,−1
1

)]

, (43a)

T
E E
2 (x, ξ, t) = Nc

8π2

[

2xm2
π + (1 − x)t

]

∫ 1

0
dα

θαξ

ξσ 0
3

C̄2(σ 0
3 ) .

(43b)

Using the results following Eq. (34) and Eqs. (A.8), it is
straightforward to establish that

Hπ (x,−ξ, t) = Hπ (x, ξ, t) , (44)

i.e. our CI treatment preserves the time-reversal-invariance
property of the GPD.

It is nevertheless deficient on the domain E = {x | − ξ <

x < ξ} because Hπ (x, ξ, t) does not satisfy the soft pion
theorems [98] (u = [1 + x]/2):

Hπ (x, 1, 0) = 1
2ϕπ (u) + O(m2

π ) , (45a)
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∫ 1

−1
dx 2x Hπ (x, 1, 0) = O(m2

π ) . (45b)

A remedy is described elsewhere [81]; to wit, one must
include interactions between the two pions in Fig. 1 that
would lead to formation of a scalar meson-resonance. Prof-
iting from this understanding, we expand on the Ansatz in
Ref. [99] and correct the twist-two vector GPD:

Hπ (x, ξ, t) → H̃π (x, ξ, t) (46a)

= Hπ (x, ξ, t) + Sπ (x, ξ, t) , (46b)

Sπ (x, ξ, t) = [ 1
2 Hπ (u, 0, 0) − Hπ (x, 1, 0)]ξ2 Pσ (t) ,

(46c)

where Pσ (t) is a quark+antiquark scalar-channel analogue of
PT(t) in Eq. (25a). It is readily established that H̃π (x, ξ, t)

is consistent with known mathematical GPD constraints and
Eqs. (45).2

Inserting Eq. (39a) into Eq. (40b), the twist-two tensor
GPD is obtained:

E
T
π (x, ξ, t) = P̄T(−t)

Nc

8π2

[

− F2
π

M

θξ̄ ξ

ξ
C̄1(σ

0
2 )

+2M NE F

∫ 1

0
dα

θαξ

ξ

C̄2(σ
0
3 )

σ 0
3

]

. (47)

The following remarks are pertinent: MET
π (x, ξ, t) is dimen-

sionless; relative to some other studies, e.g. Refs. [100,
101], our normalisation convention in Eq. (39a) entails that
ET

π (x, ξ, 0) is nonzero in the chiral limit; and once again
using the results described in connection with Eqs. (34),
(A.8), one finds

E
T
π (x,−ξ, t) = E

T
π (x, ξ, t) . (48)

5.2 Vector GPD: images

The twist-two vector GPD in Eqs. (41), (46) is drawn
in Fig. 2. Some features are obvious. (a) Hπ (x, 0, 0) is
the CI valence-quark parton distribution function, which is
qCI
π (x) ≈ θ(x)θ(1 − x) at the pion mass in Table 1. (b)

Hπ (x, ξ, 0) = 0 on x < −ξ . (As we have defined H̃π , this
is only approximately true; but if necessary, that is read-
ily corrected following the procedure in footnote 1.) (c)
H̃π (x, 1, 0) = 1

2ϕCI
π ([1 + x]/2), i.e. the CI dressed-quark

distribution amplitude. (d) Using a contact interaction, the

2 The factor ξ2 in Eq. (46c) should strictly be replaced by θξ̄ ξ /p(ξ2),

where p(ξ2) is a simple polynomial, chosen to preserve GPD polynomi-
ality; but that merely complicates numerical analysis without delivering
practical improvement.

Fig. 2 Hπ (x, ξ, t = 0), twist-two vector GPD: upper panel – Eq. (41);
and lower panel – Eq. (41) amended through addition of Eq. (46). Owing
to Eq. (44), we only plot ξ > 0

GPD is continuous but not differentiable at x = ±ξ . (This
is typical of models whose basis is a separable interaction
[81,102].)

Beginning with Hπ , the pion elastic electromagnetic form
factor is obtained via

Fem
π (�2) =

∫ 1

−1
dx Hπ (x, ξ,−�2) . (49)

It is readily verified by straightforward calculation that the
evaluated integral is independent of ξ .

The computed pion form factor is depicted in Fig. 3 –
upper-panel as the dashed red curve, from which one obtains
the associated radius: r em

π = 0.44 fm. As discussed in detail
elsewhere [33,35,36], the WGTI-preserving treatment of a
CI necessarily generates Fπ �= 0 in Eq. (16). Consequently,
the CI form factor is hard;3 namely, it approaches a nonzero
constant value as Q2 → ∞.

3 It may be worth remarking here that a meson form factor, F(Q2),
is “hard” if it falls more slowly than a monopole characterised by a
mass-scale mρ , i.e. the ρ-meson mass. Otherwise, F(Q2) is soft. If the
form factor becomes Q2-independent, then the associated object turns
pointlike, which is the hardest system possible.
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It is appropriate now to consider the CI pion vector GPD
in impact parameter space [103]:

qπ (x, |b⊥|) =
∫ ∞

0

d|�|
2π

� J0(|b⊥||�|) Hπ (x, ξ=0,−�2) ,

(50)

where J0 is a Bessel function. This density describes the
probability of finding a dressed-quark within the light-
front at a transverse position b⊥ from the pion’s centre of
transverse momentum (CoTM). Inspecting Eqs. (41)–(43)
and using Eqs. (A.8), it becomes clear that, in contrast to
results obtained with realistic interactions [104], a CI treat-
ment of the pion does not introduce strong x-t correlations.
Hence, a fair estimate of qπ (x, b⊥) is obtained by writ-
ing Hπ (x, 0,−�2) ≈ qπ (x)Fem

π (�2). Consequently, if one
omits Fπ in Eq. (16) so that the pion’s elastic electromagnetic
form factor is a monopole characterised by a length-scale,
rπ = √

6/MF : Fem
π (Q2) = 1/(1 + Q2/M2

F ), then

qπ (x, |b⊥|)
Fπ=0
≈ qCI

π (x)M2
F K0(|b⊥|MF ) , (51)

where K0 is a modified Bessel function of the second kind.
Returning to an internally consistent WGTI-preserving CI
treatment, so that Fπ �= 0, then the large-Q2 behaviour of
the pion form factor may be characterised via MF → ∞;
hence,

qπ (x, |b⊥|)
Fπ �=0
≈ qCI

π (x)δ2(b⊥). (52)

We have verified these statements numerically.
The n = 1 Mellin moment of the twist-two vector GPD

delivers the pion’s gravitational form factors:

∫ 1

−1
dx 2x H̃π (x, ξ,−�2) = θπ

2 (�2) − ξ2 θπ
1 (�2) , (53)

where θ2 relates to the quark mass distribution within the
pion and θ1 is linked to the quark pressure distribution. In a
symmetry preserving treatment: θπ

2 (0) = 1; and, following
from Eqs. (45), θπ

1 (0) − θπ
2 (0) = O(m2

π ).4

The pion’s gravitational form factors are also drawn in
Fig. 3. Regarding θπ

1 , the Ansatz used to correct Hπ on the
domain E , Eqs. (46), depends on a representation of the
σ -resonance contribution to quark+quark scattering in the
scalar channel. To illustrate the associated model-dependent

4 Recall Observation B following Eq. (29); to wit, the results presented
here are defined at the hadronic scale, ζH , whereat all properties of
the bound-state are invested in the dressed-quark and dressed-antiquark
quasiparticles.

Fig. 3 Upper panel. Pion form factors computed from the twist-two
vector GPD: solid blue curve – mass distribution, θ2; dashed dark-
red curve – elastic electromagnetic, Fem

π ; and green dot-dashed curves
with associated band – pressure, θ1. Lower panel. Comparison of CI

results for θ1,2 with those obtained using lQCD, viz. θ
lQCD
1 – yellow

short-dashed curve within like-coloured band; and θ
lQCD
2 – orange long-

dashed curve and band. The bands enclose the envelope of curves that
fit the lQCD results [105]

uncertainty, we used two forms:

PCI
σ (t) = 1/(1 − t/[4M2]) , (54a)

P
emp
σ (t) = 1/|1 − t/m2

f0
| , (54b)

where m f0 ≈ (0.48 − i0.28) GeV [106]. The first choice is
based on the observation that the CI produces a σ -meson with
mass mσ ≈ 2M in the neighbourhood of the chiral limit [35],
whereas the second uses instead the pole mass associated
with the empirical σ -resonance. Evidently, the uncertainty is
noticeable but not large. We find rπ

θ1
/r em

π = 1.88(13); and a
result that is generally softer than the pion’s electromagnetic
form factor. Turning to θπ

2 , rπ
θ2

/r em
π = 0.89; and this form

factor is generally harder than Fem
π (�2).

The lower panel of Fig. 3 displays a comparison between
our CI results and those obtained using lattice-QCD (lQCD),
described by [105]:

θ
πlQCD

1,2 (�2) = 1/
[

1 + �2/M2
1,2

]

, (55)

M1 = 0.89(25) GeV, M2 = 1.33(2) GeV. The errors on M1,2

lead to bands which demarcate the envelope of curves that
provide a reasonable fit to the actual (scattered) lQCD results.
Evidently, there is fair semiquantitative agreement between
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the CI and lQCD results, especially allowing for the hardness
of CI form factors.

Working with such hadron form factors, Ref. [97] defined
Breit-frame pressure distributions, e.g.

pπ (r) = 1

3

∫

d3
�

(2π)3

1

2E(�)
ei�·r

[

�2θπ
1 (�2)

]

(56a)

= 1

6π2r

∫ ∞

0
d�

�

2E(�)
sin(�r)

[

�2θπ
1 (�2)

]

,

(56b)

where 2E(�) =
√

4m2
π + �2. The physical interpretation of

such distributions is complicated by issues connected with
the Poincaré transformation of frame-dependent wave func-
tions in quantum field theory [107]. Nevertheless, they are
mathematically well defined; do admit the standard interpre-
tation in systems for which a nonrelativistic approximation
can be discussed; and viewed judiciously, can deliver fruit-
ful insights. Moreover, two-dimensional Fourier-transform
analogues deliver results of similar magnitude.

Owing to the hardness of CI pion form factors, the inte-
grals in Eqs. (56) do not converge when evaluated using the
results for θπ

1,2(�
2)depicted in Fig. 3 – upper panel. We there-

fore exploit the semiquantitative similarity between CI and
lQCD results evident Fig. 3 – lower panel to justify an esti-
mate of the pion’s pressure distribution using Eq. (55). The
result is depicted in Fig. 4 and the qualitative features are con-
sistent with an intuitive physical interpretation. Namely, the
pressure is large and positive in the neighbourhood r ≃ 0 –
the dressed-quark+dressed-antiquark are pushing away from
each other at small separation; but the pressure changes sign
as the separation becomes large, signalling a transition into
the domain whereupon the pair experience the effects of con-
finement forces.

It is important to appreciate that limr→0 r2 pπ (r) �= 0 in
Fig. 4 is an artefact of the simple monopole description of
θ1(�

2) in Eq. (55). In four spacetime dimensions, a quantum
field theoretical treatment of form factors always introduces
scaling violations, leading to additional ln(�2/M2) suppres-
sion on �2 ≫ M2. We choose to illustrate the effect of such
scaling violation by modifying Eq. (55) as follows:

θπlQCD(y = �2/M2) = 1/[1 + y ln(1 + y)] . (57)

Using this form for θ1 leads to the blue dot-dashed curve in
Fig. 4. In this case, limr→0 r2 pπ (r) = 0; yet, the character-
ising magnitudes are unchanged.

An analogue of Eq. (56) has been used to infer the proton’s
quark pressure distribution from existing data on deeply vir-
tual Compton scattering [108]. Comparing that result with
those in Fig. 4 – upper panel, one observes that: (i) the pres-
sure within the pion on the neighbourhood r ≃ 0 is roughly

Fig. 4 Upper panel – Pressure distribution in the pion, Eq. (56); and
lower panel shear pressure distribution, Eq. (58). Legend. Green solid
curve within like-coloured band – computed using the lQCD results for
θ1(�

2) in Eq. (55); and blue dot-dashed curve and associated band –
computed using θ1(�

2) in Eq. (57)

five-times larger than that in the proton; and (ii) the two pres-
sure profiles have a similar radial extent. Notwithstanding the
issues with Ref. [108] canvassed in Refs. [109,110], profiles
analogous to Fig. 4 – upper panel for neutron stars indicate
r ≃ 0 pressures therein of roughly 0.1 GeV/fm [111]; hence,
the core pressures in the pion and neutron stars are commen-
surate.

A shear pressure distribution can also be defined [97]:

sπ (r) = −3

4

∫

d3
�

(2π)3

ei�·r

2E(�)
P2(�̂ · r̂)

[

�2θπ
1 (�2)

]

(58a)

= 3

8π2

∫ ∞

0
d�

�

2E(�)
� j2(�r)

[

�2θπ
1 (�2)

]

,

(58b)

where �̂2 = 1 = r̂2 and j2 is a spherical Bessel function.
Intuitively, r2sπ (r) provides an indication of the strength
of QCD forces within the pion which act to deform it. Our
results are drawn in Fig. 4 – lower panel. Focusing on the
more realistic curve, obtained using Eq. (57), these forces
peak in the neighbourhood upon which the normal pressure
switches sign, i.e. where the forces driving the quark and
antiquark away from the core are overwhelmed by attractive
confinement pressure.
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Fig. 5 ET
π (x, ξ, t = 0) – twist-two tensor GPD, Eq. (47). Owing to

Eq. (48), only ξ > 0 is plotted

5.3 Tensor GPD: images

The twist-two tensor GPD expressed in Eqs. (47) is drawn in
Fig. 5: it is only nonzero on −ξ < x < 1. Working with this
distribution, one obtains the following tensor form factors as
the leading Mellin moments:

Bπ
10(−�2) =

∫ 1

−1
dx E

T
π (x, ξ,−�2) (59a)

= PT (�2)
Nc

4π2

[

− F2
π

M

∫ 1

0
dx C̄1(σ5)

+2NE F

∫ 1

0
dx

∫ 1−x

0
dy

M

σ6
C̄2(σ6)

]

, (59b)

Bπ
20(−�2) =

∫ 1

−1
dx x E

T
π (x, 0,−�2) (59c)

= PT (�2)
Nc

2π2
NE F

×
∫ 1

0
dx

∫ 1−x

0
dy (1 − x − y)

M

σ6
C̄2(σ6) . (59d)

Evaluated using the CI parameters in Table 1,

M Bπ
10(0) = 0.18 , M Bπ

20(0) = 0.070, (60a)

mπ Bπ
10(0) = 0.070 , mπ Bπ

20(0) = 0.026, (60b)

Bπ
10(0)/Bπ

20(0) = 2.65. (60c)

These quantities are subject to QCD evolution; and, as
described after Eq. (29), we interpret the results in Eq. (60)
as being valid at the hadronic scale, the value of which is
discussed in Refs. [21,22]:

ζH = 0.331(2) GeV. (61)

Using QCD’s infrared-finite process-independent effec-
tive charge [55], α̂(k2), to integrate the evolution equations
[21,22], one finds

Bn0(0; ζF ) = Bn0(0; ζH ) exp

[

γ
qqT
0(n)

4π

∫ tH

tF

dt α̂(et )

]

,

Fig. 6 Twist-two tensor form factors, Eq. (59), normalised to unity
at t = 0 using the results in Eq. (60): dot-dashed green curve – Bπ

10;
and solid blue curve – Bπ

20. Normalised this way, the depicted form
factors are independent of the renormalisation scale. For comparison,
lQCD results from Ref. [100]: short-dashed yellow curve within like-
coloured band – Bπ

10 and long-dashed orange curve and band – Bπ
20. As

in Fig. 3, the bands enclose the envelope of curves that fit the lQCD
results

(62)

where tF = ln ζ 2
F , tH = ln ζ 2

H and [112, Eq. (4.160)]

γ
qqT
0(n)

= −4

3

[

3 − 4
n+1
∑

k=1

1

k

]

. (63)

Consequently, at ζ = ζ2 = 2 GeV,

mπ Bπ
10(0) = 0.053 , mπ Bπ

20(0) = 0.012 , (64a)

Bπ
10(0)/Bπ

20(0) = 4.57 . (64b)

This is the scale used in Ref. [100], which reports the follow-
ing values for these quantities after an extrapolation to the
physical pion mass: 0.22(3), 0.039(10), 5.66(60), in quali-
tative agreement with the CI results. Similar conclusions are
drawn elsewhere, e.g. Refs. [101,113,114].

The tensor form factors in Eqs. (59) are plotted in Fig. 6,
normalised by their �2 = 0 values. Employing this pro-
cedure, the depicted form factors are independent of the
renormalisation scale [101]. Hence, comparison with the
lQCD results in Ref. [100] is meaningful, although quan-
titative agreement cannot be expected because the lQCD

form factors were computed using m2
π ≈ 20 m

2 empirical
π .

Bearing this in mind and considering that the CI produces
hard pseudoscalar meson form factors, there is reasonable
qualitative agreement, e.g.: the radii have the same ordering,
rBπ

10
/rBπ

20
= 1.48(17) (lQCD) vs. 1.14 (herein); and B10(t)

is generally softer than B20(t).
One now has access to the light-front transverse-spin dis-

tribution of dressed-quarks within the pion, which is defined
in impact-parameter space [100]:

ρ1(b⊥, s⊥) = 1
2 q̃π (|b⊥|) − 1

2εi j si
⊥b

j
⊥ B ′π

10(|b⊥|) , (65)
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with

q̃π (|b⊥|) =
∫ 1

−1
dx qπ (x, |b⊥|) , (66a)

B ′π
10(|b⊥|) = − 1

4π |b⊥|

∫ ∞

0
d|�| �2 J1(|b⊥||�|)Bπ

10(−�2) ,

(66b)

where qπ (x, |b⊥|) is given in Eq. (50) and J1 is a Bessel
function. For a dressed-quark polarised in the +x direction
and ŝ⊥ · b̂⊥ = cos φ⊥, εi j si

⊥b
j
⊥ = |b⊥| sin φ⊥.

As emphasised above, in an internally consistent CI treat-
ment, all pion form factors are hard; so the integrals that
define the transverse densities in Eq. (65) are ill defined. It is
nevertheless worth illustrating the character of ρ1(b⊥, s⊥).
We therefore employ the expedient introduced in Eq. (57),
choosing the mass-scale “M” to reproduce the CI result for
the �2 ≃ 0 slope of a monopole approximation to the given
form factor and setting its �2 = 0 value to match the CI
value; to wit,

Fem
π (�2) = 1/(1 + �2/M2

F ln(1 + �2/M2
F )) , (67a)

Bπ
10(−�2) = (0.070/mπ )/(1 + �2/M2

B ln(1 + �2/M2
B)) ,

(67b)

with MF = 1.09 GeV, MB = 1.02 GeV. The result is drawn
in Fig. 7.

Figure 7 shows that for a dressed valence-quark polarised
in the light-front-transverse +x direction, the transverse-spin
density is no longer symmetric around b⊥ = (bx = 0, by =
0). Instead, the peak is shifted to (bx = 0, by > 0), with
strength transferred from by < 0 to by > 0. The average
transverse shift is [100]:

〈by〉 = 1

2
B10(0)/mπ = 0.049 fm; (68)

and the by profile remains symmetric around the line bx = 0.
We interpret these results as being valid at ζH . The distor-
tion vanishes logarithmically with Bπ

10(0) → 0 under QCD
evolution, Eq. (62).

Given that E
T d̄
π+(x, ξ, t) = −E

T u
π+(−x, ξ, t), then the

three-dimensional profile for a s⊥ ‖ x̂ dressed valence-
antiquark is obtained by rotating Fig. 7 – upper panel by 180◦

around the by = 0 axis. Regarding Fig. 7 – lower panel,
by → −by and the curves change sign.

Fig. 7 ρ1(b⊥, s⊥ ∝ x̂), Eq. (65), light-front transverse-spin distri-
bution of dressed valence quarks within the pion. Upper panel – Full
three-dimensional image; and lower panel – Slices at constant bx/fm:
solid blue – bx = 0.01; dot-dashed green – bx = 0.025; dashed dark-
red – bx = 0.05; and short-dashed orange – bx = 0.1. In both panels,
the scale is ζH , Eq. (61)

6 Pion TMDs

6.1 Twist-two TMDs

Recall now that one proceeds from a given GTMD to the
associated TMD by setting � = 0, which also means ξ = 0.
At twist-two, our CI treatment (which does not include a
Wilson line) produces one nonzero TMD, whose form can

be read from Eq. (31) (ς := σ
k2
⊥,0

1 ):

f1(x, k2
⊥) = F1(x, k2

⊥, 0, 0) (69a)

= Nc

2π3

[

Eπ [Eπ − 2Fπ ] C̄2(ς)

ς

+3 NE F x(1 − x)m2
π

C̄3(ς)

ς2

]

. (69b)

This TMD, describing the dressed valence u-quark in the
π+, is depicted in Fig. 8. (Note that M2 f1(x, k2

⊥) is dimen-
sionless.) The root-mean-square value of k2

⊥ is defined via

〈k2
⊥〉 =

∫ 1

0
dx

∫

d2k⊥ k2
⊥ f1(x, k2

⊥) (70a)

⇒ 〈k2
⊥〉1/2 = 0.61 GeV. (70b)
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Fig. 8 Upper panel – Twist-two pion TMD, Eq. (69). This function
is symmetric around the line x = 1/2. Lower panel – k2

⊥ f1(x, k2
⊥) at:

x = 0 – solid blue curve; x = 1/4 – dot-dashed green curve; and
x = 1/2 – dashed dark-red curve. Scale is ζH , Eq. (61)

Evidently and unsurprisingly, the symmetry-preserving CI-
treatment produces a hard k2

⊥ distribution even at the hadronic
sale, ζH . In contrast, a pion twist-two TMD developed from
an interaction with QCD-like momentum dependence yields
[115] 〈k2

⊥〉1/2 = 0.21 GeV.
For additional comparison, we note that a Nambu–

Jona–Lasinio (NJL) model has also been used to compute
f1(x, k2

⊥) [116]. NJL model results are sensitive to the regu-
larisation scheme employed. Ref. [116] used a Pauli-Villars
procedure and obtained results that agree semi-quantitatively
with those depicted in Fig. 8.

Owing to gluon radiation and additional fragmentation,
the distributions in Fig. 8 become broader as the scale is
evolved to values ζ > ζH [92], whilst nevertheless preserv-
ing the result

∫

d2k⊥ f1(x, k2
⊥; ζ ) = uπ (x; ζ ) , (71)

which is the π+ valence u-quark distribution function.
Since we omit the Wilson line, our result for the pion’s

Boer-Mulders function is

h⊥
1 (x, k2

⊥) ≡ 0 . (72)

Fig. 9 Upper panel. Twist-three pion TMD, ê(x, k2
⊥), Eq. (73). Lower

panel. k2
⊥ê(x, k2

⊥) at: x = 0 – solid blue curve; x = 1/3 – dot-dashed
green curve; x = 2/3 – dashed dark-red curve; and x = 1 – short-
dashed orange curve. Scale is ζH , Eq. (61)

6.2 Twist-three TMDs

In the absence of a Wilson line, the CI supports two nonzero
twist-three pion TMDs. The first is obtained from the GTMD
E2(x, k2

⊥, ξ, t) in “Appendix B.1”:

e(x, k2
⊥) = E2(x, k2

⊥, 0, 0) =: ê(x, k2
⊥)mπ/M , (73a)

ê(x, k2
⊥) = Nc

2π3

[

ÑE F

C̄2(ς)

ς
+ 3NE F (1 − x)

M2C̄3(ς)

ς2

]

.

(73b)

This TMD is chiral-odd, viz. it is associated with an
interaction-induced quark chirality flip within the target.
e(x, k2

⊥) vanishes in the chiral limit, mπ = 0.
The upper panel of Fig. 9 depicts the CI result for ê(x, k2

⊥)

at the hadronic scale, ζH . The lower panel highlights the x-
dependence of its k2

⊥ profile:

〈k2
⊥〉1/2/GeV = 0.385 − 0.109 x − 0.0539 x2 , (74)

i.e. the |k⊥| width ranges from 0.39 GeV at x = 0 to
0.22 GeV at x = 1. Given the hardness of CI form factors,
it is most appropriate to make an internally consistent com-
parison; hence, we observe that Eq. (74) means the width
of e(x, k2

⊥) ranges from 63% → 36% of the width of the
chiral-even TMD f1(x, k2

⊥), with mean value 51%.
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Fig. 10 Upper panel. Twist-three pion TMD, f̂ ⊥(x, k2
⊥), Eq. (75).

Lower panel. k2
⊥ f̂ ⊥(x, k2

⊥) at: x = 0 – solid blue curve; x = 1/4 –
dot-dashed green curve; x = 1/2 – dashed dark-red curve; and x = 3/4
– short-dashed orange curve. Scale is ζH , Eq. (61)

Comparing the images in Fig. 9 with those in Fig. 8, one
sees that ê(x, k2

⊥) is at most two-thirds the size of f1(x, k2
⊥)

and typically smaller. In any cross-section, this suppression
is compounded by the higher-twist factor mπ/n · P .

The second twist-three TMD, which is chiral-even, may
be read from “Appendix B.3”:

f ⊥(x, k2
⊥) = Fk

2 (x, k2
⊥, 0, 0) =: f̂ ⊥(x, k2

⊥)m2
π/M2, (75a)

f̂ ⊥(x, k2
⊥) = 3Nc

2π3
NE F (1 − x)

M2C̄3(ς)

ς2
. (75b)

f ⊥(x, k2
⊥) vanishes in the chiral limit.

f ⊥(x, k2
⊥) is drawn in Fig. 10 – upper panel; and the lower

panel illustrates the x-dependence of its k2
⊥ profile:

〈k2
⊥〉1/2/GeV = 0.317

√
1 − x . (76)

The |k⊥| width varies from 0.32 GeV at x = 0 to 0 at x = 1,
owing to the (1 − x) factor in Eq. (75b), i.e. the width of
f ⊥(x, k2

⊥) ranges from 52% → 0% of the width of the chiral-
even TMD f1(x, k2

⊥), with mean value 37%.
Comparison of the images in Fig. 10 with those in Fig. 8

reveals that f̂ ⊥(x, k2
⊥) is not more than two-thirds the size

of f1(x, k2
⊥) and almost always much smaller. In any cross-

section, this suppression is compounded by the higher-twist
factor (mπ/M)(mπ/n · P).

Fig. 11 Upper panel. Twist-four pion TMD, negative- f3(x, k2
⊥),

Eq. (6.3). Lower panel. Negative-k2
⊥ f3(x, k2

⊥) at: x = 0 – solid blue
curve; x = 1/3 – dot-dashed green curve; x = 2/3 – dashed dark-red
curve; and x = 1 – short-dashed orange curve. Scale is ζH , Eq. (61)

6.3 Twist-four TMD

The CI supports a single twist-four pion TMD, which is
chiral-even and can be read from “Appendix C.1”:

f3(x, k2
⊥) = F3(x, k2

⊥, 0, 0)

= − Nc

2π3ς

[

2ÑE F C̄2(ς) + 3NE F (1 − x)2 m2
π C̄3(ς)

ς

]

.

(77)

f3(x, k2
⊥) is nonzero in the chiral limit so long as the full

CI pion Bethe–Salpeter amplitude is used, i.e. Fπ �= 0 in
Eq. (16).

We depict f̂3(x, k2
⊥) in Fig. 11 – upper panel; and in the

lower panel sketch the x-dependence of its k2
⊥ profile:

〈k2
⊥〉1/2/GeV = 0.336 − 0.0352 x + 0.0129 x2. (78)

Here the |k⊥| width ranges from 0.34 GeV at x = 0 to 0.31 at
x = 1, i.e. the momentum-space breadth of f3(x, k2

⊥) ranges
from 56% → 51% of the width of f1(x, k2

⊥), with mean value
53%.

Comparing the images in Fig. 11 with those in Fig. 8, it is
plain that f̂3(x, k2

⊥) is typically less than one-third the size of
f1(x, k2

⊥). This suppression multiplies that introduced into
cross-sections by the higher-twist factor (mπ/n · P)2.
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6.4 TMD sum rules

The TMDs f1(x, k2
⊥), e(x, k2

⊥), f3(x, k2
⊥) satisfy a collection

of sum rules [117, Eqs. (3)], which are formally preserved in
our CI analysis, as may readily be established using Eqs. (6),
(26), (B.9), (C.33). We have confirmed by direct calculation
that they are all also satisfied in practice.

It is also appropriate to remark that whilst the suppression
of twist-3 and -4 TMDs relative to the twist-2 TMD is a
feature our CI analysis, it is not found in all analyses. The
models studied in Ref. [117] highlight this point.

7 Wigner distribution

Given that (a) GPDs and TMDs can both be obtained directly
from Wigner distributions and (b) a given Wigner distribu-
tion is obtained by computing a Fourier transform of the
associated GTMD at ξ = 0, it is worth presenting a con-
crete result for the simplest of the Wigner distributions for
a dressed-quark in the pion. To this end, recall Eq. (31) and
consider

W21(x, k⊥, b⊥) =
∫

d2�

(2π)2
eib⊥·� F1(x, k2

⊥, 0,−�2) .

(79)

Inserting the explicit form of the integrand, one finds

W21(x, k⊥, b⊥) = Nc

4π4
Eπ [Eπ − 2Fπ ] C̄2(ς)

ς
δ2(b⊥)

+ Nc

4π4
Eπ [Eπ − 2Fπ ] C̄2(ς)

ς

×
∫ ∞

0
d�� J0(|b⊥||�|)[PT − 1]

− 3Nc

8π4
NE F

∫ ∞

0
d�� J0(|b⊥||�|)PT

×
∫ 1−x

0
dα [�2 − x(�2 + 2m2

π )] C̄3(ςα)

ς2
α

, (80)

where ςα = ς +α(1− x −α)�2. This function has nonzero
support on x ∈ [0, 1].

The dimensionless Wigner function in Eq. (80) is plotted
in Fig. 12. Each panel shows a different value of |b⊥|, viz.
0.1 fm and 0.2 fm. This valence-quark Wigner function is (i)
sharply peaked at (x = 1, k2

⊥ = 0, b2
⊥ = 0); (ii) exhibits

power-law suppression as k2
⊥ and/or b2

⊥ are increased; and
(iii) is negative on a neighbourhood (x ≃ 1, k2

⊥ ≃ 0). We
anticipate that the analogous Wigner function computed with
a realistic interaction will display similar behaviour.

Fig. 12 Wigner distribution associated with the pion’s simplest twist-
two dressed-quark GTMD in Eq. (28). The two panels display different
values of |b⊥|, as indicated in the labels. The δ2(b⊥) component – first
line of Eq. (80) – is suppressed in the image. Scale is ζH , Eq. (61)

8 Summary and perspective

We used a vector × vector contact interaction (CI), treated at
leading-order in a widely-used symmetry-preserving Dyson–
Schwinger equation (DSE) truncation scheme, to calculate
an array of twist-two, -three and -four pion GTMDs (Sect. 4,
Appendices B, C). Whilst some of the results are particular
to the CI, many features are physically relevant, including an
observation that the strength and shape of all pion GTMDs are
largely set by the scale of emergent hadronic mass (EHM) in
the strong interaction. In a few particular cases for which CI
limitations were too conspicuous, we augmented the analysis
by appealing to continuum- and lattice-QCD results in order
to arrive at realistic illustrations of material points.

Concerning GPDs, we found (Sect. 5.2) that the pion’s
θ2 mass distribution form factor is harder than its electro-
magnetic form factor, Fem

π ; and in turn, Fπ is harder than
the pion’s θ1 gravitational pressure distribution form factor.
Concerning the pressure distribution, the peak value, lying
in the neighbourhood of the pion’s core, is approximately
five-times greater than that in the proton; indeed, it is com-
mensurate with the pressure at the core of a neutron star.
Moreover, the shear pressure achieves its maximum value
when the confinement pressure comes to exceed that gener-
ated by the forces driving the quark and antiquark away from
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the core. (The Ansatz for θ1 used in the pressure calculations
capitalises on lattice-QCD results for this form factor.)

The tensor GPD provides information about transversity
in the pion; and we found (Sect. 5.3) that polarising a pion’s
dressed quark in the positive-x direction of the light-front-
transverse plane produces a clear distortion of the transverse-
spin density, shifting its peak in the positive−y direction.
This distortion diminishes as the resolving scale is increased.

The pion’s GTMDs also provide direct access to its trans-
verse momentum dependent distribution functions (TMDs);
and in the absence of a model for the Wilson line, the CI sup-
ports four that are nonzero (Sect. 6): one of twist-two, two
twist-three, and one twist-four. Our calculations indicate that
the twist-two TMD, f1(x, k2

⊥) is largest in magnitude and
possesses the greatest domain of material k2

⊥-support. The
twist-three distributions, e and f ⊥, are uniformly smaller;
and the twist-four TMD, f3, is still smaller. In any cross-
section, such suppressions would be compounded by the
respective mπ/n ·P and (mπ/n ·P)2 twist-expansion factors.

Wigner distributions are a natural complement to GTMDs,
providing an intuitive visual aid to expressing and under-
standing their physical content. We therefore provided results
for a representative example, viz. that associated with the
twist-two GTMD that produces the pion’s valence-quark
distribution function, and electromagnetic and gravitational
form factors (Sect. 7). At the hadronic scale, this Wigner
function is sharply peaked in the neighbourhood of (x =
1, k2

⊥ = 0, b2
⊥ = 0) and broadens as the transverse posi-

tion variable conjugate to the probing momentum transfer,
b⊥, increases in magnitude. Similar behaviour should be
expected of such Wigner distributions calculated with a real-
istic interaction.

Several extensions of the work described herein
immediately suggest themselves. (A) Kindred analyses for
the kaon, which would reveal physical effects on GTMDs
that arise from constructive interference between Nature’s
two mass generating mechanisms: EHM and Higgs-boson
induced. (B) Development of a practicable realisation of
the Wilson line, because it would enable computation of
time-reversal-odd GTMDs, whose comparison with the time-
reversal-even functions calculated herein may yield addi-
tional insights that could be exploited in studies using real-
istic interactions. (C) Repeating this analysis using realistic
light-front wave functions for the pion (and kaon), whose
profiles are known to explain and predict a diverse array of
pseudoscalar meson properties. All these efforts are under-
way.
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Appendix A: Useful formulae

Eq. (14) is the first of many integrals appearing herein whose
regularised values are expressed in terms of incomplete
gamma-functions. In general (n ∈ Z, n ≥ 0):

C0(σ ) = σ
[

Ŵ(−1, σ τ 2
uv) − Ŵ(−1, σ τ 2

ir)
]

, (A.1a)

Cn(σ ) = (−)n σ n

n!
dn

dσ n
C0(σ ) , (A.1b)

Cn(σ ) = 1

σ
Cn(σ ) . (A.1c)

They can usefully be illustrated with simple examples:

C0(σ ) = Ŵ(−1, σ τ 2
ir) − Ŵ(−1, σ τ 2

uv) , (A.2a)

C1(σ ) = Ŵ(0, σ τ 2
ir) − Ŵ(0, σ τ 2

uv) , (A.2b)

2 C2(σ ) = σ
d2

dσ 2
C0(σ ) = Ŵ(1, σ τ 2

ir) − Ŵ(1, σ τ 2
uv) . (A.2c)

In general,

n! Cn(σ ) = Ŵ(n − 1, σ τ 2
ir) − Ŵ(n − 1, σ τ 2

uv) . (A.3)

Such expressions are useful, e.g. in expressing the Bethe–
Salpeter kernel in Eq. (20):

K
π
E E =

∫ 1

0
dα

{

C0(ω(α, Q2))

+
[

M2 − αᾱQ2 − ω(α, Q2)

]

C1(ω(α, Q2))

}

, (A.4a)

K
π
E F = Q2

∫ 1

0
dα C1(ω(α, Q2)), (A.4b)

K
π
F E = 1

2 M2
∫ 1

0
dα C1(ω(α, Q2)) , (A.4c)
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K
π
F F = −M2

∫ 1

0
dα C1(ω(α, Q2)) . (A.4d)

We recall here that Eq. (20) is an eigenvalue problem with
a solution for Q2 = −m2

π , at which point the eigenvec-
tor is the pion’s Bethe–Salpeter amplitude. When computing
observables, one must employ the canonically normalised
amplitude, viz. Ŵπ rescaled such that

1 = d

d Q2
�π (Z , Q)

∣

∣

∣

∣

Z=Q

, (A.5)

where

�π (Z , Q) = 6trD

∫

d4ℓ

(2π)4
Ŵπ (−Z)S f (ℓ+Q) Ŵπ (Z) Sg(ℓ) .

(A.6)

In the chiral limit, viz. using solutions obtained with m = 0
in Eq. (10), Eqs. (A.5), (A.6) impose [33]:

1 = 3

4π2

1

M2
C1(M2)Eπ [Eπ − 2Fπ ] . (A.7)

The function ω(α, Q2) is defined in Eq. (19). Similar argu-
ments appear in the expressions for various pion GTMDs. We
list them here.

σ
z,u
1 = z + M2 − (x + uξ)(1 − x)

(1 + uξ)2
m2

π , (A.8a)

σ z
2 = z + M2 − 1

4

(

1 + x

ξ

) (

1 − x

ξ

)

t , (A.8b)

σ z
3 = z + M2 − αᾱm2

π

− [ξ + x − α(1 + ξ)][ξ − x + α(1 − ξ)] t

4ξ2
,

(A.8c)

σ z
4 = σ

z,0
1 − α(1 − α − x)t , (A.8d)

σ5 = M2 − x(1 − x)t , (A.8e)

σ6 = M2 − (x + y)(1 − x − y)m2
π − xyt . (A.8f)

When describing TMDs, we also use

ς := σ
k2
⊥,0

1 = k2
⊥ + M2 − x(1 − x)m2

π . (A.8g)

Appendix B: Twist three GTMDs

Here we gather CI results for the pion’s dressed-quark twist-
three GTMDs, of which there are six, generated by the fol-
lowing matrix insertions in Eq. (6):

H → {H1 = 1 , H2 = iγ5 , H3 = iγ j , H4 = iγ jγ5 ,

H5 = iγ5σi j , H6 = iγ5σμνnμn̄ν}. (B.9)

Specifically, mapping into Euclidean metric, suppressing the
argument, (P, x, k⊥,�, N ; η), of each GTMD on the left-
hand-side, and writing ǩ = k/M , �̌ = �/M :

W [H1] → M

n · P
E2(x, k2

⊥, ξ, t) , (B.10a)

W [H2] → M

n · P
iε⊥

i j ǩi �̌ j Ẽ2(x, k2
⊥, ξ, t) , (B.10b)

W [H3] → M

n · P
[ǩi Fk

2 (x, k2
⊥, ξ, t)

+ �̌i F�
2 (x, k2

⊥, ξ, t)] , (B.10c)

W [H4] → M

n · P
[iε⊥

i j ǩi G
k
2(x, k2

⊥, ξ, t)

+ iε⊥
i j �̌i G

�
2 (x, k2

⊥, ξ, t)] , (B.10d)

W [H5] → M

n · P
iε⊥

i j H2(x, k2
⊥, ξ, t) , (B.10e)

W [H6] → M

n · P
iε⊥

i j ǩi �̌ j H̃2(x, k2
⊥, ξ, t) . (B.10f)

Appendix B.1: H̃2

E2(x, k2
⊥, ξ, t) = P̄T

[

E2
π F E E + Eπ Fπ F E F + F2

π F F F
]

, (B.11)

where P̄T = [θξ̄ ξ + PT(−t)(1 − θξ̄ ξ )] and (r = k2
⊥):

F E E (x, r, ξ, t) = T E E
12 + Nc

4π3

1

σ r
2

C̄2(σ
r
2 )

θξ̄ ξ

ξ

F E F (x, r, ξ, t) = T E F
11 − 4T E E

12

− Nc

4π3

1

σ r
2

C̄2(σ
r
2 )

θξ̄ ξ t

M2ξ
, (B.12a)

F F F (x, r, ξ, t) = −2 T E F
11 + 4T E E

12

+ Nc

4π3

1

σ r
2

C̄2(σ
r
2 )

θξ̄ ξ t

M2ξ

+ Nc

8π3

1

σ r
2

C̄2(σ
r
2 )

θξ̄ ξ xt

M2ξ3
, (B.12b)

with

T E F
11 (x, r, ξ, t) = Nc

4π3

m2
π

M2(1 + ξ)

θξ̄1

σ
r,1
1

C̄2

(

σ
r,1
1

)

+ Nc

4π3

m2
π

M2(1 − ξ)

θξ1

σ
r,−1
1

C̄2

(

σ
r,−1
1

)

, (B.13a)

T E E
12 (x, r, ξ, t) = 3Nc

8π3

(

2m2
π − t

)

ξ

∫ 1

0
dα

θαξ

[σ r
3 ]2

C̄3(σ
r
3 ) . (B.13b)

123



Eur. Phys. J. C (2021) 81 :6 Page 17 of 20 6

Appendix B.2: Ẽ2

Ẽ2(x,k2
⊥, ξ, t) = 0. (B.14)

Appendix B.3: Fk
2

Fk
2 (x, k2

⊥, ξ, t) = P̄T

[

E2
π F E E + Eπ Fπ F E F + F2

π F F F
]

, (B.15)

where

F E E (x, r, ξ, t) = T E E
31 + Nc

4π3

1

σ r
2

C̄2(σ
r
2 )

θξ̄ ξ

ξ
, (B.16a)

F E F (x, r, ξ, t) = −4T E E
31 , (B.16b)

F F F (x, r, ξ, t) = 4T E E
31 + Nc

8π3

1

σ r
2

C̄2(σ
r
2 )

θξ̄ ξ xt

M2ξ3
, (B.16c)

with

T E E
31 (x, r, ξ, t) = 3Nc

8π3

(2m2
π − t)

ξ

∫ 1

0
dα

θαξ

[σ r
3 ]2

C̄3(σ
r
3 ) . (B.17)

Appendix B.4: F�
2

F�
2 (x, k2

⊥, ξ, t) = P̄T

[

E2
π F E E + Eπ Fπ F E F + F2

π F F F
]

, (B.18)

where

F E E (x, r, ξ, t) = T E E
41 + T E E

42

− Nc

8π3

1

σ r
2

C̄2(σ
r
2 )

θξ̄ ξ x

ξ2
, (B.19a)

F E F (x, r, ξ, t) = −2 T E E
41 − 4T E E

42 , (B.19b)

F F F (x, r, ξ, t) = 4T E E
42 + Nc

16π3

1

σ r
2

C̄2(σ
r
2 )

×
θξ̄ ξ

M2ξ2

[

1

2
t − 3x2

2ξ2
t − 2M2

]

, (B.19c)

with

T E E
41 (x, r, ξ, t) = − Nc

8π3

[

1

(1 + ξ)

θξ̄1

σ
r,1
1

C̄2

(

σ
r,1
1

)

− 1

(1 − ξ)

θξ1

σ
r,−1
1

C̄2

(

σ
r,−1
1

)

]

, (B.20a)

T E E
42 (x, r, ξ, t) = − 3Nc

16π3

×
∫ 1

0
dα

[

x − α

ξ2
(2m2

π − t)

]

θαξ

[σ r
3 ]2

C̄3(σ
r
3 ) .

(B.20b)

Appendix B.5: Gk
2

Gk
2(x, k2

⊥, ξ, t) = P̄T

[

E2
π F E E + Eπ Fπ F E F + F2

π F F F
]

, (B.21)

where

F E E (x, r, ξ, t) = T E E
51 , (B.22a)

F E F (x, r, ξ, t) = −4T E E
51 , (B.22b)

F F F (x, r, ξ, t) = 4T E E
51

+ Nc

4π3

1

σ r
2

C̄2(σ
r
2 )

θξ̄ ξ (4m2
π − t)

M2
, (B.22c)

with

T E E
51 (x, r, ξ, t) = −3Nc

4π3
(4m2

π − t)

∫ 1

0
dα

θαξ

[σ r
3 ]2

C̄3(σ
r
3 ) . (B.23)

Appendix B.6: G�
2

G�
2 (x, k2

⊥, ξ, t) = P̄T

[

E2
π F E E + Eπ Fπ F E F + F2

π F F F
]

, (B.24)

where

F E E (x, r, ξ, t) = T E E
61 , (B.25a)

F E F (x, r, ξ, t) = −4T E E
61 , (B.25b)

F F F (x, r, ξ, t) = 4T E E
61 + Nc

8π3

1

σ r
2

C̄2(σ
r
2 )

θξ̄ ξ xt

M2ξ3
, (B.25c)

with

T E E
61 (x, r, ξ, t) = −3Nc

8π3

∫ 1

0
dα

t (x − α)

ξ3

θαξ

[σ r
3 ]2

C̄3(σ
r
3 ) . (B.26)

Appendix B.7: H2

H2(x, k2
⊥, ξ, t) = P̄T

[

E2
π F E E + Eπ Fπ F E F + F2

π F F F
]

, (B.27)

where

F E E (x, r, ξ, t) = T E E
72 , (B.28a)

F E F (x, r, ξ, t) = T E F
71 − 4T E E

72

− Nc

2π3

1

σ r
2

C̄2(σ
r
2 )

θξ̄ ξ xt

M2ξ2
, (B.28b)

F F F (x, r, ξ, t) = −2T E F
71 + 4T E E

72

+ Nc

2π3

1

σ r
2

C̄2(σ
r
2 )

θξ̄ ξ xt

M2ξ2
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− Nc

4π3

1

σ r
2

C̄2(σ
r
2 )

θξ̄ ξ (4m2
π − t)

M2
, (B.28c)

with

T E F
71 (x, r, ξ, t) = − Nc

2π3

(1 − 2x − ξ)m2
π

M2(1 + ξ)2

θξ̄1

σ
r,1
1

C̄2

(

σ
r,1
1

)

+ Nc

2π3

(1 − 2x + ξ)m2
π

M2(1 − ξ)2

θξ1

σ
r,−1
1

C̄2

(

σ
r,−1
1

)

, (B.29a)

T E E
72 (x, r, ξ, t) = 3Nc

4π3
(4m2

π − t)

∫ 1

0
dα

θαξ

[σ r
3 ]2

C̄3(σ
r
3 ) . (B.29b)

Appendix B.8: H̃2

H̃2(x,k2
⊥, ξ, t) = P̄T

[

Eπ Fπ F E F + F2
π F F F

]

, (B.30)

where

F E F (x, r, ξ, t) = T E F
81 − Nc

2π3

1

σ r
2

C̄2(σ
r
2 )

θξ̄ ξ

ξ
, (B.31a)

F F F (x, r, ξ, t) = −2T E F
81 + Nc

2π3

1

σ r
2

C̄2(σ
r
2 )

θξ̄ ξ

ξ
, (B.31b)

with

T E F
81 (x, r, ξ, t) = Nc

4π3

1

(1 + ξ)

θξ̄1

σ
r,1
1

C̄2

(

σ
r,1
1

)

+ Nc

4π3

1

(1 − ξ)

θξ1

σ
r,−1
1

C̄2

(

σ
r,−1
1

)

. (B.32)

Appendix C: Twist four GTMDs

Here we list the CI results for the pion’s dressed-quark twist-
four GTMDs, of which there are four, generated by the fol-
lowing matrix insertions in Eq. (6):

H → {H1 = iγ · n̄ , H2 = iγ · n̄γ5 , H3 = iγ5σ jμn̄μ}.
(C.33)

Mapping into Euclidean metric:

W [H1] → M2

(P · n)2
F3(x, k2

⊥, ξ, t) , (C.34a)

W [H2] → M2

(P · n)2
iε⊥

i j ǩi �̌ j G̃3(x, k2
⊥, ξ, t) , (C.34b)

W [H3] → M2

(P · n)2

[

iε⊥
i j ǩi H k

3 (x, k2
⊥, ξ, t) , (C.34c)

+ iε⊥
i j �̌i H�

3 (x, k2
⊥, ξ, t)

]

. (C.34d)

Appendix C.1: F3

F3(x, k2
⊥, ξ, t)=P̄T

[

E2
π F E E+Eπ Fπ F E F+F2

π F F F
]

,

(C.35)

where

F E E (x, r, ξ, t) = T̃ E E
11 + T̃ E E

12

+ Nc

16π3

1

σ r
2

C̄2(σ r
2 )

θξ̄ ξ x(4m2
π − t)

M2ξ

+ Nc

8π3

1

σ r
2

C̄2(σ r
2 )

θξ̄ ξ xt

M2ξ3
, (C.36a)

F E F (x, r, ξ, t) = −2 T̃ E E
11 − 4T̃ E E

12 , (C.36b)

F F F (x, r, ξ, t) = 4T̃ E E
2

+ Nc

32π3

1

σ r
2

C̄2(σ r
2 )

θξ̄ ξ t (4m2
π − t)

M4ξ

[

1 − x2

ξ2

]

, (C.36c)

with

T̃ E E
11 (x, r, ξ, t) = − Nc

16π3

(1 − ξ)(4m2
π − t)

M2(1 + ξ)

θξ̄1

σ
r,1
1

C̄2

(

σ
r,1
1

)

− Nc

16π3

(4m2
π − t)(1 + ξ)

M2(1 − ξ)

θξ1

σ
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1

C̄2

(

σ
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1

)

, (C.37a)

T̃ E E
12 (x, r, ξ, t) = 3Nc

32π3

∫ 1

0
dα

((2α − x)(t − 2m2
π ) − t)(4m2

π − t)

M2ξ

×
θαξ

[σ r
3 ]2

C̄3(σ r
3 ) + 3Nc

16π3

∫ 1

0
dα

(2m2
π − t)(x − α)t
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[σ r
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C̄3(σ r
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(C.37b)

Appendix C.2: G̃3

G̃3(x, k2
⊥, ξ, t) = P̄T

[

E2
π F E E + Eπ Fπ F E F + F2

π F F F
]

,

(C.38)

where

F E E (x, r, ξ, t) = T̃ E E
21 , (C.39a)

F E F (x, r, ξ, t) = −4T̃ E E
21 , (C.39b)

F F F (x, r, ξ, t) = 4T̃ E E
21 − Nc

16π3

1

σ r
2

C̄2(σ
r
2 )

θξ̄ ξ

M2ξ
, (C.39c)

with

T̃ E E
21 (x, r, ξ, t) = − 3Nc

16π3

1

ξ
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0
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θαξ

[σ r
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C̄3(σ
r
3 ). (C.40)
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Appendix C.3: H�

3

H�
3 (x, k2

⊥, ξ, t)=P̄T

[

E2
π F E E + Eπ Fπ F E F + F2

π F F F
]

,

(C.41)

where

F E E (x, r, ξ, t) = T̃ E E
31 , (C.42a)

F E F (x, r, ξ, t) = −4T̃ E E
31 , (C.42b)

F F F (x, r, ξ, t) = 4T̃ E E
31 + Nc

16π3

1

σ r
2

C̄2(σ
r
2 )

θξ̄ ξ

M2ξ
, (C.42c)

with

T̃ E E
31 (x, r, ξ, t) = − 3Nc

16π3

1

ξ
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[σ r
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C̄3(σ
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3 ) . (C.43)

Appendix C.4: Hk
3

H k
3 (x,k2

⊥, ξ, t) = P̄T

[

Eπ Fπ F E F + F2
π F F F

]

, (C.44)

where

F E F (x, r, ξ, t) = T̃ E F
41 − Nc

4π3
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, (C.45a)

F F F (x, r, ξ, t) = −2T̃ E F
41 + Nc

4π3

1

σ r
2

C̄2(σ
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θξ̄ ξ
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, (C.45b)

with

T̃ E F
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(C.46)
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