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Abstract. In this paper we extend the theory of contact mechanics and rubber friction developed by one
of us (B.N.J. Persson, J. Chem. Phys. 115, 3840 (2001)) to the case of surfaces with anisotropic surface
roughness. As an application we calculate the viscoelastic contribution to the rubber friction. We show
that the friction coefficient may depend significantly on the sliding direction, while the area of contact
depends weakly on the sliding direction. We have carried out experiments for rubber blocks sliding on
unidirectionally polished steel surfaces. The experimental data are in a good qualitative agreement with
the theory.

PACS. 46.55.+d Tribology and mechanical contacts – 81.40.Pq Friction, lubrication, and wear – 62.40.+i
Anelasticity, internal friction, stress relaxation, and mechanical resonances – 81.05.Lg Polymers and plas-
tics; rubber; synthetic and natural fibers; organometallic and organic materials

1 Introduction

The interaction between two contacting solids plays a ma-
jor role in a large number of physical phenomena and engi-
neering applications, e.g. structural adhesives, protective
coatings, friction of tires, lubrication, wear and seals, but
still is not completely understood. As an example, there
have been many attempts to explain the proportionality
between the applied load and the contact area. The ex-
planation given by Bowden and Tabor in 1939 [1] holds
true only when plastic flow occurs at the interfaces of the
approaching solids. However, in many engineering situa-
tions the contact is purely elastic [2], and the above expla-
nation does not apply. As an example, wear experiments
suggests that contact of asperities is formed under elas-
tic rather than plastic deformations: when machine parts
slide against each other for perhaps millions of cycles, the
protuberances may be plastically deformed at the begin-
ning, but soon reach a steady-state condition in which the
load is supported elastically, thus avoiding serious damage
to the machine. In these cases, after a short run-in time
period, plastic deformation is very limited, and elastic de-
formations play a major role [2].

In the case of rubber materials (e.g. tires and seals),
plastic deformations often do not occur, and the area of in-
timate contact is therefore determined by the viscoelastic

a e-mail: carbone@poliba.it

properties of the material [3,4], the surface energies of the
contacting bodies and their roughness [5,6]. In all such
situations the simple explanation given by Bowden and
Tabor does not work.

In the last decades, a great deal of research has been
carried out in order to gain a better understanding of fric-
tion and contact mechanics [7–13]. In 2001 Persson [14]
proposed a novel theory to predict adhesion and friction
between a viscoelastic solid and a rough rigid substrate.
The theory was developed for randomly rough surfaces
with statistical properties which are translational invari-
ant and isotropic (i.e., rotational invariant), for which the
surface power spectral density (PSD) C(q) depends on the
wave vector q only through its module q = |q|. In such
cases, the friction coefficient and the contact area cannot,
of course, depend on the sliding direction, and although
many surface of practical interest have surface rough-
ness with statistical properties which are actually isotropic
(e.g. asphalt surfaces or sand-blasted surfaces) many oth-
ers are not. As an example, unidirectional polished sur-
face may have strongly anisotropic statistical properties,
and therefore should also present frictional properties that
strongly depend on the direction of sliding.

The aim of this paper is, hence, to extend Persson’s
theory in such a way that it can handle also surfaces with
anisotropic statistical properties. As an application we cal-
culate the viscoelastic contribution to the rubber friction.
We show that the sliding direction has a relatively strong
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influence on the friction coefficient, but affects much less
the contact area. The theoretical results are in good agree-
ment with experiments we carry out with the aid of an ad
hoc testing machine, under temperature-controlled con-
ditions. We note, however, that in addition to the hys-
teretic contribution to the rubber friction we calculate,
there may also be an adhesional contribution which de-
pends on the area of real contact. The latter contribution
may originate from the propagation of opening cracks [15],
or from stick-slip motion of nanometer-sized rubber vol-
ume element (stress domains) at the rubber-substrate in-
terface [16].

2 Contact mechanics for rough surfaces with
anisotropic statistical properties

Consider a viscoelastic slab sliding at constant velocity
v on a rigid rough surface with anisotropic statistical
properties. Let σ(x, t) and u(x, t) be the normal stress
and elastic displacement at the interface of the two con-
tacting bodies. Since the viscoelastic solid slides at con-
stant velocity, we can write σ(x, t) = σ(x − vt) and
u(x, t) = u(x − vt). In Fourier space we obtain

σ(q, ω) =
1

(2π)3

∫
d2xdt σ(x, t)e−i(q·x−ωt)

= σ(q)δ(ω − q · v), (1)

u(q, ω) =
1

(2π)3

∫
d2xdt u(x, t)e−i(q·x−ωt)

= u(q)δ(ω − q · v), (2)

where

σ(q) =
1

(2π)2

∫
d2x σ(x, t)e−iq·x, (3)

u(q) =
1

(2π)2

∫
d2x u(x, t)e−iq·x. (4)

For a viscoelastic material the Fourier transforms of the
normal stresses σ and the normal displacement u can be
shown to be related to each other by

σ(q, ω) = M−1(q, ω)u(q, ω), (5)

where M−1(q, ω) is the inverse of the response function
of the viscoelastic solid. Now, let us assume that the slid-
ing velocity v = |v| is negligible compared to the speed
of sound c in the solid, as is the case in most cases of
practical interest. This is equivalent to assuming that the
rate ω of deformation in the viscoelastic material is small
compared to qc. Under this assumption it can be shown
(see appendix A) that the response function of a linear
viscoelastic isotropic material M(q, ω) can be written in
the form

M(q, ω) = −2[1 − ν2(ω)]S(|q|d)
E(ω)|q| , (6)

where d is the thickness of the viscoelastic slab and the
real function S(|q|d) is a correction factor which accounts
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Fig. 1. (a) The viscoelastic modulus E(ω) = E1 + iE2 of a
typical rubber-like material, and (b) the loss tangent E2/E1.
The latter quantity is maximal at some frequency ω2.

for different constraint or boundary conditions. For a
semi-infinite solid (i.e. d → ∞) the corrective factor is
S(|q|h) = 1. In eq. (6) we have assumed that the Poisson
ratio ν(ω) is frequency dependent, but in the applications
below we assume that we can neglect this frequency de-
pendence.

Figure 1 shows the general structure of the viscoelas-
tic modulus E(ω) of rubber-like materials. The real part
Re E(ω), the imaginary part ImE of E(ω) and the loss
tangent Im E/ Re E(ω) are shown. At “low” frequencies
the material is in the so-called “rubbery” region where
Re E(ω) is relatively small and approximately constant,
and where the loss tangent ImE/ Re E(ω) rapidly de-
creases to zero as the angular frequency ω is reduced to
zero. Indeed, in the “rubbery” region the solid behaves as
if it were perfectly elastic with negligible energy dissipa-
tion. At very high frequencies the material is instead very
stiff (brittle-like). In this “glassy” region ReE is again
nearly constant but is much larger (typically by 3 orders
of magnitude) than in the rubbery region. Note that in
this region the loss tangent Im E/ Re E(ω) is again very
small, so that in the “glassy” region the solid behaves as a
(stiff) perfectly elastic material. At intermediate frequen-
cies, in the so-called “transition” region, the loss tangent
is very large and it is mainly this region which determines,
e.g., the friction when a tire is sliding on a road surface.

The physical origin of the frequency dependence of
the dynamical modulus E(ω) for rubber-like materials
is related to stress-aided, thermally activated flipping of
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polymer segments between different configurations. If τ
denotes the typical flipping time, then for ω � 1/τ there is
no time for thermally activated rearrangement of the poly-
mer chain segments to occur, and the rubber response will
be that of a hard glassy material. On the contrary, when
ω � 1/τ , thermal activated rearrangements of the rub-
ber polymer chains will occur adiabatically, resulting in a
soft elastic rubbery response. The frequency and temper-
ature dependence of the elastic modulus E(ω, T ) is indeed
a function of the form E ≈ E(ωτ), where τ depends on
temperature according to a thermally activated process.

Given eqs. (1) and (2), eq. (5) can be conveniently
rephrased as

σ(q) = M−1(q,q · v)u(q), (7)

which simply states that for a viscoelastic solid sliding at
a constant velocity v the stresses and displacements will
be related by a velocity-dependent viscoelastic response
function M−1(q,q · v). It is worthwhile to observe that
in our case ω = q · v, and recalling that |E(ω)| increases
with the frequency of the external excitation, we expect
the material to become stiffer (resulting in a smaller con-
tact area) as the term |q · v| is increased, and also that,
in the case of anisotropic surface roughness, the material
should behave differently depending on the direction of
sliding. Thus, for rubber friction on a uniaxial polished
surface the contact area will be larger when sliding along
the direction of the wear tracks than when sliding orthog-
onal to the wear tracks. However, the numerical results
presented below show that this effect is rather small, and
already a few degrees’ deviation in the sliding direction
from the wear track direction will result in a contact area
nearly identical to that obtained for sliding orthogonal to
the wear tracks (see fig. 4).

As already stated, the main purpose here is to extend
the theory of friction and contact mechanics developed
in ref. [14] by one of the authors (B.N.J.P.), to the case
of surfaces with anisotropic statistical properties. These
kind of surfaces are often encountered in practical engi-
neering applications, e.g. polished surfaces of which the
surface roughness has a preferential direction. In order to
pursue our aim, we start from the determination of the
probability distribution P (σ, ζ) of the normal stress σ in
the contact area (at fixed magnification ζ). P (σ, ζ) can be
written as

P (σ, ζ) = 〈δ(σ − σ1(x, ζ))〉, (8)

where σ1(x, ζ) represents the normal stress field in the
(apparent) contact area at magnification ζ. By following
the same argument as given in ref. [14], we can show that
the probability density distribution P (σ, ζ) satisfies the
following diffusion equation:

∂P (σ, ζ)
∂ζ

= f(ζ)
∂2P (σ, ζ)

∂σ2
, (9)

where the general form of the diffusivity function f(ζ) is

f(ζ) =
1
2
〈(Δσ)2〉

Δζ
. (10)

In ref. [14] f(ζ) is calculated assuming perfect contact be-
tween the viscoelastic solid and the rigid rough substrate.
Here we follow the same approach to calculate f(ζ) for
anisotropic surfaces. To this end, let us define the stress
distribution at the magnification ζ as

σ(x, ζ) =
∫
|q|<ζqL

d2q M−1(q,q · v)u(q)eiq·x, (11)

where qL = 2π/L and L is the lateral size of solid block.
We can therefore write

Δσ(x, ζ) =
∫

D

d2q M−1(q,q · v)u(q)eiq·x,

where the domain D = {q : ζqL < |q| < (ζ +Δζ)qL}. The
quantity 〈(Δσ)2〉 can be determined as

〈(Δσ)2〉 =
∫

D

∫
D

d2q d2q′ M−1(q,q · v)

×M−1(q′,q′·v)〈u(q)u(q′)〉ei(q+q′)·x. (12)

Now recall that, in order to calculate f(ζ) we are consider-
ing full contact conditions, in such a case u(x) = h(x) just
represents the height distribution of the surface roughness,
and assuming that the surface roughness is well described
by a transitionally invariant statistical process [13] and
that the average value of the roughness is 〈h(x)〉 = 0, we
end up with the relation

〈u(q)u(q′)〉 = δ(q + q′)C(q), (13)

where

C(q) =
1

(2π)2

∫
d2x 〈h(x)h(0)〉e−iq·x (14)

is the power spectral density of the surface roughness,
which can be easily obtained from the measured height
profile (see appendix B). Equation (12) then becomes

〈(Δσ)2〉 =
∫

D

d2q|M−1(q,q · v)|2C(q) (15)

and in polar coordinates

〈(Δσ)2〉 =
∫ q+Δq

q

dqq

×
∫ 2π

0

dθ
∣∣M−1(q,q · v)

∣∣2 C(q), (16)

where q = |q| = ζqL and Δq = qLΔζ. Thus we obtain

〈(Δσ)2〉 =
(

q

∫ 2π

0

dθ
∣∣M−1(q,q · v)

∣∣2 C(q)
)

qLΔζ,

(17)
from which it follows that

f(ζ) =
1
2
〈(Δσ)2〉

Δζ

=
1
2
qqL

∫ 2π

0

dθ
∣∣M−1(q,q · v)

∣∣2 C(q). (18)



278 The European Physical Journal E

Using eq. (6) we obtain the general form of the diffusivity
function valid for anisotropic surfaces.

f(ζ) =
1
8
qLq3

∫ 2π

0

dθ C(q)
∣∣∣∣ E(q · v)
(1 − ν2)S(qd)

∣∣∣∣
2

. (19)

We define the quantity

G(q) =
1
8

∫ q

qL

dq′q′3

×
∫ 2π

0

dθ C(q′)
∣∣∣∣ E(q′·v)
(1 − ν2)S(q′d)σ0

∣∣∣∣
2

, (20)

which is related to f(ζ) trough f(ζ) = σ2
0dG/dζ =

qLσ2
0G′(q), were σ0 is the mean pressure on the nominal

contact area A0, i.e. σ0 = F/A0 with F being the nor-
mal applied load. Once the function f(ζ) or equivalently
G(q) is determined, it is possible, by following the same
procedure as outlined in ref. [14], to determine the appar-
ent area of contact P (q) = A(q)/A0 at the magnification
ζ = q/qL as

P (q) =
∫ ∞

0

dσP (σ, ζ) = erf
(

1
2
√

G(q)

)
(21)

and also to calculate the friction coefficient

μ =
1
2

∫
d2q qv̂ · qC(q)P (q) Im

E(q · v)
(1 − ν2)S(q′d)σ0

, (22)

where v is the sliding velocity, v̂ = v/v is a unit vector
along the sliding direction. We note that in deriving this
equation we have neglected the influence of the adhesional
interaction between the surfaces. However, if the rough-
ness is large enough, adhesion will only manifest itself at
high magnification (corresponding to large wave vectors q
in the integral in (22)), and in this case the increase in
the hysteretic contribution to the friction from the (ad-
hesion induced) increase in the contact area may be very
small. Adhesion can be included in the analysis above if
P (q) is calculated including the adhesional interaction [5].
However, this does not account for the contribution to the
friction from the energy dissipation at opening cracks and
from stick-slip of interfacial rubber volume elements in the
area of real contact (see sect. 1).

3 Rubber friction on hard rough surfaces with
anisotropic statistical properties

Many surfaces used in engineering have surfaces rough-
ness with anisotropic statistical properties. Thus, for ex-
ample, a unidirectional polished steel surface will have
wear tracks along the polishing direction and the surface
roughness power spectrum C(q) of such a surface will de-
pend on the direction of the wave vector q and not just
on its magnitude, as would be the case for surfaces with
isotropic statistical properties.

As shown in sect. 2, the rubber friction theory de-
veloped in [14] can be easily extended to surfaces with

anisotropic statistical properties. Thus the friction coef-
ficient for steady sliding (without the flash temperature
effect) is given by

μ =
1
2

∫
d2q qv̂ · qC(q)P (q) Im

E(q · v)
(1 − ν2)σ0

,

where v is the sliding velocity, v̂ = v/v is a unit vector
along the sliding direction, and where P (q) is the relative
contact area when the interface is studied at the resolution
λ = 2π/q (see sect. 2). The nominal pressure (or perpen-
dicular stress) σ0 at the sliding interface is assumed to be
constant. We can write

P (q) = erf
(

1
2
√

G(q)

)
,

where

G(q) =
1
8

∫ q

qL

d2q q2C(q)
∣∣∣∣ E(q · v)
(1 − ν2)σ0

∣∣∣∣
2

.

If the sliding occurs along the x-axis,

μ =
1
2

∫
d2q qqxC(q)P (q) Im

E(qxv)
(1 − ν2)σ0

.

If the sliding occurs along the y-axis one must replace qx

with qy.
Experimental studies of rubber friction on surfaces

with anisotropic statistical properties could be interesting
for testing theories of rubber friction because the adhe-
sional contribution to the rubber friction may be nearly in-
dependent of the sliding direction (because the area of real
contact depends weakly on the sliding direction, see be-
low), while the hysteresis contribution could change dras-
tically. For example, for 1D surface roughness the hystere-
sis contribution would vanish when sliding along the direc-
tion where the height profile is constant. Of course, even a
unidirectional polished surface will exhibit some roughness
along the polishing direction, so in practice some hystere-
sis contribution to the rubber friction will always remain
independent of the sliding direction and the system under
study.

Let us illustrate the theory with rubber friction on a
polished steel surface. Figure 2 shows the kinetic friction
coefficient as a function of the logarithm (with 10 as ba-
sis) of the sliding velocity, for several angles α between the
sliding direction and the x-axis, which is perpendicular to
the polishing direction. The results are for a tread rub-
ber compound in contact with a unidirectionally polished
steel surface, with the (angular averaged) power spectrum
shown in fig. 9 (red curve). In the calculation we have
used the full power spectrum C(q) (not shown), which
depends not only on q = |q| but also on the direction in
the q-plane. C(q) was obtained using the 2D Fast Fourier
Transform as applied to the height profile h(x) = h(x, y)
measured using an optical method. In the calculation we
only include the roughness components with wave vector
1×106 m−1 < |q| < 2×108 m−1, since C(q) was not mea-
sured for larger (or smaller) q. For the same system, fig. 3
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Fig. 2. The kinetic friction coefficient as a function of the loga-
rithm (with 10 as basis) of sliding velocity, for several angles α
(in degrees) between the sliding direction and the x-axis, which
is perpendicular to the polishing direction. We also show the
friction which results from using the angular-averaged power
spectrum (thin black line). The results are for a tread rubber
compound on a unidirectionally polished steel surface with the
power spectrum shown in fig. 9 (red curve).
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Fig. 3. The kinetic friction coefficient as a function of the
angle α between the sliding direction and the x-axis, which
is perpendicular to the polishing direction. Same system as in
fig. 2, for a sliding velocity of 0.001 m/s.

shows the kinetic friction coefficient as a function of the
angle α, when the sliding velocity is 0.001m/s. Finally, in
fig. 4 we show the (projected) contact area (in units of the
nominal contact area A0), as a function of the logarithm of
the sliding velocity. Note that for 0 < α < 67.5 the contact
area is nearly independent of α. Hence, for these cases we
do expect a negligible α-dependence of the contribution
to the friction from the area of real contact. The decrease
in the contact area with increasing sliding velocity (see
fig. 4) is due to the increase in the frequencies of the dy-
namical deformation of the rubber with increasing sliding
velocity. Thus, an asperity contact region with diameter d
will give rise to pulsating deformations acting on the rub-
ber surface and characterized by the frequency ω = v/d.

α = 0
22.5

45
67.5

90

-10 -8 -6 -4 -2 0
0

0.1

0.2

log v (m/s)

A/A0

Fig. 4. The (projected) contact area (in units of the nominal
contact area A0), as a function of the logarithm (with 10 as ba-
sis) of sliding velocity, for several angles α (in degrees) between
the sliding direction and the x-axis, which is perpendicular to
the polishing direction. Same system as in fig. 2.

Since the (absolute value of the) rubber elastic modulus
increases with increasing frequency ω, it follows that the
contact area will decrease with increasing sliding velocity.
At high sliding velocity (typically above 0.001m/s) fric-
tional heating of the rubber will be important, and this in
turn could result in an increase in the contact area with
increasing sliding velocity (as observed in simulations of
rubber friction in the context of tire dynamics), but here
we are interested in the simpler case (from the point of
view of testing the theory) where the velocity is so low
that this effect can be neglected.

4 Experiment and results

We slide a rubber block against an anisotropic, randomly
rough steel surface. The substrate was prepared by unidi-
rectional grinding with a surface grinding machine. This
is a state-of-the-art technique in many engineering appli-
cations to reduce the roughness at flat surfaces. To the
naked eye the surface appears smooth, but looking more
closely one observes numerous wear tracks induced by the
silicide-carbide particles of the grinding disc. The rubber
block is made from a tread rubber where the exact com-
position is not known to us.

We put a well-defined load on the rubber block us-
ing a dead weight, and then slide it over the anisotropic
steel surface with a constant pulling force. The present
study was performed with the nominal (squeezing) pres-
sure ≈ 0.1MPa and at the temperature T = 17 ◦C. We
obtain the sliding velocity v from the time needed for the
rubber samples to travel a certain distance (we assume
that v is constant over the distance measured). We vary
the direction of sliding relative to the direction of the wear
tracks of the substrate; the angle between the direction
orthogonal to the wear tracks and the sliding direction is
denoted by α. Dividing the pulling force with the normal
force gives the coefficient of friction as a function of v, α,
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Fig. 5. The square symbols are the measured relation between
the friction coefficient and the sliding velocity for three angles
α = 0◦, 45◦ and 80◦ between the sliding direction and the di-
rection orthogonal to the polishing direction. The solid lines are
a guide for the eye. The tread rubber block sliding experiment
on a unidirectional polished steel surface was done at a nominal
squeezing pressure 0.1 MPa and temperature T = 17 ◦C.

normal force FN and temperature T . Here we only report
on the dependence of μ on v and α (a detailed study of
the dependence of μ on all the variables v, α, FN and T
will be presented elsewhere).

Before starting the experiment, it is crucial to first run
in the rubber samples properly. Within this run-in, a thin
skin-layer on the rubber surface as well as dirt particles
from the production process and from the normal atmo-
sphere will be removed and a boundary layer (thin layer
of modified properties) is formed on the rubber surface.
It is important to run in the rubber at the highest veloc-
ity with the highest friction coefficient, thereby forming a
relative thick boundary layer which (hopefully) does not
change very much during the following tests at lower slid-
ing speed and normal load. Between the experiments the
steel surface was carefully cleaned with a mixture of 10%
acetylacetone in isopropanol.

In fig. 5 we show the measured friction coefficient as
a function of the logarithm of the sliding speed, for three
angles α = 0, 45◦ and 80◦. For these angles the theory pre-
dicts that the area of real contact will be nearly the same
(see fig. 4) so the dependence of the friction on the angle
α is likely to be due to the variation of the hysteretic con-
tribution alone. At high velocities the 80◦ curve increases
stronger than it should. This is due to the fact that the
slider starts to tilt a little bit because of the shear forces
pulling it into the direction of grinding. We plan to im-
prove the set-up and will report on more complete results
elsewhere. The measurement is for a different tread rub-
ber and a different (but similarly prepared) substrate than
the one used in the model calculation presented in sect. 3,
and we cannot compare the results in fig. 5 quantitatively
with the calculation in fig. 2, but the qualitative agree-
ment is good. In the calculation presented in fig. 2 we
only included surface roughness over slightly more than 2
decades in length scales. Including the roughness at longer

0 20 40
0

0.4

0.8

μ

normal load (N)

Fig. 6. The friction coefficient μ as a function of the normal
force for α = 0◦ between the sliding direction and the direction
orthogonal to the polishing direction. The velocity of the tread
rubber block was kept constant at about 0.2 mm/s. The figure
shows a very weak load dependence of the friction coefficient.

and shorter length scales will increase the calculated fric-
tion, making it closer to the observed values. Roughness
on other length scales may also change the velocity de-
pendence somewhat, and may explain why the difference
between the calculated friction coefficients for different α
increases with increasing sliding velocities, while the op-
posite is the case in the experiment. An alternative ex-
planation is that perhaps there is another non-negligible
contribution to the friction from energy dissipation dur-
ing crack opening [17] which exhibits a different velocity
dependence than the roughness-induced hysteretic contri-
bution discussed above. A detailed comparison of theory
with experiment for the present system will be presented
elsewhere. However, we have carried out an additional ex-
periment (see fig. 6), which shows that, for the case under
study, the friction coefficient μ has a very weak depen-
dence on the applied normal load. If adhesion manifested
itself on a macroscopic scale as a finite pull-off force, the
friction coefficient would decrease with increasing load,
whereas fig. 6 shows that the friction coefficient slightly
increases with normal load.

5 Summary and conclusion

The existing theory of contact mechanics and friction de-
veloped by one of us (B.N.J.P.) [14] is based on the as-
sumption that the averaged two-dimensional PSD does
not deviate from the one-dimensional PSDs for different
measurement directions and is therefore only valid for
isotropic surfaces. Many surfaces of practical relevance in
engineering applications have anisotropic statistical prop-
erties and cannot be properly managed by the existing
theory. Therefore in this paper we have extended the the-
ory to the case of anisotropic surfaces. We have shown
that the friction coefficient may depend significantly on
the sliding direction, while the area of contact depends
weakly on it. To confirm the theory, we have carried out
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experiments with rubber blocks sliding on unidirectionally
grinded steel surfaces. We have shown some experimen-
tal results for three different sliding directions where we
have varied the velocity in a range of about four decades.
The experimental results are in good qualitative agree-
ment with the theory. We plan to improve the test rig
to eliminate the observed tilting effect, and measure the
viscoelastic properties of the rubber and the statistical
properties of surface roughness. Thereby a quantitative
comparison of theory and experiment can be done. The
present extension of the theory to anisotropic surfaces may
be very important in many technical applications since
surface anisotropy is usually a direct consequence of sur-
face treatment process.

This work, as part of the European Science Foundation
EUROCORES Programme FANAS was supported from the
EC Sixth Framework Programme, under contract N. ERAS-
CT-2003-980409.

Appendix A. The viscoelastic response
function

For a viscoelastic material the equation of motion can be
written in the form

ρ
∂2u
∂t2

(x, t) =
∫ ∞

−∞
dτ μ(t − τ)∇2u(x, τ)

+
∫ ∞

−∞
dτ [μ(t − τ) + λ(t − τ)]∇∇ · u(x, τ), (A.1)

where u =(ux, uy, uz) and where uz = u. Of course be-
cause of causality, the quantities μ and λ satisfy the re-
lations μ(t) = 0 and λ(t) = 0 for t < 0. Here we are
interested to the long-term steady motion of the solid so
that taking the time Fourier transform we get

−ω2ρu(x, ω) = μ(ω)∇2u(x, ω)
+[μ(ω) + λ(ω)]∇∇ · u(x, ω), (A.2)

where we have defined

μ(ω) =
∫ ∞

0

dt μ(t)eiωt,

λ(ω) =
∫ ∞

0

dt λ(t)eiωt.

Now let us define the complex viscoelastic modulus and
E(ω) and the Poisson ratio ν(ω) through the relations

λ(ω) =
ν(ω)E(ω)

[1 + ν(ω)][1 − 2ν(ω)]
, (A.3a)

μ(ω) =
E(ω)

2[1 + ν(ω)]
, (A.3b)

and substituting in eq. (A.1) we have

−ω2ρ
2[1 + ν(ω)]

E(ω)
u(x, ω) = ∇2u(x, ω)

+
1

1 − 2ν(ω)
∇∇ · u(x, ω). (A.4)

Assuming that the quantity |u̇| is negligible in comparison
to the sound speed in the solid we can neglect the iner-
tia term and recover the standard Navier equation for a
viscoelastic solid

∇2u(x, ω) +
1

1 − 2ν(ω)
∇∇ · u(x, ω) = 0. (A.5)

Equations (A.2) and (A.3) show that there is an analogy
between elastic and viscoelastic problems, in that the vis-
coelastic deformations of the solid can be readily derived
in the ω-space from the corresponding elastic solution by
simply substituting the elastic modulus and the Poisson
ratio with the frequency-dependent analogues quantities
E(ω) and ν(ω). This analogy is often referred to as the
elastic-viscoelastic correspondence principles, although in
order to hold true it is necessary that at every point of
the solid surface the boundary conditions does not change
from traction to displacement specification [18]. Now we
can proceed to determine the response function M(q, ω)
for three cases which most often are of interest for engi-
neering applications.

Semi-infinite solid

Consider a semi-infinite elastic solid. The response func-
tion we are looking for can be simply derived by Fourier
transforming the displacement field u(x) = uz(x) deter-
mined by the application of a concentrated load δ(x) on
the free surface of the solid block (i.e. by Fourier trans-
forming the corresponding Green function). The solution
of this problem was given for the first time by Boussinesq
(1985)

u(x) = −1 − ν2

2πE

1
|x| . (A.6)

Thus taking the Fourier transform of eq. (A.6) we can
easily determine M(q) as

M(q) =
∫

d2x u(x)e−iq·x = −2
(1 − ν2)

E|q| . (A.7)

If the solid is viscoelastic the elastic-viscoelastic corre-
spondence principle allows us to write

M(q, ω) = −2
1 − ν2(ω)
E(ω)|q| . (A.8)

Thick slab

Now let us consider an elastic slab of thickness d sand-
wiched between a flat rigid plate (upper part) and a rough
substrate (bottom part), as shown in fig. 7(a). For such
a case, in ref. [19] the response function for the elastic
case has been calculated, therefore enforcing the corre-
spondence principle we get for the linear viscoelastic case

M(q, ω) = −2
1 − ν2(ω)

E(ω)
1
q
×

(3 − 4ν) sinh(2qd) − 2qd

(3 − 4ν) cosh(2qd) + 2(qd)2 − 4ν(3 − 2ν) + 5
, (A.9)
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Fig. 7. A deformable layer of thickness d in contact with a
rough substrate. The layer is assumed to be glued to the upper
plate (a), or subjected to a uniform applied pressure p (b).

where q = |q|. If we instead consider the situation depicted
in fig. 7(b), where the thick slab is subjected to a uniform
applied pressure, by following the same argument outlined
in ref. [19] and making use of the elastic-viscoelastic cor-
respondence principle, we can easily derive the following
viscoelastic response function as:

M(q, ω) = −2
1 − ν2(ω)

E(ω)
1
q

sinh(2qd) + 2qd
cosh(2qd) − 2(qd)2 − 1

.

(A.10)
We observe that for different constraints or boundary con-
ditions we can always write, for an isotropic viscoelastic
solid,

M(q, ω) = −2
1 − ν2(ω)

E(ω)
S(qd)

q
, (A.11)

where S(qd) is a correction factor. Observe that in both
cases letting qd → ∞ we recover eq. (A.7). Also it is worth-
while to note that when qh � 4, in both cases the correc-
tion factor deviates from the unit value less than 10%.

Appendix B. Relation between the 1D and
2D power spectrum

We consider randomly rough surfaces where the statisti-
cal properties are transitionally invariant, but not neces-
sarily isotropic. In this case complete information about

the statistical properties of the surface is, in general, only
obtained by measuring the height profile over a square (or
rectangular) surface area, i.e., a single line scan does, in
general, not contain the full information about the statis-
tical properties of the surface. In particular, the 2D power
spectrum C2D(q) = C(q) cannot, in general, be obtained
from the 1D power spectrum C1D(q). However, for the lim-
iting cases of (a) isotropic surface roughness and (b) 1D
surface roughness, the 2D power spectrum can be obtained
from the 1D power spectrum. Isotropic surface roughness
may prevail for, e.g., surfaces prepared by sand blasting,
while 1D surface roughness may result from polishing if
the direction of polishing is fixed. Since some experimen-
tal techniques measure the surface topography only along
line scans, rather than over rectangular surface areas, it is
important to be able to calculate C2D(q) from C1D(q). For
the two limiting cases discussed above, this can be done
as follows:

2D isotropic surface roughness

In this case the 2D power spectrum will only depend on
the magnitude q of the wave vector q. Consider the defi-
nition

C2D(q) =
1

(2π)2

∫
d2x 〈h(x)h(0)〉e−iq·x. (B.1)

We also have

〈h(x)h(0)〉 =
∫ ∞

−∞
dq′ C1D(q′)eiq′|x|.

Substituting this in (B.1) gives

C2D(q) =
1

(2π)2

∫
d2x

∫ ∞

−∞
dq′ C1D(q′)ei(q′|x|−q·x).

Let us choose the x-axis along the q-direction so that
q · x = qr cos φ, where we have introduced polar coordi-
nates in the x-plane so that x = r cos φ. Thus

C2D(q) =
1

(2π)2

∫ ∞

−∞
dq′ C1D(q′)

∫
d2x ei(q′−q cos φ)r

=
1

2π2

∫ ∞

0

dq′ C1D(q′)Re
∫ 2π

0

dφ

∫ ∞

0

drr ei(q′+q cos φ)r

=
1

2π2

∫ ∞

0

dq′ C1D(q′)Re
1
i

d
dq′

∫ 2π

0

dφ

∫ ∞

0

dr ei(q′+q cos φ)r.

In order to be able to perform the r-integral, we add a
factor exp(−εr), where ε is a small (infinitesimal) positive
number. We get

C2D(q) =
1

2π2

∫ ∞

0

dq′ C1D(q′)

× d
dq′

Re
∫ 2π

0

dφ
1

q′ + q cos φ + iε
.
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Fig. 8. (Colour on-line) The 2D surface roughness power spec-
trum C2D = C(q) for an asphalt road surface obtained from 2D
data (red curve) and from 1D data (line scan) (green curve). In
the latter case we have averaged over 500 different line scans.
The surface has the root-mean-square roughness ≈ 0.3 mm.

Performing a partial integration over q′ gives

C2D(q) =
1

2π2

∫ ∞

0

dq′ [−C ′
1D(q′)]

×Re
∫ 2π

0

dφ
1

q′ + q cos φ + iε
.

The integration over φ is standard: write z = exp(iφ) and
perform the integral over z by summing up the contribu-
tions from the poles located inside the unit circle in the
complex z-plane. This gives after some simplifications

C2D(q) =
1
π

∫ ∞

q

dq′
[−C ′

1D(q′)]
(q′2 − q2)1/2

. (B.2)

This equation is a very convenient way of obtaining C2D

from 1D line scans of the surface topography. In fig. 8 we
show the 2D surface roughness power spectrum C2D =
C(q) for an asphalt road surface obtained from 2D-data
(red curve) and from 1D-data (line scan) (green curve).
In the latter case we have averaged over 500 different line
scans. The surface has the root-mean-square roughness
≈ 0.3mm.

1D surface roughness

If we choose the y-axis along the direction where h(x) is
constant, we get h(x) = h(x, 0) and (B.1) becomes

C2D(q) =
1
2π

∫
dx 〈h(x, 0)h(0, 0)〉e−iqxx

× 1
2π

∫
dy e−iqyy = C1D(qx)δ(qy).

In many application the angular average of C2D(q) enters,
which only depends on the magnitude q of the wave vector,

log q (1/m)
5 6 7 8

-34

-30

-26

-22

1D data
(line scan)

2D-datalo
g 

C
 (

m
   

)
4

_

uni-directional polished
steel surface

Fig. 9. (Colour on-line) The angular-average of the 2D sur-
face roughness power spectrum C̄2D(q) for a unidirectional pol-
ished steel surface obtained from 2D data (red curve), and from
1D data (line scan) (green curve) obtained at lower resolution
(corresponding to smaller wave vectors). The root-mean-square
roughness is ≈ 0.08 μm from the 2D data and ≈ 0.5 μm from
the 1D line scan data. The surface topography of the 2D data
is shown in fig. 10.
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Fig. 10. The surface topography of the 2D data used in cal-
culating the red curve in fig. 9. Surface area 10 μm × 10 μm.

and which becomes

C̄2D(q) =
1
2π

∫ 2π

0

dφ C2D(q)

=
1
2π

∫ 2π

0

dφ C1D(q cos φ)δ(q sin φ) =
C1D(q)

πq
, (B.3)

where we have used that δ(q sinφ) = [δ(φ)+δ(φ−π)]/q. In
fig. 9 we show the angular average of the 2D surface rough-
ness power spectrum C̄2D(q) for a unidirectional polished
steel surface obtained from 2D data (red curve), and from
1D data (line scan) (green curve) obtained at lower reso-
lution (corresponding to smaller wave vectors). The root-
mean-square roughness is ≈ 0.08μm from the 2D data
and ≈ 0.5μm from the 1D line scan data. The surface
topography of the 2D data is shown in fig. 10.
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Appendix C. Contact mechanics of 1D rough
surfaces and comparison with the 2D case

Here we briefly compare contact mechanics for 1D rough-
ness with 2D roughness. It is impossible to produce sur-
faces with strict 1D roughness but such surfaces may be
of interest when testing contact mechanics theories, be-
cause it is possible to perform numerical studies for much
larger systems with 1D roughness than for systems with
2D roughness. However, all analytical contact mechanics
theories are of the mean-field type and it is known that
mean-field theories in general become more accurate as
the spatial dimension increases.

According to the theory presented in sect. 2, for elastic
solids with randomly rough surfaces with translational in-
variant statistical properties, the normalized contact area
is given by

P (q) = erf
(

1
2
√

G(q)

)
,

where

G(q) =
∣∣∣∣ E

(1 − ν2)σ0

∣∣∣∣
2 1

8

∫ q

qL

d2q q2C(q).

Note that

〈[∇h(x)]2〉q =
∫ q

qL

d2q q2C(q).

Thus, we can also write

G(q) =
∣∣∣∣ E

(1 − ν2)σ0

∣∣∣∣
2 1

8
〈[∇h(x)]2〉q.

This equation is valid also for surfaces with roughness with
anisotropic statistical properties. Note that for 1D rough-
ness

〈[∇h(x)]2〉 = 〈(∂h/∂x)2〉.

If we now consider 2D roughness with isotropic statistical
properties, and assume that the statistical properties of
the surface topography along a line is the same as for the
1D roughness case (where the line scan is perpendicular

to the surface corrugation), then we have

〈[∇h(x)]2〉 = 〈(∂h/∂x)2〉 + 〈(∂h/∂y)2〉 = 2〈(∂h/∂x)2〉.

Since the surface area for small loads is proportional to
G−1/2, we conclude that at small loads the contact area
for surfaces with 1D roughness is larger by a factor of

√
2

than for the case of 2D roughness, given same statistical
properties of the surfaces along line scans.
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