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Abstract

Recently, Källén & Zabzine computed the partition function of a twisted super-

symmetric Yang–Mills theory on the five-dimensional sphere using localisation

techniques. Key to their construction is a five-dimensional generalisation of

the instanton equation to which they refer as the contact instanton equation.

Subject of this article is the twistor construction of this equation when formu-

lated on K-contact manifolds and the discussion of its integrability properties.

We also present certain extensions to higher dimensions and supersymmetric

generalisations.
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1. Introduction and results

The self-dual Yang–Mills equation (or instanton equation) in four dimensions plays a very

prominent role in both mathematics and physics. Over three decades ago, it was shown by

Ward [1] (see also Atiyah & Ward [2]) that all solutions to this equation on flat space-time

have a natural interpretation in terms of holomorphic vector bundles over Penrose’s twis-

tor space [3]. One often refers to this approach as the Penrose–Ward transform. Atiyah,

Hitchin & Singer generalised the Penrose–Ward transform to the curved setting [4] (see

also [5]). In particular, they showed that the twistor space Z →M of an oriented Rieman-

nian four-dimensional manifold M comes equipped with a natural almost complex structure

which is integrable if and only if the Weyl tensor of M is self-dual. Solutions to the self-

dual Yang–Mills equation on manifolds M with self-dual Weyl tensor were then proven to

be in one-to-one correspondence with holomorphic vector bundles over Z that are holo-

morphically trivial up the fibres of Z → M . For a detailed account on twistor theory for

four-dimensional manifolds, we refer to the text books [6, 7].

Recently, Källén & Zabzine [8] (see also Hosomichi, Seong & Terashima [9]) introduced

a particular generalisation of the four-dimensional self-dual Yang–Mills equation that lives

on five-dimensional contact metric manifolds M .1 They refer to this generalised self-dual

Yang–Mills equation as the contact instanton equation2

F = ±?5(η ∧ F) = ±ξy(?5F) . (1.1)

Here, F = ∂2
A is the curvature for a connection ∂A represented locally by a connection

one-form A and η is the contact form, ξ the Reeb vector field, ‘?5’ the Hodge star on

M , and ‘y’ denotes contraction by a vector field. Concretely, Källén & Zabzine studied

1Note that contact manifolds always admit contact metric structures [27]; see also Section 2. When

equipped with such a structure, they are called contact metric manifolds.
2To be more precise, we should distinguish between contact instantons and contact anti-instantons.
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the partition function of a twisted supersymmetric Yang–Mills theory on contact metric

manifolds (in particular, on the five-dimensional sphere) using localisation techniques, and

realised that the path integral of the five-dimensional theory localises on solutions to the

contact instanton equation. It appears that in this supersymmetric setting, the Reeb vector

fields needs to be Killing (which is the case for the five-dimensional sphere) [8]. Contact

metric manifolds whose Reeb vector field is Killing are called K-contact manifolds. Notice

that in the special case when formulated on five-dimensional Sasaki–Einstein manifolds,

the equation (1.1) was already discussed by Harland & Nölle in [10] (see also Tian [11]).

Subject of this article is to provide a detailed twistor construction of the contact in-

stanton equation (1.1) using ideas of Itoh’s [12]. We shall start by reviewing some ba-

sic properties of contact manifolds, contact metric manifolds and K-contact manifolds in

Section 2. In Section 3, we then introduce Itoh’s Cauchy–Riemann twistor space Z for

five-dimensional K-contact manifolds M . This twistor space is a (real) seven-dimensional

manifold that is fibred over M with complex projective lines as typical fibres. It carries a

natural almost Cauchy–Riemann structure whose integrability is determined by the van-

ishing of certain components of the curvature tensor on M [12]. This is rather similar to

the above-mentioned case of four-dimensional Riemannian manifolds. In addition to this

Cauchy–Riemann structure, we shall also be interested in a certain F -structure on Z (in the

sense of Rawnsley [13]) that is obtained by extending the Cauchy–Riemann structure by

the horizontal lift of the Reeb vector field along the fibration Z →M . Throughout this art-

icle, we shall work in the spinor formalism. This is very natural from the twistor geometric

point of view and as we shall see, this formalism allows us to present a very clear and short

proof of Itoh’s results, thereby making transparent all the geometric structures involved.

In Section 4, we then move on and establish Penrose–Ward transforms and Lax pairs in-

cluding the one for the contact instanton equation (1.1).3 The construction makes use of

so-called partial connections that are induced by the afore-mentioned Cauchy–Riemann

and F -structures.4 Concretely, we shall see that partially flat vector bundles over Z that

are holomorphically trivial up the fibres of Z →M are in one-to-one correspondence with

solutions to the contact instanton equation (modulo gauge equivalences).

Generally, the contact instanton equation (1.1) does not imply the Yang–Mills equation

since the contact form is not closed. However, as shall be explained below, this equation

admits essentially two different cases which seem different in nature: in the first case,

(1.1) is integrable by virtue of the twistor construction discussed in this article but it does

3The possibility of an extension of the Ward construction [1] was already mentioned in passing in [12].
4F -structures are common to twistor constructions; e.g. the twistor description of the three-dimensional

(supersymmetric) Bogomolny monopole equation in terms of real geometries is based on F -structures [14].
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not automatically imply the Yang–Mills equation but rather the Yang–Mills equation with

torsion.5 In the second case, (1.1) does automatically imply the Yang–Mills equation but

this case appears not to be accessible by the present twistor approach, and it remains to

be seen if this case is integrable in general, as well.6

In addition to five dimensions, we shall also discuss certain higher-dimensional gen-

eralisations and supersymmetric extensions of (1.1) using Bailey & Eastwood’s idea of

paraconformal geometries [17].

We would like to point out that apart from the contact instanton equation (1.1) there

already exist many other higher-dimensional generalisations of the self-dual Yang–Mills

equation in the literature, see e.g. [18–22, 11], including many solutions, see e.g. [23] and

more recently in e.g. [24–26,10].

2. Contact manifolds

We start our discussion by reviewing some basics about K-contact manifolds. We shall

be brief, however, and cover only material needed for our later discussion. For a detailed

account on the subject, we refer to the text books by Blair [27] (see also the reviews by

Boyer & Galicki [28] and Sparks [29]).

Contact manifolds. Let M be a (2m + 1)-dimensional smooth manifold. A contact

structure on M is a rank-2m distribution H ↪→ TM in the tangent bundle of M . The

distribution H is called the contact distribution. The quotient of TM by H yields a line

bundle called the contact line bundle L := TM/H. Alternatively, the contact distribution

can also be defined dually to be the kernel of a nowhere vanishing differential one-form η,

called the contact form, which is defined up to scale on M , that is, H = ker η. If so, the

contact form takes values in the line bundle L since the map TM → L is the contraction

of a vector field with η. We say that the contact structure is non-degenerate if for any two

vector fields X,Y ∈ Γ(M,H), the Frobenius form

Φ : H ∧H → L = TM/H , with Φ(X,Y ) := [X,Y ] mod H (2.1)

is non-degenerate on H. This is equivalent to saying that η∧ (dη)m 6= 0 on all of M , where

(dη)m := dη ∧ · · · ∧ dη (m-times). Furthermore, there exists a unique vector field ξ, called

5Torsion Yang–Mills equations appear naturally in string theory, see e.g. [15] and references therein. Our

concrete example also appears when dimensionally reducing to five dimensions (anti-)self-dual three-form

fields in six dimensions [16], see Remark 4.5.
6If M fibres over S1 or R, then this case is also integrable. See below for details.
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the Reeb vector field, which obeys

ξyη = 1 and ξydη = 0 . (2.2)

Here, the symbol ‘y’ denotes contraction by vector fields. Sometimes, we shall also write

Xyη ≡ η(X). If M is equipped with a non-degenerate contact structure, we call it a contact

manifold.

Contact metric manifolds. Next we wish to introduce the notion of a contact metric

structure. Let M be a (2m + 1)-dimensional contact manifold with contact form η and

Reeb vector field ξ. Furthermore, let g be a Riemannian metric on M . Then (η, ξ, g, φ) is

called a contact metric structure and M a contact metric manifold if φ is an endomorphism

of TM such that for any two vector fields X,Y ∈ Γ(M,TM), we have

φ2(X) = −X + η(X)ξ , g(X,φ(Y )) = dη(X,Y ) ,

g(φ(X), φ(Y )) = g(X,Y )− η(X)η(Y ) .
(2.3)

This then implies that φ(ξ) = 0, g(ξ, ξ) = 1, and η(X) = g(X, ξ). We would like to point

out that contact manifolds always admit contact metric structures [27]. This makes clear

that the structure group of a contact manifold can be reduced to U(m)× 1.

Connection and curvature. After having talked about contact and contact metric

structures, we move on and discuss connections and curvature. Let ∇ be the Levi-Civita

connection on a contact metric manifold M and pr : TM → H the projection mapping.

Then the contact distribution inherits a natural metric connection ∇H given by

∇HXY := pr(∇XY ) for X,Y ∈ Γ(M,TM) . (2.4)

We have

∇XY −∇HXY = −g(Y,∇Xξ)ξ for X,Y ∈ Γ(M,TM) , (2.5)

where ξ is the Reeb vector field as before and g the metric. This expression is not symmetric

in X and Y since the connection ∇H has torsion (recall that the contact distribution is

maximally non-integrable):

T H(X,Y ) := ∇HXY −∇HY X − [X,Y ] = −η([X,Y ])ξ for X,Y ∈ Γ(M,TM) . (2.6)

In addition, if we set

R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z ,

RH(X,Y )Z := ∇HX∇HY Z −∇HY ∇HXZ −∇H[X,Y ]Z
(2.7)
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for X,Y, Z ∈ Γ(M,TM), then a short calculation reveals that the Gauß equation is given

by

RH(X,Y )Z = R(X,Y )Z − g(R(X,Y )Z, ξ)ξ − g(Z,∇Xξ)∇Y ξ + g(Z,∇Y ξ)∇Xξ

= pr(R(X,Y )Z)− g(Z,∇Xξ)∇Y ξ + g(Z,∇Y ξ)∇Xξ . (2.8)

To arrive at this expression, we have used that g(ξ,∇Xξ) = 0.

K-contact manifolds. Next we would like to introduce the concept of K-contact mani-

folds. They form a special class of contact metric manifolds, that is, a contact metric

manifold M is called K-contact if the associated Reeb vector field is Killing (hence, the

prefix ‘K’).

If M is (2m+ 1)-dimensional, we then have

∇Xξ = −φ(X) for X ∈ Γ(M,TM) (2.9)

and the curvature relations

R(ξ,X)ξ = −X for X ∈ Γ(M,E) and Ric(ξ, ξ) = 2m . (2.10)

The first of these relations follows from (2.3) and the fact that ξ is Killing,

g(X,φ(Y )) = dη(X,Y )

= 1
2

(
(∇Xη)(Y )− (∇Y η)(X)

)
= 1

2

(
g(∇Xξ, Y )− g(∇Y ξ,X)

)
= −g(X,∇Y ξ) (2.11)

for X,Y ∈ Γ(M,TM). The first equation of (2.10) is a consequence of (2.9) and φ2(X) =

−X for X ∈ Γ(M,H) since

−X = φ2(X) = ∇∇Xξξ

= ∇ξ∇Xξ + [∇Xξ, ξ] = ∇ξ∇Xξ −∇X∇ξξ + [∇Xξ, ξ]

= R(ξ,X)ξ (2.12)

while the condition on the Ricci tensor is a direct corollary of this expression.

In particular, we see that the Ricci tensor of the Levi-Civita connection for K-contact

manifolds in the direction of the Reeb vector field is constant and determined by the

dimension of M . The converse is also true [27]:

Theorem 2.1. A contact metric manifold M of dimension 2m + 1 is K-contact if and

only if the Ricci tensor in the direction of the Reeb vector field is equal to 2m, that is,

Ric(ξ, ξ) = 2m.
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Examples. Examples of manifolds which are K-contact are plentiful. Perhaps the prime

example is the so-called Boothby–Wang fibration when a contact manifold (M,η, ξ) arises

as a circle fibration over a symplectic manifold N . Briefly, the symplectic form on N , which

needs to lie in H2(N,Z), pulls back to dη on M , the endomorphism φ is induced by the

almost complex structure on N (that makes N almost Kähler) while the Reeb vector field

ξ is Killing with respect to the metric that arises as the pull back of the metric on N plus

a term of the form η ⊗ η. This metric then satisfies all of the conditions given in (2.3).

A special case of a Boothby–Wang fibration is the Hopf fibration where odd-dimensional

spheres arise as circle fibrations over complex projective spaces. Another very important

class of K-contact manifolds is given by the class of Sasakian geometries: a K-contact

manifold is called Sasakian, if

(∇Xφ)(Y ) = g(X,Y )ξ − g(ξ, Y )X for X,Y ∈ Γ(M,TM) . (2.13)

This is equivalent to saying that the curvature obeys

R(X, ξ)Y = −g(X,Y )ξ + g(ξ, Y )X for X,Y ∈ Γ(M,TM) . (2.14)

3. Twistor construction of contact manifolds

Subject of this section is the construction of a twistor space for K-contact manifolds.

To this end, we first restrict our focus to the five-dimensional setting and discuss Itoh’s

Cauchy–Riemann twistor space [12]. Using the formalism of (commuting) spinors, which

is very natural from the twistor theoretic point of view, we are able to present very concise

and short proofs of his results. At the end of this section, we shall extend this construction

and discuss higher-dimensional generalisations by making use of Bailey & Eastwood’s idea

of paraconformal geometries [17].

Conformal structures. Recall that when M is a four-dimensional Riemannian spin

manifold, then the complexified tangent bundle TCM := TM ⊗ C can be factorised into

two rank-2 complex vector bundles S and S̃, σ : TCM
∼=→ S ⊗ S̃. The bundles S and S̃ are

simply the bundles of anti-chiral and chiral spinors. These bundles come equipped with

real structures τ : S → S and τ̃ : S̃ → S̃ which are anti-linear and obey τ2 = −1 = τ̃2 such

that i) the real structure τM induced on TCM := TM ⊗ C is given by τM = τ ⊗ τ̃ and

obeys τ2
M = 1 and ii) the set of fixed points of τM coincides with TM . Furthermore, the

factorisation σ : TCM
∼=→ S⊗ S̃ is equivalent to choosing a conformal structure on M , since

this isomorphism yields naturally a complex line subbundle Λ2S ⊗ Λ2S̃ in T∨
C
M � T∨

C
M .7

7We use ‘∨’ to denote the dual.
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The real structures on S and S̃ extend to a real structure on Λ2S ⊗ Λ2S̃ which has fixed

points. The set of fixed points defines a real line bundle which in turn gives the conformal

structure. The twistor space of M is then defined to be the projectivisation of one of these

spinor bundles. It is worth noting that even when a factorisation of the tangent bundle

into spinor bundles does not exist globally, the projectivisation of these bundles does and

hence is well defined even in the case when M is not spin.

In the present context of a five-dimensional contact manifold M , we wish to change this

point of view slightly and introduce a conformal structure only on the contact distribution

H. Therefore, we shall assume a factorisation of the form σ : HC
∼=→ S⊗ S̃ into two rank-2

complex vector bundles S and S̃ together with real structures τ and τ̃ of the above type.

We shall refer to this type of structure as a conformal contact structure and to contact

manifolds equipped with such a structure as conformal contact manifolds.

Then we have the decomposition

Λ2HC ∼= �2S ⊗ Λ2S̃︸ ︷︷ ︸
=: Λ2

+HC

⊕ Λ2S ⊗�2S̃︸ ︷︷ ︸
=: Λ2

−HC

. (3.1)

The real structures τ, τ̃ extend to real structures on Λ2HC and Λ2
±HC which, in turn, have

fixed points on these bundles. We shall denote the corresponding set of fixed points by

Λ2H and Λ2
±H, respectively. Correspondingly, we have a decomposition of differential two-

forms Ω2(M) := Γ(M,Λ2T∨M) with Ωk
H(M) := Γ(M,ΛkH∨) and Ω2

±(M) := Γ(M,Λ2
±H

∨)

according to

Ω2(M) ∼= Ω2
+(M)⊕ Ω2

−(M)⊕ η ∧ Ω1
H(M) . (3.2)

Notice that for any k-form ω ∈ Ωk(M), the part ωH of ω lying in Ωk
H(M) is given by

ωH = ω − η ∧ (ξyω) while the ωη part lying in η ∧ Ωk−1
H (M) is ωη = η ∧ (ξyω). In the

following, we shall write ω = ω+ + ω− + ωη for any two-form ω on M with ω± ∈ Ω2
±(M)

and ωη ∈ η ∧ Ω1
H(M). Notice that the two-forms Ω2

±(M) simply represent the self-dual

and anti-self-dual two-forms on H.

We call the structure (η, ξ, g, φ) a conformal contact metric structure and therefore

M a conformal contact metric manifold if the relations (2.3) are satisfied and (η, ξ, g, φ)

is compatible with the conformal structure, that is, dη sits in8 Ω2
+(M) and the metric g

restricts on H to g|H = ε ⊗ ε̃, where ε ∈ Γτ (M,Λ2S∨) := {ε ∈ Γ(M,Λ2S∨) | τ(ε) = ε}
and ε̃ ∈ Γτ̃ (M,Λ2S̃∨) := {ε̃ ∈ Γ(M,Λ2S̃∨) | τ̃(ε̃) = ε̃}. In particular, we may choose frame

8From (2.3) we have in particular that dη(X,Y ) = g(X,φ(Y )) and since φ|H is an almost complex

structure on H, dη is either a self-dual or an anti-self-dual two-form on H. Assuming dη ∈ Ω2
−(M) instead

of dη ∈ Ω2
+(M) merely corresponds to a change of orientation of M . Therefore, the assumption dη ∈ Ω2

+(M)

is no restriction.
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fields {Eαα̇, ξ} on M , with α, β, . . . , α̇, β̇, . . . = 1, 2 and ξ the Reeb vector field, such that

η(Eαα̇) = g(Eαα̇, ξ) = 0 and g(Eαα̇, Eββ̇) = εαβ ε̃α̇β̇ with εαβ = −εβα and ε̃α̇β̇ = −ε̃β̇α̇.

In the presence of a contact metric structure, we have that the ω± ∈ Ω2
±(M) are given in

terms of the Hodge star ?5 on M by the formulæ

ω± = 1
2

(
ωH ± ξy(?5ωH)

)
(3.3)

for a fixed orientation on M and then, imposing ω ∈ Ω2
±(M) amounts to saying that

ω = ± ?5(η ∧ ω) = ±ξy(?5ω) . (3.4)

Finally, we call a conformal contact metric manifold M a conformal K-contact manifold

provided the Reeb vector field is Killing.

Cauchy–Riemann twistor space. After having presented the setup, we are now in the

position to discuss the twistor geometry of contact manifolds. To this end, let M be a

five-dimensional conformal K-contact manifold with Levi-Civita connection ∇. Because of

the factorisation σ : HC
∼=→ S ⊗ S̃, the connection ∇H introduced in (2.4) is of the form

∇H = ∇H,S ⊗ idS̃ + idS ⊗∇H,S̃ , where ‘id’ denotes the identity on the respective bundles.

Similarly to the four-dimensional setting, we wish to define the twistor space Z of M

to be the projectivisation9

Z := P(S̃∨) (3.5)

of the dual of S̃. This is a bundle over M with projection π : Z → M with complex

projective lines CP 1 as typical fibres. We shall endow these fibres with homogeneous fibre

coordinates πα̇, in the following.

Clearly, since Z is an odd-dimensional manifold, it cannot be equipped with an almost

complex structure. However, it does come with a natural almost Cauchy–Riemann struc-

ture. Recall that an almost Cauchy–Riemann structure on a smooth manifold is a complex

distribution in the complexified tangent bundle that does not contain any real vector fields.

To introduce such a structure on Z, we first point out that with the help of ∇H , any vector

field X on M is (horizontally) lifted to the twistor space Z as

X ′ = X +XyωHα̇
β̇

(
πβ̇

∂

∂πα̇
+ π̂β̇

∂

∂π̂α̇

)
, (3.6)

9This is essentially Itoh’s definition [12]. He first defined the twistor space as the space of anti-self-dual

two-forms on the contact distribution of a certain length but later on argued that this definition is basically

(3.5) (he considered the projectivisation of S̃ instead of S̃∨). We emphasise again that even when S̃∨ does

not exist globally, its projectivisation does.
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where ωHα̇
β̇ denotes the connection one-form of∇H,S̃ and π̂α̇ is defined by the real structure

τ̃ (see e.g. [30])

τ̃ : (πα̇) =

(
π1̇

π2̇

)
7→ (π̂α̇) :=

(
−π∗

2̇

π∗
1̇

)
. (3.7)

Here, ‘∗’ denotes complex conjugation. Using (3.6), we may lift the frame fields {Eαα̇, ξ}
into Z. We shall also need the following complex vector fields

Vαα̇ := Eαα̇ + Eαα̇yω
H
β̇
γ̇ πγ̇

∂

∂πβ̇
and Vξ := ξ + ξyωHα̇

β̇ πβ̇
∂

∂πα̇
(3.8)

that arise from the frame fields {Eαα̇, ξ}. These ingredients then allow us to introduce a

natural distribution D ↪→ TCZ in the complexified tangent bundle of Z according to

D := 〈Vα, V α̇〉 with Vα := πα̇Vαα̇ and V α̇ :=
∂

∂π̂α̇
, (3.9)

where Vαα̇ is given in (3.8). This distribution is of complex rank three since π̂α̇V
α̇ = 0.

Furthermore, D ∩D∗ = 0. Hence, it defines an almost Cauchy–Riemann structure on Z.

For that reason, we shall refer to Z also as Cauchy–Riemann twistor space.10 Now the

question is under what circumstances the distribution (3.9) can become integrable. The

answer is given by the following theorem:11

Theorem 3.1. Let M be a five-dimensional conformal K-contact manifold with Levi-

Civita connection ∇ and curvature R. Consider the restriction of R to Ω2
−(M), that is,

R−− : Ω2
−(M) → Ω2

−(M). The almost Cauchy–Riemann structure (3.9) on the Cauchy–

Riemann twistor space (3.5) of M is integrable if and only if the totally trace-free part of

R−− vanishes.

Proof: Using the frame fields {Eαα̇, ξ}, the totally trace-free part of R−− is given by

Rα(α̇ ββ̇ γγ̇ δδ̇) = g
(
R(Eα(α̇, Eββ̇)Eγγ̇ , Eδδ̇)

)
, (3.10)

where the parentheses indicate total normalised symmetrisation of all the enclosed dotted

indices. Furthermore, in the case of conformal K-contact manifolds, the Gauß equation

(2.8) simplifies to

g(RH(X,Y )Z,W ) = g(R(X,Y )Z,W ) + dη(Z,X)dη(W,Y )− dη(Z, Y )dη(W,X) (3.11)

10Here, we are following LeBrun’s terminology [31] used for three-dimensional manifolds.
11Itoh [12] proved this by translating the problem to conditions on the principal bundle of orthonormal

frames on H while here instead, we shall give a direct and simplified alternative proof by using (3.9)

and working with the bundle S̃∨ and its projectivisation—this is in spirit of Atiyah, Hitchin & Singer’s

original treatment in the four-dimensional case [4] (see also Woodhouse [30]). Importantly, our approach

will eventually enable us to write down a Lax pair for the contact instanton equation in the next section.
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whenever W ∈ Γ(M,H). Using the fact that dη ∈ Ω2
+(M), we conclude that

RH
α(α̇ ββ̇ γγ̇ δδ̇)

= Rα(α̇ ββ̇ γγ̇ δδ̇) . (3.12)

Since RH is of the form RH = RH,S ⊗ idS̃ + idS ⊗ RH,S̃ , the components RH
α(α̇ ββ̇ γγ̇ δδ̇)

represent the totally trace-free part of RH,S̃− . Thus, we have RH
α(α̇ ββ̇ γγ̇ δδ̇)

= εαβεγδCHα̇β̇γ̇δ̇
with CH

α̇β̇γ̇δ̇
being totally symmetric. Altogether, we arrive at

Rα(α̇ ββ̇ γγ̇ δδ̇) = εαβεγδCHα̇β̇γ̇δ̇ . (3.13)

All that is is left now to show is that the integrability of D is equivalent to the vanishing

of CH
α̇β̇γ̇δ̇

. This, however, is essentially the same statement as in the four-dimensional setting.

To verify the integrability, we simply have to compute the commutators of the vector fields

generating the distribution. The only non-vanishing commutator is [Vα, Vβ]. To compute

it, we use the formula

[Vαα̇, Vββ̇]− fαα̇ ββ̇
γγ̇Vγγ̇ − fαα̇ ββ̇

ξ Vξ = RH,S̃
αα̇ ββ̇ γ̇ δ̇

πγ̇
∂

∂πδ̇
, (3.14)

where the fs are the structure functions for the frame fields Eαα̇ and ξ. Then

[Vα, Vβ] = −πα̇(Eαα̇yω
H
β
γ − Eβα̇yωHαγ)Vγ +

+ πα̇πβ̇ η([Eαα̇, Eββ̇])Vξ − εαβπα̇πβ̇πγ̇CHα̇β̇γ̇δ̇
∂

∂πδ̇
,

(3.15)

where ωHα
β is the connection one-form of ∇H,S . To arrive at this expression, we used that

the torsion (2.6) of ∇H has components only along ξ. We also used the contact metricity.

Next, with the help of

dη(X,Y ) = 1
2

(
Xη(Y )− Y η(X)− η([X,Y ])

)
, (3.16)

we see that η([Eα(α̇, Eββ̇)]) = 0 since dη ∈ Ω2
+(M). Therefore, the commutator [Vα, Vβ] is

given by

[Vα, Vβ] = −πα̇(Eαα̇yω
H
β
γ − Eβα̇yωHαγ)Vγ − εαβπα̇πβ̇πγ̇CHα̇β̇γ̇δ̇

∂

∂πδ̇
, (3.17)

and we may conclude that D is integrable if and only if CH
α̇β̇γ̇δ̇

= 0. By virtue of (3.13),

this is equivalent to saying that the totally trace-free part of R−− vanishes. This completes

the proof. �
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Remark 3.1. It is clear from the proof that the only place where we used the Killing

property of the Reeb vector field is in the Gauß equation (3.11). Since the integrability

condition CH
α̇β̇γ̇δ̇

= 0 does not depend on property of ξ being Killing, we may relax that

condition and simply consider conformal contact metric manifolds as a generalisation of

the above theorem. In that case, we need to work with the general Gauß equation (2.8),

and the requirement

Rα(α̇ ββ̇ γγ̇ δδ̇) =
[
g(Eγγ̇ ,∇αα̇ξ) g(Eδδ̇,∇ββ̇ξ)− g(Eγγ̇ ,∇ββ̇ξ) g(Eδδ̇,∇αα̇ξ)

]
(α̇β̇γ̇δ̇)

. (3.18)

replaces that of the vanishing of Rα(α̇ ββ̇ γγ̇ δδ̇) in the K-contact case.

F -structures. Next we wish to introduce a particular F -structure on the twistor space

which eventually allows us to discuss the contact instanton equations via a Penrose–Ward

transform.12 Recall that Rawnsley [13] defined an almost F -structure on a smooth manifold

M to be a distribution F in the complexified tangent bundle of M such that F ∩ F ∗ has

constant rank. Hence, an almost Cauchy–Riemann structure is a special instance of an

almost F -structure when F ∩F ∗ = 0. An almost F -structure is called an F -structure if in

addition both F and F ∩F ∗ are integrable. In that case, the almost F -structure is said to

be integrable.

On contact manifolds we have a natural vector field, the Reeb vector field. Moreover, we

have seen above how it lifts into the twistor space. We have therefore a natural candidate

of an almost F -structure on Z defined by

F := 〈Vα, ξ′, V α̇〉 , (3.19)

where Vα and V α̇ were given in (3.9) and ξ′ is the lift of the Reeb vector field via (3.6).

Notice that upon action on functions holomorphic in the πα̇-coordinates, the vector field ξ′

reduces to Vξ given in (3.8). Clearly, F ∩F ∗ is of constant rank one and hence is integrable.

Therefore, the integrability of the almost F -structure boils down to the integrability of the

distribution F . The following theorem tells us when this is happening:

Theorem 3.2. Let M be a five-dimensional conformal K-contact manifold with Levi-Civita

connection ∇ and curvature R. Consider the restrictions of R to Ω2
−(M) and η ∧Ω1

H(M),

respectively, that map into Ω2
−(M), i.e. R−− : Ω2

−(M) → Ω2
−(M) and R−η : η ∧ Ω1

H(M) →

12Such structures appear in various twistor constructions. For instance, the twistorial description of

the three-dimensional Bogomolny monopole equation (and its supersymmetric extension) in terms of real

geometries involves F -structures quite naturally [14].
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Ω2
−(M). The almost F -structure (3.19) on the Cauchy–Riemann twistor space (3.5) of M

is integrable if and only if the totally trace-free parts of R−− and R−η vanish.13

Proof: We need to compute the commutators of the vector fields generating the distribution

F . The only non-vanishing ones are [Vα, Vβ], [V α̇, ξ′] and [Vα, ξ
′]. The first one was already

computed when proving Theorem 3.1 and is given in (3.17). The second one is proportional

to V α̇ and hence does not give any conditions. To compute the last commutator, we first

note that

[Vαα̇, Vξ]− fαα̇ ξββ̇Vββ̇ − fαα̇ ξ
ξ Vξ = RH,S̃

αα̇ ξ γ̇ δ̇
πγ̇

∂

∂πδ̇
. (3.20)

This simplifies since fαα̇ ξ
ξ = 0 which follows directly from (3.16). Moreover, dη ∈ Ω2

+(M)

implies that the endomorphism φ|H has φαα̇
ββ̇ = φα

βδα̇
β̇ as components in the Eαα̇-basis.

Using ∇Xξ = −φ(X) and the fact that the torsion (2.6) of ∇H has components only along

ξ, we arrive after some straightforward algebraic manipulations at

[Vα, ξ
′] = −(φα

β + ξyωHα
β)Vβ − πα̇πβ̇RH,S̃α(α̇ ξ β̇γ̇)

∂

∂πγ̇
+ πα̇Eαα̇(ξyωHβ̇

γ̇)π̂γ̇
∂

∂π̂β̇
. (3.21)

Furthermore, the Gauß equation (3.11) directly implies that εβγRH,S̃αα̇ ξ β̇γ̇
= Rαα̇ ξ ββ̇ γγ̇ . By

symmetrising the dotted indices one obtains the totally trace-free part of R−η . Altogether,

Rα(α̇ ββ̇ γγ̇ δδ̇) = εαβεγδCHα̇β̇γ̇δ̇ and Rα(α̇ ξ ββ̇ γγ̇) = εβγRH,S̃α(α̇ ξ β̇γ̇)
(3.22)

and from (3.17) and (3.21) we may conclude that the F -structure is integrable if and only

if these curvature components vanish. �

Remark 3.2. As noted previously, Sasakian manifolds can be defined by the curvature

equation (2.14). This condition immediately implies that Rαα̇ ξ ββ̇ γγ̇ = 0 such that the

totally trace-free part of R−η clearly vanishes. Thus, Sasakian manifolds that obey the

curvature condition of Theorem 3.1 provide examples on which the almost F -structure

(3.19) is integrable.

Remark 3.3. In Remark 3.1, we have explained that the condition for the almost Cauchy–

Riemann structure D to be integrable does not really depend on the property of ξ being

Killing, thus allowing us to generalise Theorem 3.1 to arbitrary contact metric manifolds

with (3.18). In contrast, the proof of Theorem 3.2 makes use of the equation ∇Xξ = −φ(X)

which is the Killing condition on ξ. At the moment, it is not clear if one can generalise

this to arbitrary contact metric (modulo curvature conditions) in a sensible way.

13Notice that if one only requires the totally trace-free part of R−η to vanish then this is the condition

needed for ξ′ to be a Cauchy–Riemann vector field [12].
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Higher-dimensional extension. Bailey & Eastwood [17] gave the notion of a para-

conformal structure as a higher-dimensional generalisation of a conformal structure on

four-dimensional spin manifolds. In particular, if M is a smooth manifold of dimension pq,

then a (p, q)-paraconformal structure on M is a factorisation of the complexified tangent

bundle σ : TCM
∼=→ S ⊗ S̃ into two complex vector bundles S and S̃ of respective ranks

p and q, and a fixed isomorphism detS ∼= det S̃ of the corresponding determinant line

bundles. In addition, one also assumes that the bundles S and S̃ come equipped with real

structures τ : S → S and τ̃ : S̃ → S̃ which are of the previous type, i.e. they are anti-linear

and obey the conditions τ2 = −1 = τ̃2 such that i) the real structure τM induced on TCM

is given by τM = τ ⊗ τ̃ and obeys τ2
M = 1 and ii) the set of fixed points of τM coincides

with TM .

In the present context of a (2m + 1)-dimensional contact manifold M , we wish to

change this point of view slightly and introduce a paraconformal structure only on the

contact distribution H. Since the structure group for contact manifolds can be reduced

to U(m) × 1, a suitable assumption is a factorisation of the form σ : HC
∼=→ S ⊗ S̃, where

rkS = 2 and rk S̃ = m ∈ 2N together with the indentification detS ∼= det S̃ and the

real structures τ and τ̃ of the above type. We shall refer to this type of structure as

a (2,m)-paraconformal contact structure and to contact manifolds equipped with such a

structure as (2,m)-paraconformal contact manifolds.14 Note that we then have the same

decompositions (3.1) and (3.2)

Next we call (2,m)-paraconformal contact manifold M contact metric if the datum

(η, ξ, g, φ) satisfies the relations (2.3) and is compatible with the paraconformal structure,

that is, the endomorphism φ and the metric g restrict on H to φ|H = φS ⊗ idS̃ and

g|H = ε ⊗ ε̃, where ε ∈ Γτ (M,Λ2S∨) and ε̃ ∈ Γτ̃ (M,Λ2S̃∨) are both of maximal rank.

Thus, dη ∈ Ω2
+(M). In addition, we call a (2,m)-paraconformal contact metric manifold

M a (2,m)-paraconformal K-contact manifold provided the Reeb vector field is a Killing

vector field.

We may now proceed as in previous paragraphs, and define the Cauchy–Riemann twis-

tor space to be the projectivisation of the dual of S̃, that is, Z := P(S̃∨). Now this is a

CPm−1-bundle over M which is of real dimension 4m − 1. Then there are again natural

almost Cauchy–Riemann and F -structures whose form is basically the same as in (3.9) and

(3.19), i.e.

D := 〈V α, V α̇〉 and F := 〈V α, ξ′, V α̇〉 (3.23a)

14One might also call them quaternionic contact manifolds, but since we shall consider the connection

∇H which is not torsion-free, we feel that the above terminology (despite being longer) is more suitable.
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with

V α := πα̇

(
Eαα̇ + Eαα̇yωHβ̇

γ̇ πγ̇
∂

∂πβ̇

)
, V α̇ :=

∂

∂π̂α̇
,

ξ′ := ξ + ξyωHα̇
β̇

(
πβ̇

∂

∂πα̇
+ π̂β̇

∂

∂π̂α̇

)
,

(3.23b)

where α, β, . . . = 1, 2 but α̇, β̇, . . . = 1, . . . ,m and Eαα̇ = gαα̇ββ̇Eββ̇ and π̂α̇ = τ̃(πα̇).

Notice that the distribution D that determines the almost Cauchy–Riemann structure is

of complex rank m+ 1 ≤ 2m− 1 which is less than the maximal possible rank—the almost

Cauchy–Riemann structure is of hypersurface type only when m = 2. The integrability

of these structures is again determined by the vanishing of the totally trace-free parts of

the curvature components R−− and R−η introduced in Theorem 3.1 and Theorem 3.2, so

we may simply replace the phrase “five-dimensional conformal K-contact manifold” by

the phrase “(2,m)-paraconformal K-contact manifold” in these theorems. The proofs go

through without alteration.15

Theorem 3.3. Let M be a (2,m)-paraconformal K-contact manifold with Levi-Civita

connection ∇ and curvature R. Let Z be its twistor space equipped with the almost

Cauchy–Riemann structure D = 〈V α, V α̇〉 and the almost F -structure F = 〈V α, ξ′, V α̇〉.
Then D is integrable if and only if the totally trace-less part of R−− : Ω2

−(M) → Ω2
−(M)

vanishes while the F -structure is integrable if, in addition, the totally trace-less part of

R−η : η ∧ Ω1
H(M)→ Ω2

−(M) vanishes, as well.

Particularly interesting is the case when the paraconformal structure is of the form

σ : HC
∼=→ S ⊗ �qS̃ for two rank-2 bundles S and S̃ and q + 1 = m.16 This reduces

the structure group U(m) × 1 further down to U(2) × 1 which is the same as in the five-

dimensional case. We shall come back to this case in the next section, where we explain

that the Penrose–Ward transform for such paraconformal K-contact manifolds gives rise to

certain higher-dimensional contact instanton equations in spirit of Ward’s self-dual models

[19]. Finally, we would like to mention that Vezzoni [33] introduced a twistor space for

higher-dimensional contact manifolds which, however, appears to differ from ours presented

above.

15Helpful in verifying the assertions is also the appendix of Bailey & Eastwood’s paper [17], where details

about the decomposition of the curvature (in our context RH) into irreducible pieces are given.
16For twistor constructions that use paraconformal structures on smooth manifolds M of the form TCM ∼=
�qS for some rank-2 vector bundle S, see e.g. [19,31,32].
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4. Penrose–Ward transform and contact instantons

As we shall explain in this section, the Ward construction [1,4]17 of four-dimensional Yang–

Mills instantons can be naturally extended to the present case of contact instantons,

F = ?5(η ∧ F) = ξy(?5F) , (4.1)

that is, we shall establish certain types of Penrose–Ward transforms. The basic idea is to

use so-called partial or F -connections [13].

F -connection. Let us start by recalling the notion of an F -connection in the sense

of Rawnsley [13]. Let M be a smooth manifold with an F -structure. For any smooth

function f on M , let dF f be the restriction of the exterior derivative df to F , i.e. dF is the

composition C∞(M)
d→ Γ(M,T∨

C
M)→ Γ(M,F∨). We shall write Ωk

F (M) := Γ(M,ΛkF∨)

in the following. Elements of Ωk
F (M) are called relative differential k-forms. Note that

we can extend dF to act on relative k-forms, dF : Ωk
F (M) → Ωk+1

F (M). Let now E be

a complex vector bundle over M . A connection along the distribution F is called an F -

connection, ∂AF : E → Ω1
F (M,E), provided it satisfies the Leibniz rule ∂AF (fs) = (dF f)s+

f∂AF s, where s is a section of E, f a function on M , and Ωk
F (M,E) := Ωk

F (M)⊗E. This

extends to a connection ∂AF : Ωk
F (M,E)→ Ωk+1

F (M,E). Locally, we have ∂AF = dF +AF ,

where AF is an EndE-valued connection one-form that has components only along F . As

always, also the connection ∂AF induces a curvature two-form FF := ∂2
AF ∈ Ω2

F (M,EndE),

and the bundle (E, ∂AF ) is called F -flat (or partially flat) provided FF = 0 on M . Note

that when the F -structure is a Cauchy–Riemann structure and FF = 0, then (E, ∂AF ) is

also called a Cauchy–Riemann vector bundle.

Penrose–Ward transform. Having recalled the definition of an F -connection, let us

now construct Penrose–Ward transforms for vector bundles over contact manifolds. For

the moment, let us focus on five-dimensional contact manifolds. Then we have:18

Theorem 4.1. Let M be a five-dimensional K-contact manifold with Cauchy–Riemann

twistor space π : Z → M as in (3.5) and (integrable) Cauchy–Riemann structure (3.9).

There is a one-to-one correspondence between

17Itoh [12] already mentioned in passing the possibility of an extension of the Ward construction.
18Notice that one could relax the Killing property and work with general contact metric manifolds with

(3.18) since the integrability of the almost Cauchy–Riemann structure (3.9) does not depend on it; see

Remark 3.1.
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(i) rank-r Cauchy–Riemann vector bundles EZ → Z such that the restriction EZ |π−1(p)

is holomorphically trivial for all p ∈M and

(ii) rank-r complex vector bundles EM →M equipped with a connection ∂A and curvature

F = ∂2
A such that the projection on the contact distribution is FH ∈ Ω2

+(M,EndEM ),

that is, F− = 0.

Proof: Let EZ be a rank-r complex vector bundle over Z that is D-flat with respect to the

distribution (3.9) and holomorphically trivial up the fibres of Z → M . Then there exist

r linearly independent sections sa of EZ and a = 1, . . . , r, which are covariantly constant

with respect to ∂AD = dD + AD. In addition, there exists a gauge of AD in which the

sections sa become holomorphic in the fibre coordinates πα̇. Explicitly, we then have

(Vα +Aα)sa = 0 and V α̇sa = 0 with Aα := VαyAD . (4.2)

Then it is rather easy to see that V α̇Aα = 0 and hence, Aα must be of homogeneity

degree one in πα̇. Therefore, we may write Aα =: πα̇Aαα̇, where Aαα̇ does not depend on

the fibre coordinates and is defined locally on M . Then Aαα̇ is interpreted as component

Aαα̇ := Eαα̇yA of a connection one-form A on M . Notice that the component Aξ := ξyA
is not fixed in this construction. Notice also that (4.2) is invariant under the residual

gauge transformations sa → g−1sa and Aα 7→ g−1(Vα + Aα)g for GL(r,C)-valued g that

obey Vα̇g = 0 and thus, g must be constant up the fibres. Such g mediate precisely the

gauge transformations of A on M . In summary, we find a vector bundle EM → M whose

fibre at p ∈ M is the space of holomorphic sections of EZ |π−1(p) which is equipped with a

connection ∂A.

To compute F = ∂2
A, we need to find the compatibility conditions of (4.2). Using,

(3.17) and the fact that the torsion (2.6) has components only along the Reeb vector field

ξ, we obtain

πα̇πβ̇
(
Eαα̇Aββ̇ − Eββ̇Aαα̇ + [Aαα̇,Aββ̇]− fαα̇ ββ̇

γγ̇Aγγ̇
)

= 0 (4.3)

after some algebraic manipulations. Since the expression in the parentheses does not

depend on πα̇, it must vanish, and since η([Eα(α̇, Eββ̇)]) = fα(α̇ ββ̇)
ξ = 0 because dη ∈

Ω2
+(M), we conclude that F− = 0. Altogether, we obtain a rank-r complex vector bundle

EM → M over M with a connection ∂A with connection one-form A with Aαα̇ = Eαα̇yA
as above while Aξ = ξyA is undetermined such that FH = (∂2

A)H ∈ Ω2
+(M,EndEM ).

Conversely, given a rank-r complex vector bundle EM →M over M with a connection

∂A such that FH ∈ Ω2
+(M,EndEM ), then we may define a rank-r complex vector bundle
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EZ → Z over twistor space whose trivialisation is given by the solutions to (4.2) with

Aα = πα̇Aαα̇. This bundle is D-flat and holomorphically trivial up the fibres. This

concludes the proof. �

In order to have that F ∈ Ω2
+(M,EndEM ) and not just FH ∈ Ω2

+(M,EndEM ), we

need by virtue of (3.2) that both F− and Fη vanish. Thus, to give a twistor construction

of the contact instanton equation, we need to extend the above construction to enforce

Fη = 0, as well. This is achieved by working with the F -structure given in (3.19).

Theorem 4.2. Let M be a five-dimensional K-contact manifold with Cauchy–Riemann

twistor space π : Z → M as in (3.5) and (integrable) F -structure (3.19).19 Then there is

a one-to-one correspondence between

(i) F -flat rank-r complex vector bundles EZ → Z such that the restriction EZ |π−1(p) is

holomorphically trivial for all p ∈M and

(ii) rank-r complex vector bundles EM →M equipped with a connection ∂A and curvature

F = ∂2
A such that F ∈ Ω2

+(M,EndEM ), that is, F− = 0 = Fη.

Proof: The proof is very similar to the previous one. In the present case, the equations

(4.2) get extended to

(Vα +Aα)sa = 0 , (Vξ +Aξ)sa = 0 , and V α̇sa = 0 (4.4)

with Aα := VαyAF and Aξ := ξ′yAF . Here, we made use of the fact that when the sa are

holomorphic in πα̇, i.e. when V α̇sa = 0, then ξ′sa = Vξsa, where Vξ was given in (3.8). As

before, V α̇Aα = 0 but now we also have V α̇Aξ = 0, so Aα is of homogeneity one while Aξ
is of homogeneity zero (i.e. it does not depend on πα̇). From (4.4), we obtain

πα̇πβ̇
(
Eαα̇Aββ̇ − Eββ̇Aαα̇ + [Aαα̇,Aββ̇]− fαα̇ ββ̇

γγ̇Aγγ̇
)

= 0 ,

πα̇
(
Eαα̇Aξ − ξAαα̇ + [Aαα̇,Aξ]− fαα̇ ξγγ̇Aγγ̇

)
= 0 .

(4.5)

Since fα(α̇ ββ̇)
ξ = 0 = fαα̇ ξ

ξ, we may conclude that the F− and Fη components of F = ∂2
A

vanish. Therefore, we find a rank-r complex vector bundles EM → M equipped with a

connection ∂A and curvature F = ∂2
A such that F ∈ Ω2

+(M,EndEM ). �

19Because of Remark 3.3, it is not clear at the moment if one can generalise this theorem by relaxing the

Killing property.
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Remark 4.1. Let ψ be some matrix-valued function depending meromorphically on λ ∈
CP 1 (the spectral parameter). Then we may write down a more familiar form of an aux-

iliary linear system (Lax pair formulation)

λα̇(Vαα̇ +Aαα̇)ψ = 0 and (Vξ +Aξ)ψ = 0 , (4.6a)

where (λα̇) := (1, λ) and

Vαα̇ = Eαα̇ − Eαα̇yωHβ̇
γ̇ λγ̇λ

β̇ ∂

∂λ
and Vξ = ξ − ξyωHα̇β̇ λβ̇λ

α̇ ∂

∂λ
. (4.6b)

The compatibility condition is the contact instanton equation.

Remark 4.2. Notice that we may introduce real structures on EM and EZ induced by τ

and τ̃ such that the connection one-form A on M takes values in u(r). If one also requires

that detEZ and detEM are trivial, then one can reduce u(r) further to su(r).

Remark 4.3. Having provided a Penrose–Ward transform and a Lax pair, we may use

them to discuss the hidden symmetry structures of the contact instanton equation. In

particular, one is interested in infinitesimal deformations of the vector bundle EZ → M

which preserve the F -structure. Using the techniques developed in [34] (see also [35, 7]),

one may infinitesimally deform the transition functions of EZ to obtain the linearisation of

(4.4). From these linear equations, one can then extract the deformations δAF of AF which

in turn lead to deformations δA of A which obey the linearised contact instanton equation

(in the background of A). For instance, this way one can quickly obtain Kac–Moody type

symmetries associated with the structure group of EM .

Remark 4.4. The contact form is not closed and hence, (1.1) does not automatically imply

the Yang–Mills equation but rather the Yang–Mills equation with torsion ∂A?5F = ?5H∧F ,

where H := ?5dη is the torsion three-form.20 The term ?5H ∧ F = dη ∧ F is a four-

form on the contact distribution since ξy(dη ∧ F) = 0. It does not vanish automatically

in our case, since both dη and F are in Ω2
+(M). Notice that the present twistor setup

leads by construction to the situation when dη ∈ Ω2
±(M) and F ∈ Ω2

±(M,EndEM ); for

dη ∈ Ω2
−(M) one can construct a similar twistor space as P(S∨). One may consider the

situation when dη ∈ Ω2
±(M) while F ∈ Ω2

∓(M,EndEM ) in which case dη ∧ F = 0. This

is the situation that was considered by Harland & Nölle in the Sasaki–Einstein setting and

for SU(2) as gauge group [10]. Therefore, we may conclude that the contact instanton

equation with dη ∈ Ω2
±(M) and F ∈ Ω2

±(M,EndEM ) appears to be integrable via the above

construction but does not automatically imply the (torsion-free) Yang–Mills equation while

20The torsion Yang–Mills equation appears naturally in string theory, see e.g. [15] and references therein.
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the contact instanton equation with dη ∈ Ω2
±(M) and F ∈ Ω2

∓(M,EndEM ) implies the

(torsion-free) Yang–Mills equation but it remains to be seen if this case is integrable in

general.21

Remark 4.5. In general, one might consider instanton equations on a d-dimensional mani-

fold of the form F = ?d(Σ ∧ F), where Σ is a (d − 4)-form. The resulting Yang–Mills

equation with torsion, ∂A?dF = dΣ∧F , can be obtained from an action functional [21,25].

Via a Bogomolny argument, solutions to F = ?d(Σ ∧ F) are in turn the absolute minima

of this action functional (see Harland & Popov [21] for the case of Spin(7)-instantons): in

terms of our present setting of contact instantons on K-contact manifolds M with gauge

group SU(r), the action functional is

S = −1
2

∫
M

tr
{
F ∧ ?5F ∓ η ∧ F ∧ F

}
. (4.7)

Upon variation with respect to A, we find ∂A ?5F = ±dη ∧F . It is then rather straightfor-

ward to show that22

tr
{(
F + κ ?5(η ∧ F)

)
∧ ?5

(
F + κ ?5(η ∧ F)

)}
+ κ2 tr

{
ξyF ∧ ?5 (ξyF)

}
=

= (1 + κ2) tr

{
F ∧ ?5F +

2κ

1 + κ2
η ∧ F ∧ F

}
,

(4.8)

where κ is some constant. Here, we made use of the contact metricity (2.3). Hence, κ2 = 1

and

S = −1
4

∫
M

tr
{(
F ∓ ?5(η ∧ F)

)
∧ ?5

(
F ∓ ?5(η ∧ F)

)
+ ξyF ∧ ?5 (ξyF)

}
. (4.9)

Therefore, the absolute minima of the action functional S (i.e. S = 0) are obtained

whenever F = ±?5(η ∧ F) and ξyF = 0. However, the last equation is implied by the

former thus, F = ±?5(η ∧ F) is the sole equation. In addition, we have a bound on the

Yang–Mills action functional

− 1
2

∫
M

tr
{
F ∧ ?5F} ≥ ∓1

2

∫
M

tr
{
η ∧ F ∧ F

}
. (4.10)

where the equality is achieved on solutions to F = ±?5(η ∧ F).

Finally, we would like to emphasise that the equation ∂A ?5F = ±dη ∧F together with

its action functional (4.7) naturally appear when dimensionally reducing to five dimensions

(anti-)self-dual three-form fields on six-dimensional manifolds that arise as circle fibrations

over five-dimensional manifolds (including their non-Abelianisation from a five-dimensioanl

point of view) [16].

21If we consider a maximally degenerate contact structure so that dη = 0, we have M → S1 or M → R. In

this case, both type of contact instanton equations are integrable and both imply the Yang–Mills equation.
22See also [8].
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Higher-dimensional extension. The above considerations can be extended to (2,m)-

paraconformal K-contact manifolds. For the sake of concreteness, let us focus on the case

when HC ∼= S ⊗�qS̃ for two rank-2 bundles S and S̃ and q+ 1 = m. Take Z := P(S̃∨) as

before and endow it with the F -structure generated by

Vα := πα̇1 · · ·πα̇q
(
Eαα̇1···α̇q + Eαα̇1···α̇qyω

H
β̇
γ̇ πγ̇

∂

∂πβ̇

)
, V α̇ :=

∂

∂π̂α̇
,

ξ′ := ξ + ξyωHα̇
β̇

(
πβ̇

∂

∂πα̇
+ π̂β̇

∂

∂π̂α̇

)
.

(4.11)

Then upon following the same steps given in the proofs of Theorem 4.1 and Theorem 4.2,

respectively, it is rather easy to see that F -flat rank-r complex vector bundles EZ → Z that

are holomorphically trivial up the fibres of π : Z → M are in one-to-one correspondence

with rank-r complex vector bundles EM → M that come with a connection ∂A such that

the curvature F = ∂2
A obeys

Fα(α̇1···α̇q ββ̇1···β̇q) = Eα(α̇1···α̇qAββ̇1···β̇q) − Eβ(β̇1···β̇qAαα̇1···α̇q) +

+ [Aα(α̇1···α̇q ,Aββ̇1···β̇q)]− fα(α̇1···α̇q ββ̇1···β̇q)
γγ̇1···γ̇qAγγ̇1···γ̇q = 0 ,

Fαα̇1···α̇q ξ = Eαα̇1···α̇qAξ − ξAαα̇1···α̇q +

+ [Aαα̇1···α̇q ,Aξ]− fαα̇1···α̇q ξ
γγ̇1···γ̇qAγγ̇1···γ̇q = 0 .

(4.12)

The equation Fα(α̇1···α̇q ββ̇1···β̇q) = 0 resembles the equation of the self-dual model repres-

ented by the Bq-series in Ward’s classification scheme of higher-dimensional completely

solvable gauge-field equations [19].23 Therefore, we may regard (4.12) as the contact ver-

sion of Ward’s Bq-series. Notice that one may obtain contact versions of the other models

given in [19] by using other paraconformal structures on the contact distribution.

5. Supersymmetric extensions

Finally, we would like to extend the contact instanton equation supersymmetrically. To

this end, we need supermanifolds and we shall work with supermanifolds in the sense of

Manin [6]. In particular, we call a ringed space (M, EM ) a real supermanifold of dimension

m|n provided M is a topological space and EM is a sheaf of supercommutative rings on M

such that the body M0 := (M, E0 := EM/I) is a smooth manifold of dimension m, where

I is the ideal subsheaf in EM that consists of all nilpotent elements and, in addition, we

23As shown in [36], Ward’s Bq-series appears to be intimately connected with integrable superstring

sigma-models.
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have EM ∼= E0(Λ•Rn).24 For supersymmetric extensions in the four-dimensional case, such

as supersymmetric extensions of Penrose’ non-linear graviton and Ward’s construction, see

e.g. [6, 38,39]. For brevity, we shall write M instead of (M, EM ).

Contact supermanifolds. For the moment, let us assume that M is a real supermani-

fold of dimension 2m+ 1|2n. In the next paragraph, we restrict ourselves to the case when

(m,n) = (2,N ) with N ∈ 2N. An even (bosonic) contact structure on M is a rank-2m|2n
distribution H ↪→ TM in the tangent bundle that is maximally non-degenerate in the sense

that the Frobenius form

Φ : H ∧H → L = TM/H , with Φ(X,Y ) := [X,Y } mod H (5.1)

is non-degenerate on H for any X,Y ∈ Γ(M,TM). Here, ‘[·, ·}’ denotes the supercom-

mutator. As before, H can be defined dually as the kernel of a nowhere vanishing even

(bosonic) differential one-form η, that is, H = ker η. On the body M0 of M , the non-

degeneracy requirement of H is again equivalent to saying that η ∧ (dη)m 6= 0. However,

on M this will no longer be true since (dθ)k 6= 0 for any k ∈ N and any odd (fermionic)

coordinate θ. If M is equipped with a non-degenerate even contact structure, then we call

it a contact supermanifold.

In addition, we may define a contact metric structure as in the purely even case, that is,

the datum (η, ξ, g, φ) on M is called a contact metric structure on a contact supermanifold

if g is a supermetric and φ is an even endomorphism of TM such that the equations (2.3)

are satisfied. We then call M a contact metric supermanifold. Likewise, we call M a

K-contact supermanifold, provided the Reeb vector field is Killing with respect to the

supermetric g and the Levi-Civita connection.

Following our previous discussion, we now introduce paraconformal contact superman-

ifolds. In particular, if let M be an (2m+ 1|Nm)-dimensional contact supermanifold with

contact distribution H, then we would like to introduce a (2|N ,m|0)-paraconformal struc-

ture according to σ : HC
∼=→ S⊗ S̃, where now S is a rank-2|N complex vector bundle while

S̃ is of rank m|0. As before, we shall equip S and S̃ with real structures τ and τ̃ which

have the same properties as in the purely even setting, so m,N ∈ 2N. If, in addition, we

also have (η, ξ, g, φ) such that g and φ are compatible with the paraconformal structure

(i.e. g|H = ε⊗ ε̃ and φ|H = φE ⊗ idS̃ as in the purely even setting), we shall speak of para-

conformal contact metric supermanifolds and of paraconformal K-contact supermanifolds

provided ξ is Killing (we shall drop the prefix “para” when m = 2).

24Due to Batchelor [37], any smooth supermanifold has EM ∼= E0(Λ•Rn). This is not true, however, in

the complex category.
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Finally, we point out that we have again a decomposition of the differential two-forms

as in (3.2). This decomposition is needed in the next paragraph.

Remark 5.1. We would like to emphasise that our paraconformal contact supermanifolds

are similar to the chiral supermanifolds used in four dimensions to describe self-dual su-

pergravity and its twistor theory, see e.g. [39]. Our main motivation for this framework is

to find a supersymmetric extension of the contact instanton equation in spirit of self-dual

supersymmetric Yang–Mills theory. However, if one has (full) supergravity applications in

mind, then one should introduce different structures than those considered here since one

has to incorporate various torsion constraints, see e.g. Howe [40].

Penrose–Ward transform and supersymmetric contact instantons. Now it is

rather easy to generalise the contact instanton equation (4.1) supersymmetrically. For the

sake of concreteness we shall only consider this case but the supersymmetric extension of

e.g. (4.12) can be constructed similarly.

Consider a (5|2N )-dimensional conformal K-contact supermanifold M with σ : HC
∼=→

S⊗S̃. We then may introduce frame fields EAα̇ and ξ with A = (α, i), where α, α̇, . . . = 1, 2

and i, j, . . . = 1, . . . ,N . So Eαα̇ and ξ constitute the even (bosonic) frame fields while Eiα̇

the odd (fermionic) ones. We define the Cauchy–Riemann supertwistor space as in the

purely even setting (3.5), that is, Z := P(S̃∨). We then introduce an almost F -structure

given by

F := 〈VA, ξ′, V α̇〉 (5.2a)

with

VA := πα̇

(
EAα̇ + EAα̇yω

H
β̇
γ̇ πγ̇

∂

∂πβ̇

)
︸ ︷︷ ︸

=: VAα̇

, V α̇ :=
∂

∂π̂α̇
,

ξ′ := ξ + ξyωHα̇
β̇

(
πβ̇

∂

∂πα̇︸ ︷︷ ︸
=: Vξ

+π̂β̇
∂

∂π̂α̇

)
.

(5.2b)

which is very similar as the one given in the purely even setting. Then we have the following

result:

Theorem 5.1. Let M be a (5|2N )-dimensional conformal K-contact supermanifold with

Levi-Civita connection ∇ and curvature R. Consider the restrictions of R to Ω2
−(M) and

η ∧ Ω1(M), respectively, that map into Ω2
−(M), i.e. R−− : Ω2

−(M) → Ω2
−(M) and R−η :

η∧Ω1(M)→ Ω2
−(M). The almost F -structure (5.2) on the Cauchy–Riemann supertwistor

space of M is integrable if and only if the totally trace-free parts of R−− and R−η vanish.
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The proof of this result is similar to the one given for Theorem 3.2. We therefore refrain

from repeating the steps here but would like to refer to references [39], where details on

the construction in the four-dimensional setting can be found including the decomposition

of the curvature in irreducible pieces. Notice that special care must be taken when N = 4.

Now we have all the ingredients to state the supersymmetric extension of Theorem 4.2:

Theorem 5.2. Let M be a (5|2N )-dimensional conformal K-contact supermanifold with

Cauchy–Riemann supertwistor space π : Z →M and (integrable) F -structure (5.2). Then

there is a one-to-one correspondence between

(i) F -flat rank-r|s complex supervector bundles EZ → Z such that EZ is holomorphically

trivial up the fibres π : Z →M and

(ii) rank-r|s complex supervector bundles EM → M equipped with a connection ∂A and

curvature F = ∂2
A such that F ∈ Ω2

+(M,EndEM ), that is, F− = 0 = Fη.

To prove this assertion, we can follow the arguments given when proving Theorem 4.1 and

Theorem 4.2. Eventually, we find the equations

FA(α̇ Bβ̇) := EA(α̇ABβ̇) − EB(β̇AAα̇) + [AA(α̇,ABβ̇)} − fA(α̇ Bβ̇)
Cγ̇ACγ̇ = 0 ,

FAα̇ ξ := EAα̇Aξ − ξAAα̇ + [AAα̇,Aξ} − fAα̇ ξCγ̇ACγ̇ = 0 ,
(5.3)

for the superfields AAα̇ and Aξ. These equations are the compatibility conditions of the

auxiliary linear problem

λα̇(VAα̇ +AAα̇)ψ = 0 and (Vξ +Aξ)ψ = 0 , (5.4a)

where (λα̇) := (1, λ) and

VAα̇ = EAα̇ − EAα̇yωHβ̇
γ̇ λγ̇λ

β̇ ∂

∂λ
and Vξ = ξ − ξyωHα̇β̇ λβ̇λ

α̇ ∂

∂λ
. (5.4b)

The system (5.3) can be understood as a five-dimensional extension of the constraint system

of self-dual supersymmetric Yang–Mills theory.
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