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Abstract

This paper presents a robust digital pipeline from CT images to the simulation of

contact between multiple bodies. The proposed strategy relies on a recently developed

immersed finite element algorithm that is capable of simulating unilateral contact

between solids without meshing (Claus and Kerfriden in Int J Numer Methods Eng

113(6):938–966, 2018). It was shown that such an approach reduces the difficulties

associated with the digital flow of information from analytically defined geometries to

mechanical simulations. We now propose to extend our approach to include

geometries, which are not defined mathematically but instead are obtained from

images, and encoded in 3D arrays of voxels. This paper introduces two novel elements.

Firstly, we reformulate our contact algorithm into an extension of an augmented

Lagrangian CutFEM algorithm. Secondly, we develop an efficient algorithm to convert

the surface data generated by standard segmentation tools used in medical imaging

into level-set functions. These two elements give rise to a robust digital pipeline with

minimum user intervention. We demonstrate the capabilities of our algorithm on a hip

joint geometry with contact between the femur and the hip bone.

Keywords: Contact, Nonlinear algorithm, LaTIn, Nonconforming finite element,

CutFEM, Ghost penalty

Introduction

In this article, we present a modern digital pipeline for the simulation of the mechani-

cal interaction between solid bodies from CT images. The generation of finite element

models from medical or engineering images is a very challenging task. The first step is

to identify the set of voxels corresponding to the different solid bodies using image seg-

mentation and/or registration. The regional information of the bodies is then typically

transformed into a surface representation of each body, e.g. surface triangulations. From

the simulation point of view, the challenge is that this surface mesh representation is

of low quality and frequently contains badly shaped triangles which are not suitable for

finite element analysis. The importance of high quality meshes in biomedical simulations

is highlighted in e.g. [14,15]. To obtain accurate and stable solutions, the surface mesh
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needs to be re-meshed, and this boundary operation is followed by interior volumemesh-

ing. Unfortunately, meshing is error-prone and often requires time consuming manual

interventions and corrections, which is highly cumbersome, and requires valuable experts’

time. To address this issue, several approaches are followed in the literature. A first class

of mesh mapping methods [33] attempt to automatise mesh generation by deforming ref-

erence meshes to fit to specific geometries. Of course, such approaches still require prior

meshing work and are limited to relatively small variations around the reference geome-

try. A second class of approaches aim to eliminate or significantly reduce the reliance on

meshing. The most popular instance of these methods is the voxel or image-based finite

element method [20,26,31]. In voxel based finite element methods, voxel of the image are

directly converted to a hexahedral finite element mesh. Grey-scale values of the voxels

are then mapped onto material values such as elasticity moduli. These methods reduce

the meshing burden considerably, because the computational grid does not need to be

aligned with any object boundary. However body boundaries are represented by “stair-

cases”. This causes stress singularities in the finite element simulation, which negatively

affects the quality of the results near boundaries. Unfortunately, boundaries are often of

key importance to analysts. This is the case in the present contribution, which focusses

on the simulation of contact between two elastic bodies. In addition to this drawback of

voxel-based methods, one may also find that, depending on the resolution of the image,

two bodies may be indistinguishable and merged together into one big block.

In this article, we introduce an alternative approach related to X-FEM [4,19,28,30] and

CutFEM [6,22].

We start from surface triangulations generated by a segmentation tool [1]. This surface

mesh, which may be of poor quality, is then embedded in a regular and fixed background

grid. We now generate signed distance functions for each body, using the regular back-

ground grid to represent them discretely. As per usual with level-set-based methods, the

surfaces of the bodies will be represented by the zero contour line of these functions. Zero

contour lines may intersect the background mesh in an arbitrary manner. This allows for

a sharp and smooth (continuous and elements-wise linear in this paper) surface repre-

sentation which are then used simulate contact and compute contact forces between the

elastic bodies.

The background mesh which is used to discretize the unknowns and the level set func-

tions needs to be sufficiently fine in order for the piecewise linear level set function to

capture the geometry accurately. For this purpose, we develop and analyse two refine-

ment criteria for adaptive mesh refinement.

The contact problem between elastic bodies will be solved using the CutFEM-LaTIn

algorithm recently introduced in [12]. In that paper, the versatility of the algorithm

was demonstrated, and it was shown that it converges optimally. In the present arti-

cle, we formally show that the CutFEM-LaTIn algorithm is an extension of the aug-

mented Lagrangian CutFEM algorithm presented in [7,8]. The CutFEM-LaTIn method

uses ghost-penalty stabilization [5] to ensure well-conditioned system matrices. Alterna-

tives to the ghost-penalty method may be employed, e.g. function extension [17,23]. The

algorithm is implemented in FEniCS [2].

The aforementioned elements, an efficient surface triangulation to level-set geometrical

algorithm, adaptive refinement criteria and a state-of-the art contact simulation algorithm
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for contact over implicitly defined geometries, give rise to a stable and robust digital

pipeline from CT images to finite element simulations.

This article is organised as follows. In “Frictionless unilateral contact between two

deformable solids” section, we detail the CutFEM-LaTIn algorithm used to compute the

contact forces between two elastic bodies. In “Digital pipeline from CT-scans to CutFEM

biomechanical simulations” section, we describe our algorithm to convert CT-scans to

cut finite element biomechanical simulations for multiple bones including two adaptive

refinement criteria. In “Unilateral contact between hip and femur bone” section, we show

numerical results for contact between a femur and a hip bone.

Frictionless unilateral contact between two deformable solids

In this section, we will describe our contact algorithm between two elastic bodies which

occupy the domain �1 and �2, respectively. The domains will be described implicitly

using two level set functions. We begin our problem definition in the continuous setting

in this subsection, before we describe its discretization of the domains and the definition

of the discretization of the unknowns in the next subsection.

We assume that each elastic body is only undergoing small deformations and that they

interact through frictionless unilateral contact. A contact problembetweenmore than two

bodies is possible in our framework and a contact algorithm for a larger number of solids

has been introduced in [12]. However, in this contribution, we restrict ourselves to the

contact problem between two bodies (see Fig. 1). Let �b denote our total domain which

contains our two elastic bodies. Let φ1 : �b → R and φ2 : �b → R be the two level set

functions that describe the geometry of body 1 and the geometry of body 2, respectively.

We then define two domains �1 and �2 by

�1 := {x ∈ �b |φ1(x) ≤ 0 and φ2(x) > 0},

�2 := {x ∈ �b |φ2(x) ≤ 0}.
(1)

The contact interface Ŵc between the two solids, which is assumed to be of non-zero

measure, is defined as

Ŵc = {x ∈ �b |φ2(x) = 0 and φ1(x) ≤ 0}. (2)

Furthermore, let ∂�i denote the boundary of �i, i = 1, 2 and ∂� := (∂�1 ∪ ∂�2)\Ŵc the

boundary of domain �1 and �2 without Ŵc. We further partition the boundary ∂� into a

Neumann part ∂�t and a Dirichlet part ∂�u with ∂�t ∩ ∂�u = ∅.

The problem of unilateral contact can be formulated as an optimisation problem under

inequality constraints.We look for displacement field u := {u1, u2} : �1×�2 → R
d ×R

d

that minimises the potential energy

J (u) :=
1

2
a(u, u) − l(u) (3)

under inequality constraints

�u� · nŴ ≤ 0 on Ŵc (4)

and Dirichlet boundary conditions

u = ud on ∂�u. (5)

Here, d = {2, 3} is the spatial dimension, nŴ denotes the normal onŴc pointing from�1 to

�2, ud is a known prescribed displacement and �u� = u1−u2 denotes the jump of u across
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Fig. 1 Contact problem between two domains �1 and �2 described -via two level set functions φ1 and φ2

and contact interface Ŵc embedded in background domain �b

the contact interface Ŵc. The inequality constraint (4) enforces a zero interpenetration

between the domains�1 and�2. In the previous expression, the bilinear form a is defined

as

a(u, δu) = a1(u1, δu1) + a2(u2, δu2) =

2
∑

i=1

∫

�i
σ (ui) : ǫ(δui) d� (6)

where σ (ui) = λi tr(ǫ(ui)) III + 2μi ǫ(u
i) is the Cauchy-stress tensor, ǫ(ui) =

1
2

(

∇ui + (∇ui)T
)

is the strain tensor, λi and μi are the two Lamé coefficients, i.e.

λi = Eiνi

(1+νi)(1−2νi)
, μi = Ei

2(1+νi)
, with Young’s modulus Ei and Poisson’s ratio νi, i = 1, 2.

The linear form l is defined as

l(δu) = l1(δu1) + l2(δu2) =

2
∑

i=1

∫

�i
f · δui d� +

2
∑

i=1

∫

∂�t∩∂�i
td · δui dŴ (7)

In the following, we set the Poisson’s ratios to ν1 = ν2 = 0.3. Here, f is a given body force

and td is a given boundary traction.

The primal constrained optimisation problem (3)–(5) can be reformulated as an uncon-

strained primal/dual problem, which will be the basis for the development of this paper.

In this setting, the solution to the contact problem is found by extremising the Lagrangian

L(u, λ) := J (u) + b(λ, u) (8)

with respect to primal variable u, in the space of fields satisfying the Dirichlet boundary

conditions, but not the unilateral contact condition, which is now relaxed and enforced

by

b(λ, u) =

∫

Ŵc
λ (�u� · nŴ) dŴ. (9)
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We reformulate the primal dual formulation in terms of the Karush–Kuhn–Tucker con-

ditions, which consist of the linear variational form

a(u, δu) + b(λ, δu) = l(δu) (10)

for all δu satisfying δu = 0 over ∂�u and the nonlinear constraint on the contact interface

Ŵc

�u� · nŴ ≤ 0

λ ≥ 0,

(u · nŴ) λ = 0,

(11)

which can be reformulated as
∫

Ŵc

(

λ − γ

[

�u� · nŴ +
1

γ
λ

]

+

)

δλ dŴ = 0 (12)

for all δλ ∈ L2(Ŵc). Here, γ is a strictly positive scalar and [x]+ denotes the positive part

of a scalar quantity x ∈ R, defined as

[x]+ =

⎧

⎨

⎩

x if x > 0,

0 otherwise.
(13)

For a proof of the equivalence of condition (11) and (12) see for example [10,11].

CutFEM primal/dual solver for the contact problem

In this section, we will describe the discretization of the contact problem, which uses level

set descriptions of the geometries in a fixed and regular background grid. The boundary

of the elastic bodies will be represented by the zero contour lines of level set functions,

which will be allowed to intersect the background mesh cells in an arbitrary manner.

Each domain �i will be embedded in their own fictitious domain resulting in overlapping

fictitious domains along the contact interface. Each ui will obtain its own set of degrees of

freedom in its fictitious domain allowing for a multiple valued displacement u = (u1, u2)

along the interface. This enables jumps in the displacement along the interface.

CutFEM/level-set approximation of the geometry

Let us introduce a triangulation Th of the background domain �b. We assume a simple

shape for �b, which is easy to mesh with a regular background grid, e.g. a bounding box

which contains both elastic bodies. Furthermore, let us introduce the finite element space

of continuous piecewise linear functions, i.e.

Qh := {φ ∈ C0(�b) : φ|K ∈ P1(K )∀K ∈ Th}. (14)

We now define a piecewise linear approximation φ1
h

∈ Qh of level set φ1 and φ2
h

∈ Qh of

level set φ2, such that for any i ∈ {1, 2}, the nodal values of φi
h
coincides with the values

of φi at the locations of the nodes. We now define the approximate physical domains �1
h

and �2
h
as follows:

�1
h = {x ∈ �b |φ1

h(x) ≤ 0 and φ2
h(x) ≥ 0}

�2
h = {x ∈ �b |φ2

h(x) ≤ 0}
(15)

and the piecewise linear approximation of the interface

Ŵc
h = {x ∈ �b |φ1

h(x) = 0 and φ2
h(x) ≤ 0}. (16)
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Overlapping domain decomposition

Now, we define the set of all elements of Th that have a non-zero intersection with �i
h
,

i = 1, 2

T̂ i
h := {K ∈ Th : K ∩ �i

h �= ∅}. (17)

The domain corresponding to this set, denoted by �̂i
h
:=

⋃

K∈T̂ i
h
K , is called fictitious

domain. Furthermore, let us denote all elements which are intersected with Ŵc
h
by

Ĝh := {K ∈ Th |K ∩ Ŵc
h �= ∅} (18)

The domain corresponding to this set is denoted by Ŵ̂h :=
⋃

K∈Ĝh
K . This definition will

be used to extend interface quantities to a band of elements.

Of key importance to CutFEM methods is the careful tailoring of regularization terms

to ensure that the system matrix remains well-conditioned. To this end, we define the set

of ghost-penalty element edges for fictitious domain �̂i
h
, i ∈ {1, 2} as

F̂ i
G := {F = K ∩ K ′ : K ∈ T̂ i

h and K ′ ∈ T̂ i
h , F ∩ Ŵ̂h �= ∅}. (19)

For stabilization purposes still, we further define the set of intersected interface edges

F̂I := {F = K ∩ K ′ : K ∈ Ĝh and K ′ ∈ Ĝh}. (20)

Note our consistent use of notation .̂ to indicate extended quantities.

Fictitious domain and extended interface finite element spaces

We seek the displacement approximation ûh =
(

û1h, û
2
h

)

of the two-body contact problem

in the product space

Ûh = Û1
h × Û2

h ,

Û i
h := {û ∈ C0(�̂i

h) : û|K ∈ P1(K )∀K ∈ T̂ i
h }, i = 1, 2.

(21)

Note that ûh is multi-valued. This feature allows for the representation of embedded

discontinuities in CutFEM. In all elements that are intersected by the contact interface

Ŵc
h
, û1h and û2h may take different values at a single point, which results in a non-zero

displacement jump between û2
h
and û1

h
.

Next, we define the space of extended interface fields of polynomial order 1 as

Ŵh := {Ŵ ∈ C0(Ĝh) : Ŵ |K ∈ P1(K )∀K ∈ Ĝh}. (22)

This is another important aspect of the CutFEM approach. Fields on manifolds such as

embedded interfaces are represented as the trace of a finite element field defined in R
d .

In this paper, this feature will be used to represent the Lagrange multipliers required to

enforce contact conditions in a primal/dual setting.

Primal/dual CutFEM solver

We now describe our P1/P1 LaTIn/CutFEM primal/dual algorithms, first introduced in

[12]. We seek the displacement field in the linear CutFEM space Ûh and the Lagrange

multipliers, which correspond to the normal reaction forces from contact, in the spaces of

linear interface fields Ŵh. The presentation formalism that we have chosen for this paper

allows us to highlight its relationship with the work presented in [7,8] in the specific case

of frictionless unilateral contact (our algorithm extends straightforwardly tomore general

interface conditions such as frictional contact or elastic damageable cohesive interfaces

[25]).
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Regularization of the bulk displacement

Let us define the extended and stabilized bilinear form over the product of fictitious

domain fields as

âh(ûh, δûh) =

2
∑

i=1

âih(ûh, δûh) +

2
∑

i=1

ŝih(ûh, δuh) (23)

where for i ∈ {1, 2}

âih(ûh, δûh) =

∫

�i
h

σ (uih) : ǫ(δu
i
h) d� (24)

and the so-called ghost-penalty terms are defined by

ŝih(ûh, δûh) =
∑

F∈F̂ i
G

∫

F

α h

Ei
�σ (uih) · nF � · �σ (δuih) · nF � dŴ. (25)

Here, �x · nF � denotes the normal jump of the quantity x over the face, F , defined as

�x · nF = x|K nF − x|K ′ nF �, where nF denotes a unit normal to the facet F with fixed but

arbitrary orientation and α > 0 is the ghost penalty parameter.

Regularization of the Lagrangemultiplier field

The discretized conditions for optimality are the following: Find (ûh, λ̂h) ∈ Ûh × Ŵh

satisfying the Dirichlet boundary conditions such that ∀(δûh, δλ̂h) ∈ Ûh × Ŵh, where δûh

satisfies the homogeneous boundary conditions (and there is no positivity requirement

for the Lagrange multipliers),

⎧

⎪

⎪

⎨

⎪

⎪

⎩

âh(ûh, δûh) + bh(λ̂h, δûh) + ǫ♥ s♥(λ̂h, �δûh� · nŴh
) = l(δûh)

(

δλ̂h, λ̂h − γ

[

�ûh� · nŴh
+

1

γ
λ̂h

]

+

)

Ŵc
h

+ s♥(δ̂λh, λ̂h) = 0
(26)

where s♥ is a regularization term that penalizes the jump of Lagrange multipliers across

interface element edges, as introduced in [8]:

s♥(δλ̂h, λ̂h) = βh3
∑

F∈F̂I

∫

F
�∇δλ̂h · nF � · �∇λ̂h · nF � dŴ. (27)

Here, (u, v)Ŵc
h

=
∫

Ŵc
h
uv dŴ. And ǫ♥ is either 0 or 1. The toggle boolean ǫ♥ is introduced

for comparison to other references. When ǫ♥ = 1, the previous problem is equivalent to

the extremization of the saddle-type functional

M(ûh, λ̂h) :=
1

2
âh(ûh, ûh) +

γ

2

([

�ûh� · nŴh
+

1

γ
λ̂h

]

+

,

[

�ûh� · nŴh
+

1

γ
λ̂h

]

+

)

Ŵc
h

−
1

2γ
bh

(

λ̂h, λ̂h
)

− l(ûh) − s♥(λ̂h, λ̂h) (28)

with respect to both of its arguments. However, in this contribution, we choose ǫ♥ = 0.

This is to make the present formulation consistent with the developments proposed in

[12], were theCutFEM-LaTIn algorithmwas introduced in a completely differentmanner.

We do not claim that this choice is better than the alternative.
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Domain decomposition formulation

Whilst the previous “jump” formulation (26) couples the CutFEM subdomains, the LaTIn

algorithm introduced in [12] implements a nonlinear domain decomposition approach.

In this LaTIn-CutFEM algorithm the bulk problem is first solved in each subdomain

independently and then interface fluxes and displacements are computed at the contact

interface Ŵc
h
. We iterate between the bulk problems (linear stage) for i = 1, 2 and the

interface problem (local stage) until we achieve convergence. In the following, we briefly

outline the main steps of the algorithm, a more detailed description can be found in [12].

To reformulate the “jump” formulation (26) into a problem over each fictitious domain

�̂i
h
, we realize that (26) can be decomposed into

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

2
∑

i=1

âih(û
i
h, δû

i
h) + bh(λ̂h, δû

i
h) =

2
∑

i=1

li(δûih),

(

δλ̂h, λ̂h − γ

[

�ûh� · nŴh
+

1

γ
λ̂h

]

+

)

Ŵc
h

+ s♥(δ̂λh, λ̂h) = 0,

. (29)

where bh decomposes into b1
h
and b2

h
as

bh(λ̂h, δûh) =

∫

Ŵc
h

λ̂h(�δûh� · nŴh
) dŴ

=

∫

Ŵc
h

λ̂h(δû
1
h · nŴh

) dŴ −

∫

Ŵc
h

λ̂h(δû
2
h · nŴh

) dŴ

=: b1h(λ̂h, δû
1
h) − b2h(λ̂h, δû

2
h) .

(30)

Let k denote the iteration steps starting with k = 0. We then iterate between the linear

stage and the local stage detailed below.

The linear stage In which we solve the bulk problems: Find the displacement ûh ∈ Ûh

such that for all i = 1, 2 and for all δûh ∈ Ûh

âih(û
i,k+1
h

, δûih) + bih(λ̂
i,k+1
h

, δûih) = li(δûih) (31)

subject to the descent direction for the interface fluxes λ̂i.k+1
h

∈ Ŵh and the interface

displacements ŵi,k+1 ∈ Ŵh, i = 1, 2,

(λ̂i,k+1
h

− λ̂
i,k+ 1

2

h
) − γ (ŵi,k+1 − ŵi,k+ 1

2 ) = 0 , (32)

where the quantities from the previous half-iterate are known from the local stage and

the interface displacements are given by
(

ŵi,k+1, δλ̂h

)

Ŵc
h

=
(

ûi,k+1 · nŴh
, δλ̂h

)

Ŵc
h

. (33)

The local stage In each quadrature point along the interface Ŵc
h
, find the interface fields

{ ˆ̂w
i,k+ 1

2

h
, ˆ̂λ

1,k+ 1
2

h
}, i = 1, 2, that satisfy the contact condition

ˆ̂
λ
i,k+ 1

2

h
= γ

[

( ˆ̂w
1,k+ 1

2

h
− ˆ̂w

2,k+ 1
2

h
) · nŴh

+
1

γ

ˆ̂
λ
1,k+ 1

2

h

]

+

(34)

subject to search directions

(ˆ̂λ
i,k+ 1

2

h
− λ̂i,k ) + γ (ŵi,k+ 1

2 − ŵi,k ) = 0 , (35)

for all i = 1, 2 and to equality/definition

ˆ̂
λ
2,k+ 1

2

h
= −

ˆ̂
λ
1,k+ 1

2

h
. (36)
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We regularize the interface quantities { ˆ̂w
i,k+ 1

2

h
, ˆ̂λ

1,k+ 1
2

h
} by solving the linear interface prob-

lem: Find the filtered Lagrange multiplier λ̂
i,k+ 1

2

h
∈ Ŵh for all δλ̂h ∈ Ŵh such that

(

λ̂
i,k+ 1

2

h
, δλ̂h

)

Ŵc
h

+ s♥(λ̂
i,k+ 1

2

h
, δλ̂h) =

(

ˆ̂
λ
i,k+ 1

2

h
, δλ̂h

)

Ŵc
h

, (37)

for i = 1 or i = 2. The filtered interface jumps ŵi,k+ 1
2 for i = 1 and i = 2 can then

be recovered locally using search direction (35), replacing the “double hat”—unfiltered—

Lagrange multiplier by its regularized counterpart.

Digital pipeline from CT-scans to CutFEM biomechanical simulations

In the following section, we will describe our pipeline from CT-images to CutFEM simu-

lations. We will explain the pipeline on scans of the hip joint. Here, we utilise well known

classical algorithms including the decomposition of cells into interior, exterior and inter-

sected cells; and the computation of the signed distance field with a combination of a

geometrical computation in the near field and fast marching in the far field and extend it

from classically one signed distance function to multiple signed distance functions in the

context of contact computations.

Image segmentation and surface triangulation of bone geometries

In the first step, we reconstruct a patient-specific hip joint geometry based on computed

tomography (CT) images (see Fig. 2). The images are obtained from the cancer imaging

archive (TCIA) [27] and transferred to the 3D slicer software for the hip joint segmentation

[1,18].

We use multiple landmarks in a few slices to define the femur, the pelvis, and the

background regions. Using these landmarks, all the image pixels are labelled and the

corresponding 3D volumes are calculated (Fig. 2). Further, we refine the bone models to

eliminate rough surfaces, holes, and irrelevant connected tissues. We extract the surface

of each bone as a triangulated surface mesh and export them as STL-files. These STL-files

are used as the basis for the signed distance function calculation described in the following.

Proposed surface triangulation to level-set algorithm

The surface triangulations, read from the STL-files, are first embedded in a regular back-

ground grid and then signed distance functions are computed on this background grid.

The following steps describe this surface triangulation to level set function algorithm.

Step 1: Determine Bounding Box Mesh In the first step, we determine a bounding

box domain, denoted by �b, which contains both the surface triangulation of the hip

bone, denoted by S1
h
, and the surface triangulation of the femur bone, denoted by S2

h
.

This bounding box domain, �b, is defined by the minimum and maximum coordinates,

xxxmin = (xmin, ymin, zmin) and xxxmax = (xmax, ymax , zmax), of all vertex coordinates in both

surface triangulations S1
h
and S2

h
. The resulting domain is given by �b = [xmin, xmax] ×

[ymin, ymax] × [zmin, zmax]. We then generate a uniform and regular tetrahedral mesh,

denoted by T b
h
, on the background box domain �b.

Step 2: Collision detection between the surface triangulations and the background

mesh In the second step, we detect all collisions between the surface triangles and the
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Fig. 2 The different scene views of the hip joint and the calculated 3D model of both the femur (green) and

the pelvis (yellow) bones in 3D slicer [1]

background mesh tetrahedra. A collision between a surface triangle and a background

mesh tetrahedron (cell) means that the surface triangle and the tetrahedron have a non-

empty intersection. An efficient way to detect the collision between each surface triangle

and the background mesh cells is to use Axis Aligned Bounding Box (AABB) trees. In

this method, instead of testing each background mesh cell for an intersection with each

surface triangle Fj ∈ S i
h
, we detect intersections between two hierarchical structures of

bounding boxes (AABB trees, for more details see [16,24,29]). This collision detection

between an AABB tree for the surface mesh, S i
h
, i = 1, 2, and the AABB tree for the

background mesh, T b
h
yields a set of tetrahedra that have a bounding box which collides

with the bounding box around the surface triangle Fj ∈ S i
h
. We then test among this set

of tetrahedra with colliding bounding boxes if the surface triangle indeed intersects with

the tetrahedra using geometric predicates (triangle–tetrahedra intersection [16]).

We express the results of this collision detection in a map between the index of each

surface triangle, j for surface triangle Fj ∈ S i
h
, i = 1, 2, and the indices of the background

mesh tetrahedra, km, it intersects (collides) with. Formally, these maps, one for each

surface triangulation, are defined as

χ i :S i
h → T b

h , (38)

j → {k1, k2, . . . , kNj }, (39)
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where i = 1, 2, j denotes the index of the surface triangle Fj ∈ S i
h
and runs from 1 to

the number of surface triangles in S i
h
and km, m = 1, . . . , Nj , denotes the index of the

background mesh tetrahedra that the surface triangle j intersects with. Note that, one

surface triangle in general intersects several tetrahedra in the background mesh. The

number of tetrahedra intersected by surface triangle with index j is denoted by Nj .

In addition to these mappings, we also construct the inverse map from the index of

the background mesh tetrahedra to the index of the surface triangles that intersect the

tetrahedra defined as

χ i,−1 : T b
h → S i

h,

k → {j1, . . . , jNk
}. (40)

Here, k denotes the index of the background mesh tetrahedron, and jm, m = 1, . . . , Nk

denotes the index of the surface mesh triangle Fjm ∈ S i
h
that has a non-empty intersection

with the background tetrahedron k and Nk is the number of surface triangles which

intersect the background mesh tetrahedron with index k . These two maps are crucial for

the next steps.

Step 3: Decompose cells in the background mesh into interior cells, intersected cells

and exterior cells We give each background mesh tetrahedron, a set of two marker

values, M = (M1,M2), M1 ∈ {0, 1, 2}, M2 ∈ {0, 1, 2} depending on if the tetrahedron is

inside, intersected or outside by femur or hip bone surface triangulations, S i
h
, i = 1, 2.

We start with all cells marked as M = (0, 0) and then mark the tetrahedra intersected

by S i
h
using the inverse mapping χ i,−1. From the mapping, we determine the indices

of all background mesh tetrahedra that have a non-zero intersection with the surface

triangulation S i
h
, i = 1, 2 and mark these cells with 1 (M1 = 1 if tetrahedron intersects

with cells in S1
h
and M2 = 1 if tetrahedron intersects with cells in S2

h
). The last step in

the mesh marking is to determine all cells outside of the femur bone surface triangulation

(M1 = 2) and outside of the hip bone surface triangulation (M2 = 2). To achieve this,

we assume that the background mesh cells are clearly separated by a band of intersected

background mesh elements into mesh cells inside the femur or hip bone and into mesh

cells outside. Starting with a tetrahedron in a corner of the background mesh, for which

we are sure that the cell is outside of both the hip and femur bone geometries, wemark this

corner cell with M = (2, 2). We then find all cells connected to this starting tetrahedron

and see if any of the connected tetrahedron is marked with Mi = 1. If the neighbouring

cell is marked with Mi = 1, we leave the mark at Mi = 1 if it is marked with Mi = 0, we

setMi = 2 and find all cells connected to the new cell we just marked withMi = 2. This

way, we find all cells that are connected to the outside corner cell without crossing the

band of elements which are marked as intersected. For more details on a mesh marking

method for connected domains see [13]. Note that the presented technique is similar to

the classical coloring technique employed in Delaunay mesh generation [9]. Alternatively

to exploiting connectivities of inside and outside domains, ray casting techniques can be

used in which the number of intersections of a ray originating in a background mesh

cell with the surface mesh can determine if a cell is inside or outside (see e.g. [3]). The

decomposition into intersected, interior and exterior cells will be crucial in the next steps.
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Fig. 3 Illustration of the first 4 steps in the surface triangulation to level set algorithm. The surface

triangulation is first embedded in a regular background grid (Step 2). The cells are then marked depending on

if they are inside, intersected or outside of the femur and hip bone geometries (Step 3). All cells which are

inside or intersected by either the femur or the hip bone geometry are extracted (Step 4)

Step 4: Extract ficititious domain In this step, we disregard the cells outside the femur

and hip bone geometries. The cells outside of both the femur and the hip bone have no

physical meaning and are not of interest in our simulations. We disregard the outside

cells by constructing a new background mesh, T ∗
h

⊂ T b
h
, with all cells from the original

background mesh which are marked withM1 = 0 orM2 = 0 andM1 = 1 orM2 = 1. In

extracting the cells, we keep track of themapping of the cell indices of this new “submesh”

to the original background mesh to update the mappings χ i,−1 (to map from the surface

triangle index to the new indices of the fictitious domain background mesh, T ∗
h
). We also

keep the mesh cell marker. The new background mesh, T ∗
h
, forms a “Cube”-like mesh

which fully contains the hip joint geometry (as shown in Fig. 3).

Step 5: Compute the signed distance functions to the femur and to the hip bone

surfacemeshes. In this step, we determine two signed distance functions: one to the hip

surface mesh, denoted by φ1
h
, and one to the femur bone surface mesh denoted by φ2

h
. We

compute the distance to surface mesh S i
h
in the following way

1. Initialization phase. In the first step, we use a geometry based approach to compute

the unsigned distance of all nodes of the intersected tetrahedra to the surface mesh,

as described in the following. Using the mapping χ i,−1, we iterate over all cells that

are intersected by the surface mesh S i
h
. For each intersected cell, we iterate over

its vertex nodes with coordinates v
j
p, j = 1, 2, 3, 4. We compute the distance from

each vertex node to all surface triangles, which the current element intersects (given

by map χ i,−1). This is done by calculating the unsigned distance of a point (v
j
p) to a

triangle [16]. Among all distances determined for a vertex node, we keep the shortest

distance and save the value in the degree of freedom of the level set finite element

function corresponding to the vertex node given by a vertex to dof mapping (for a

piecewise linear level set function). Note here, that vertex nodes are often iterated

over several times (when they belong to several intersected tetrahedra) andwe always

keep the shortest unsigned distance value of all computed distances.
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Fig. 4 Linear approximation of the geometry (zero level set contour) given a surface triangulation for the

femur bone. The grey balls indicate the nodes of the original surface triangulation. All elements with positive

level set values in all their nodes are shown in red, all elements with a change in sign of the level set value

(containing the zero contour line of the level set function) are shown in green and all elements with negative

level set values in all their nodes are shown in blue

2. After initialising all values of the level set at the nodes of all intersected tetrahedra

(previous step), we use a fast marching method [32] to compute the approximate

unsigned distance of all remaining nodes in the background mesh. In a first step,

we iterate over all nodes with known distance value and determine all nodes con-

nected to these nodes via an edge (neighbouring node). We save these connected

(neighbouring) nodes in a set called active set. We then compute the distance of

these nodes in the active set to the known values, as follows. For each node in the

active set, we iterate over all tetrahedra that share this node. For each tetrahedron,

we compute the distance of the active node to known values in the tetrahedron (if

any). There are four possible cases, firstly, the tetrahedron contains three known val-

ues [point (active node)—triangle distance], secondly, the tetrahedron contains two

known values [point (active node)—edge (between known nodes) distance]; thirdly,

the tetrahedron contains one known value [point (active node)—point (known node)

distance] or the tetrahedron contains no known values (no distance computation).

Once all nodes in the active set have their distance values (smallest of all computed

distances), we determine the next set of nodes connected to all known nodes. We

repeat this process until all unsigneddistance values in all nodes have been computed.

For more details on the employed fast marching method see [21].

3. In a last step, we convert the unsigned distance function computed in the previous

steps to a signed distance function using the cell marker computed in step 3. In step

3, we havemarked all tetrahedra enclosed by the surfacemeshwith 0, all cells outside

with 2 and all intersected cells with 1. We want negative level set values inside our

bone geometries and a positive sign outside such that the zero contour of the level

set function represents a linear approximation of the surface mesh (see Fig. 4) and

the normalised gradient of the level set represents a normal pointing from inside the

bone to the outside. To achieve this, all that is needed is to assign negative signs to

all values of the level set in nodes for cells marked with 0.
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Following steps 5.1 to 5.3, for each S i
h
, i = 1, 2, we obtain the piecewise linear signed

distance functions φ1
h
and φ2

h
, which provide a linear approximation of the femur and

hip bone geometries, respectively. In the next section, we will use these signed distance

functions to compute stress distributions in the bones.

Adaptation of the backgroundmesh to guarantee sufficient geometric resolution

As described in the previous section, we compute a piecewise linear signed distance func-

tion to represent the surface triangulation geometry. This piecewise linear representation

is close to the surface geometry in planar areas. However, in areas of high curvature or in

areas with fine features, we need to ensure that the backgroundmesh size is fine enough to

capture these features with our piecewise linear approximation. Here, the finest mesh size

is dictated by the thinnest parts of the geometry. In the piecewise linear approximation,

the thinnest parts needs to be resolved by at least two cells.

In this section, we will first make some heuristic observations about the quality of

the level set approximation for the hip and femur bone geometry for a refinement of

all background mesh cells which are colliding with the surface triangulations of the two

bones. Secondly, wewill use these heuristic observations to suggest two refinement criteria

to automatically choose only some of the colliding elements to be refined and to generate

a level set approximation that captures the geometry with sufficient accuracy.

Firstly, Fig. 5a, b show the effect of choosing a background mesh, which is too coarse

to represent the fine features in the hip bone geometry. The piecewise linear level set

approximation cannot capture the fine bone structures in the upper hip bone and in the

acetabulum and instead these areas are represented as holes in the geometry. Refining the

mesh in the elements, which are colliding with both surface triangulation (as identified

by the markers in the algorithm introduced in the previous section) until all features are

sufficiently represented, can solve this problem. Figure 5, shows the zero contour line of

the level set function for two such backgroundmesh refinement steps (a–c) together with

their background mesh (e–g) and the original surface triangulation (d, h). We can see in

Fig. 5 that the level set approximation leaves large holes in the hip bone for the initial

background mesh. After the first refinement step, we still observe some small holes in the

thin part of the upper hip bonewhich is finally completely closed in the second refinement

step.

The appearance of these holes in the hip bone geometry are due to sections of the hip

bone geometry with no connectivity to interior cells as displayed in Fig. 6. Figure 6a–c

shows a slice (shown in Fig. 6g) through the hip bone through a part of the bone with the

holes. Elements which are colliding with the surface triangulation of the hip bone or the

femur bone are displayed in green, elements which are outside the hip bone are shown in

red and elements fully inside the hip bone are shown in blue. The zero level set contour

line is shown in yellow and the surface triangulation is shown by spheres in the nodes of

the surface triangulation. We observe that in the thin part of the hip bone, elements are

detected as colliding but there is no element which is fully inside the hip bone geometry

(see Fig. 6d–f). The computed distance function to the surface triangulation only gets

assigned a negative sign for all nodes of elements that are fully inside. As the thin section

does not contain any elements that are fully inside, the level set function does not change

sign and hence there is no zero contour intersecting these elements. This yields the holes.
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Fig. 5 Effect of background mesh size onto geometric approximation. The zero level set contour for 2 steps

of refinement of all tetrahedrons which are colliding with the surface triangulation is shown in a–c together

with their corresponding background mesh (e–g). The original geometry (d) together with the surface

triangulation (h)

By refining all background elements which are colliding with the surface triangulations,

we can close these holes and improve the geometrical approximation. We refine until the

zero level set contour is close to the original surface geometry. Here, two refinements

were found to be sufficient.

As the femur bone does not contain so many small features, it is much easier approx-

imated by a piecewise linear level set approximation in a coarse background mesh (see

Fig. 7). Figure 7 displays the linear approximation of the zero contour line of the level set

function in yellow and the nodes of the surface triangulation as spheres in a slice through

the femur bone. We observe that the zero contour line approximates the femur shape in

the slice very well. Only for the coarsest mesh, we can observe a clear difference between

the femur bone and the surface triangulation in areas of high curvature.

Hence, we heuristically observed two major challenges in the resolution of the surface

triangulation: the appearance of holes and the approximation of areas with high curvature.
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Fig. 6 Linear approximation of the hip bone surface triangulation in regular background mesh with two

refinement steps of all elements which collide with the surface triangulations of the hip and femur bone. The

figures a–c show elements marked as interior as blue, marked as colliding with green and marked as outside

with red. The figures d–f shows all the elements which are fully inside the hip bone geometry

We develop two refinement criteria to address these two challenges. One to identify cells,

in which the level set approximation does not change its sign even though the surface

triangulation collides with the element (e.g. holes) and one to identify cells in which the

zero contour line of the level set is far away from the surface triangulation (e.g. high

curvature).
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Fig. 7 Linear approximation of the femur bone surface triangulation in regular background mesh for two

refinement steps in a slice through the femur head (a–c) and a zoom to the area of high curvature in the

femur bone slice (d–f). For the coarsest mesh, we observe a clear difference between the piecewise linear

approximation of the level set function and the surface triangulation in the area of high curvature. This

difference is resolved by mesh refinement

The first refinement criterion is to mark all cells for refinement which are colliding with

the surface triangulation but in which the computed level-set function does not change

sign. We refer to this refinement criterion as “adaptive sign criterion”.

For the second refinement criterion, we determine for each backgroundmesh cell which

collides with at least one surface triangulation what the maximum absolute level set value

is at all nodes of all surface triangles which collide with the background cell. For example,

let us assume background mesh cell j collides with surface triangle k , l and m. We then

evaluate the level set function value in each node of the surface triangles k , l andm, which

will give us the distance of each node of the surface triangles to the zero level set contour.

We take the maximum absolute level-set/distance value of all these node values and store

this value for cell j, denoted by d
j
max. We repeat this process for all cells that collide with

surface triangles. We then determine the global maximum value among all these cells,

denoted by d
global
max ,

d
global
max = max

j
d
j
max (41)

where j is a list of cell indices of cells that collide with the surface triangulation. We mark

all cells for refinement which have a maximum distance value larger than a threshold ǫ

times the global maximum, with 0 < ǫ < 1, i.e.

d
j
max > ǫ d

global
max (42)

for each cell j which collides with the surface triangulation.We refer to the second refine-

ment criterion as “adaptive greedy criterion”.

To evaluate the quality of the level set approximation with respect to the surface tri-

angulation, we calculate the average distance value, davg , over all nodes of the surface

triangulation, i.e.

davg =

∑

k |φi(xkxkxk )|

Nk
(43)
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(a) Femur bone.
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(b) Hip bone.

Fig. 8 Comparison of different adaptive refinement strategies in terms of average distance value for the

femur bone level set function (a) and the hip bone level set function (b)

where xxxk denotes the coordinate of a node in the surface triangulation, k = [0, 1, . . . , Nk ]

is the node index, and Nk is the total number of nodes in the surface triangulation.

Figure 8 shows the average distance value of the level set function to the surface tri-

angulation versus the number of cells for the different adaptive refinement criteria. We

compare the refinement of all cells that are colliding with the interface (dashed, red) with

the sign refinement criterion (dashed, cyan), the greedy refinement criterionwith a param-

eter of ǫ = 0.5 and the combination of both sign and greedy criteria. Figure 8a shows the

average distance of the level set function to the surface triangulation for the femur bone

and Fig. 8b shows the average distance for the hip bone. For each bone the refinement

criteria have very different effects. For the smooth femur bone, the sign criterion, which

will refine in the area of holes or very high curvature does not refine as efficiently as greedy

or uniform refinement with respect to the average distance. For the hip bone on the other

hand, the sign criterion reduces the average distance between the level set function and

the surface triangulation most efficiently. This is what we have heuristically observed for

the hip bone before. The hip bone has a lot of fine feature and areas of high curvature

and this is efficiently resolved by the sign criterion. The greedy criterion performs best for

the femur bone and yields lower average distances than uniform refinement for the same

number of elements. The greedy algorithm for the hip bone performs slightly less well

for the hip bone than the sign criterion up until 70000 cells by which the greedy criterion

yields better refinement than the sign criterion. The combination of both sign and greedy

criterion yields the lowest average distance to the surface triangulation for the hip bone

geometry.

Unilateral contact between hip and femur bone

In this section, we use our LaTIn/CutFEM algorithm described in section to compute the

stress distribution in the hip and the femur bone in unilateral contact. All of our software

developments are based on FEniCS [2]. In [12], we have shown that our LaTIn/CutFEM

algorithmwas stable and converged optimally for a range of carefully selected benchmark

problems. This contribution focuses on showing that our contact algorithm performs

well for geometries obtained from images. In this section, we use the level set geometry

description for the femur and the hip bone obtained from the algorithm described in the

previous section and compute a unilateral contact problem on the bones.
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Fig. 9 Contact interface

We bring the femur and the hip bone into contact by moving the femur bone geometry

slightly into the acetabulum to create a clear contact interface in between the bones. The

resulting contact interface is displayed in Fig. 9. Here, we need to predefine the contact

interface as our algorithm currently does not include a contact detection algorithm and

our algorithm is only valid for small deformations. The extension of the algorithm to

include large deformations and contact detection will be addressed in a future publication

but is out of the scope of this contribution.

Figure 10 shows the fictitious domain mesh used for the computation, which consists

of 460.985 cells yielding 288.426 number of degrees of freedom for the P1 displacement.

As boundary conditions, we apply homogenous Dirichlet boundary conditions for the

displacement on the bottom of the femur bone and we apply a displacement of u =

(0, 0,−1)T on the boundary facets marked in red in Fig. 10 on top of the hip bone. We

set the Young’s moduli for the hip and femur bone to E1 = E2 = 1, and the penalty

parameters to α = β = 0.1, γ = 1.

Figure 11 shows the stress component σzz for the hip and femur bone. We observe that

underour artificial boundary conditions, the thinpart of thehipbone is under compression

and the rest of the hip bone is under tension. The femur bone is mainly under tension

except for a small area in the femoral neck and in the contact region. Looking at a slice

through the hip joint as shown in Fig. 12 contact forces transmit the compression force

to the top of the femoral head. Figure 12b shows the deformation from the slice in the

reference configuration to the slice in the deformed configuration. We observe that the

femur bone deforms very little while the hip bone shows a much larger deformation. The

magnitude of the deformation is shown in Fig. 13, like seen in the slice the femur bone

deforms very little while the hip bone deforms significantly away from the area of contact

between the femur and hip bone. The femur bone stabilises the hip bone in the contact

region but the hip bone is free to move away from the contact interface. Figure 14 shows

the impact of the penalty parameter β , which is used to stabilise the Lagrange multiplier,

on the contact pressure. We clearly see that for β = 0 the contact pressure is strongly

oscillating. In [12], we showed that these oscillations grow unbounded with increasing
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Fig. 10 Mesh and boundary conditions

Fig. 11 Stress component σzz in the hip and femur bone in front view (a) and side view (b)
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Fig. 12 Stress component σzz (b) in slice of hip joint (a) together with its deformation (b)

Fig. 13 Magnitude of deformation in hip joint

number of LaTIn iterations. For β > 0, we observe a smooth contact pressure. For very

large β (β = 10), gradients on the contact pressure are over penalised, which yields an

overly stiff interface field that moves like a block.
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Fig. 14 Impact of penalty parameter β onto the contact pressure

Conclusions

In this article, we have first presented a reformulation of our LaTIn/CutFEM algorithm in

terms of an augmented Lagrangian approach for two elastic bodies.We have then detailed

our robust algorithm to compute level set representations on finite element meshes for

multiple bodies from segmented images. We have discussed in detail on how to adapt

the finite element mesh to guarantee a good approximation of the level set function to

the surface triangulation. We have developed and analysed two refinement criteria for

adaptive mesh refinement. Finally, we have concluded our article with numerical results

of a unilateral contact computation between a femur and a hip bone.

Our contact algorithm is currently limited to small deformation. In a future contribution,

we are planning to extend our approach to large deformation.
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