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CONTACT NETWORK EPIDEMIOLOGY: BOND PERCOLATION
APPLIED TO INFECTIOUS DISEASE PREDICTION AND

CONTROL

LAUREN ANCEL MEYERS

Abstract. Mathematics has long been an important tool in infectious dis-
ease epidemiology. I will provide a brief overview of compartmental models,
the dominant framework for modeling disease transmission, and then contact
network epidemiology, a more powerful approach that applies bond percolation
on random graphs to model the spread of infectious disease through hetero-
geneous populations. I will derive important epidemiological quantities using
this approach and provide examples of its application to issues of public health.

Background

Infectious diseases can have devastating impacts on human life and welfare. In
the last three years, SARS, avian influenza, simian foamy virus, and monkeypox
have jumped from animals into human populations. The uneven spread of SARS
worldwide poignantly demonstrated that containment is possible but depends crit-
ically on appropriate and aggressive management. With the growing threats of
newly emerging diseases and bioterrorism, strategies to rapidly and effectively con-
trol outbreaks are vital to public health.

Mathematics is an invaluable epidemiological tool. It allows public health of-
ficials to conduct virtual experiments that would be practically unfeasible or un-
ethical. Controlled experiments to evaluate the efficacy of control strategies are
impossible in practice, as we cannot intentionally introduce disease into popula-
tions or withhold potentially lifesaving interventions for the sake of scientific study.
Mathematical models of disease transmission dynamics enable systematic evalua-
tion of strategies such as vaccination and quarantine and thereby provide a way
around this difficulty.

In the 18th century, Daniel Bernoulli—the son, nephew and brother of mathe-
maticians Johann, Jacob and Nicolaus II Bernoulli, respectively—made one of the
first great mathematical contributions to infectious disease control [BB04]. While
formally trained in medicine, Bernoulli is known for his research in biomechanics,
hydrodynamics, economics, and astronomy. He also played an important role in the
eradication of smallpox from Europe, which was likely introduced there in the early
16th century and was endemic (maintained constantly) by the 18th century. Vario-
lation is an inoculation technique whereby a scab or pus from an individual with a
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mild smallpox infection is introduced into the nose or mouth of healthy individuals.
This practice began as early as 1000 AD in China and India and was introduced
into England in 1717, where it was initially controversial. While variolation reduced
the mortality probability of infected individuals from 30% to 1% [Sma02], there was
a small chance that the procedure would lead to death from a full-blown case of
smallpox.

Bernoulli developed a mathematical model with which he argued that the gain
from variolation in life expectancy through the eradication of smallpox far out-
weighed associated risks [BB04, DH02]. Assuming that all individuals had a one in
n chance of catching smallpox and a one in m chance of dying from an infection,
he derived the following equation for the change in the number of currently näıve
(never been infected) individuals in a specific age cohort during a small increment
of time:

(1) −ds =
sdx

n
+

s

ξ
((−dξ) − sdx

mn
)

where dx is the change in the age of the individuals in the cohort, s and ds are the
number of currently näıve individuals and the change in that number, respectively,
and ξ and dξ are the total number of individuals in the cohort and the change in
that number, respectively. On the right side of the equation, the first term is the
number of new infections and the second term is the loss of susceptible individuals
through death from other causes. Bernoulli integrated equation (1) and assumed
that each cohort is born entirely susceptible (that is, s = ξ when x = 0) to find the
expected fraction of susceptible individuals in a cohort of age x. This fraction is
given by

(2)
s

ξ
=

m

(m − 1) e
x
n + 1

.

Bernoulli assumed that the risk of catching smallpox was 12.5% (one in eight) in
a given year across all age classes and that the mortality rate was 12.5% (one in
eight) for all infected individuals. Using overall survivorship estimates calculated by
Edmund Halley (of comet fame), he then used equation (2) to predict the mortality
rates in every age class in a steady-state population with a birth class of size 1300.

Inoculation via variolation of all newborns would confer widespread immunity,
yet entail some mortality due to variolation-induced smallpox. Bernoulli compared
the annual mortality rates and average life expectancy predicted by his model to
those predicted assuming universal inoculation and found that variolation saves
lives even if the mortality rate associated with variolation is quite high (with his
parameters, as high as 10.6%).

Bernoulli’s calculations clarified the benefits of widespread inoculation even when
there are significant risks. England began widely administering variolation in the
1750’s, and upon the development of the smallpox vaccine in 1796, mandated the
inoculation of all infants. Thanks to these efforts, smallpox was eradicated from
England by the end of the 19th century.

Since Bernoulli, mathematicians and statisticians have offered many practical
insights into infectious disease control. Notably, the English statistician William
Farr analyzed the spatial distribution of cholera cases and thereby provided the
first solid evidence that the disease spread via water rather than air [PVJ98].
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Mathematical epidemiology exploded in the 20th century following the intro-
duction of an intuitive and tractable framework. Between 1906 and 1927, the
mass-action principle was introduced [Ham06] and ultimately formalized in a
deterministic model of disease transmission now attributed to Kermack and
McKendrick [KM27]. In chemistry, the mass-action law states that the rate of a
chemical reaction is proportional to the product of the concentrations of the reacting
substances. In epidemiology, the mass-action assumption states that the number of
new cases of disease in a time interval is proportional to the product of numbers of
infected and susceptible hosts in the previous time interval. Within a decade, Reed
and Frost introduced the first stochastic version of this model, the chain-binomial,
which assumes that a disease spreads in discrete generations [Abb52, Bai75]. This
model derives a probability law for the next generation from that of the present
generation. More recently, Anderson and May among others have extended these
efforts into a flexible approach, known as compartmental modeling, for predicting
the transmission of a wide range of diseases on multiple scales [AM91].

We will discuss this framework as well as some of its practical applications and
limitations below. This will set the stage for the introduction of contact network
epidemiology, a new analytical approach that overcomes a major limitation of the
mass-action assumption.

Compartmental SIR models

Compartmental models subdivide host populations by disease status. A simple
and widely used example is the SIR model that tracks the movement of hosts among
three states: susceptible (S), infected (I), and recovered (R) (Figure 1) [KM27].
These models assume that upon infection, hosts are immediately infectious and
remain infectious until they recover. Infected hosts are assumed to have potentially
disease-causing contacts with random individuals from the population according to
a Poisson process that yields an average contact rate of β per unit time. Disease
transmission occurs if and only if the individual at the receiving end of the contact
is susceptible. Therein lies the mass-action assumption.

Infectious hosts leave the infectious state at an average rate ν either by recovering
and becoming immune or by dying. Thus the recovered class is a catchall for hosts
that have been previously infected and are no longer infected or susceptible. In the
limit of a large host population, this process is modeled by the following coupled
nonlinear differential equations:

(3)

dS
dt = −βIS,

dI
dt = βIS − νI,

dR
dt = νI,

where S(t), I(t), and R(t) are the numbers of susceptible, infected, and recovered
hosts, respectively. Because the model ignores the birth and death of susceptibles,
the total population size N = S+I +R is static, and therefore the third equation is
unnecessary. These equations apply to rapidly spreading diseases like measles and
influenza that confer immunity extending beyond the typical length of an epidemic.
The model can be easily adapted to consider the loss of immunity as well as birth
and death dynamics.
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Figure 1. Compartmental and contact network models. Mass-
action models assume that all individuals in a group are equally
likely to become infected, while contact network epidemiology con-
siders diverse contact patterns that underlie disease transmission.
The disease spreads along the arrows (top) and the edges (bottom).
(S=susceptible, I=infected, and R=recovered.)

The basic reproductive rate. One of the touchstones of epidemiology is the basic
reproductive rate of a disease: the number of secondary infections produced by a
single infected host in an entirely susceptible population. This quantity indicates
the initial growth rate for the infected class and the potential for a large-scale
epidemic. In the model given by equations (3), the per capita increase of infected
individuals is given by

(4)
1
I

dI

dt
= βS − ν.

The number of infected individuals increases by the product of the disease-causing
contact rate β and number of susceptibles S and decreases by the combined re-
covery and mortality rate (henceforth removal rate) ν, which has units of 1

t . The
reciprocal of the removal rate, 1

ν , is the average time interval during which an in-
fected individual remains contagious. The number of secondary cases infected per
unit time is βS, which yields a basic reproductive rate of

(5) R0 =
βS

ν
.

If R0 > 1, then each infected host will transmit disease to at least one other host
during the infectious period, and the model predicts that disease will spread through
the population. If not, then the disease is expected to fizzle out before reaching
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a substantial fraction of the population. Thus R0 = 1 is a critical epidemiological
value. In other words, pathogens with high levels of contagion and low recovery
and mortality rates will pose the greatest threat.

Herd immunity. The immunization of a single host not only protects that host
but also indirectly protects others against the possibility of disease transmission
from the immunized host. If a sufficient fraction of a population is immunized, then
an epidemic may be averted altogether. The protection of an entire population via
the immunity of a fraction of the population is called herd immunity.

Equation (5) can be rearranged to find the minimum size of a susceptible popu-
lation necessary for an epidemic to occur. Assuming that R0 = 1, this threshold is
given by

(6) ST =
ν

β
.

A pathogen will go extinct if the size of the susceptible population is less than this
threshold (S < ST ). If the population size is above this threshold, then we can
rewrite the basic reproductive rate as

(7) R0 =
S

ST
.

Immunization reduces the size of the susceptible class and thus leads to a smaller
basic reproductive rate of the pathogen. In particular, immunizing a fraction p of
a population reduces R0 to

(8) Ri
0 =

(1 − p)S

ST
= (1 − p)R0.

Immunization will successfully eradicate the disease if it causes the basic reproduc-
tive rate to drop below one. Thus the critical immunization rate pc is

(9) pc = 1 − 1
R0

.

Extensions of this basic model have been used to predict the minimum coverage
necessary to drive specific diseases to extinction. For example, measles and whoop-
ing cough—two of the most contagious diseases—are thought to require 90-95%
coverage, chicken pox and mumps 85-90% coverage, polio and scarlet fever 82-97%
coverage, and smallpox 70-80% coverage [AM91].

Limitations of the mass-action assumption: The example of SARS.
Shortly after severe acute respiratory syndrome (SARS) was first recognized outside
of Asia, epidemiologists estimated its basic reproductive rate (R0) to be between
2.2 and 3.6 for this virus [LCC03, RFD03]. These estimates are well above one and
similar to rates measured for new subtypes of influenza [Het00]. Despite this high
estimate and worldwide susceptibility to SARS, the disease did not spark a global
pandemic.

The discrepancy between the high R0 estimates and the limited spread of SARS
might be explained by effective public health intervention that reduced the basic
reproductive rate of the disease. Consider, however, the transmission of SARS in
China during its initial four months of spread before the implementation of extensive
public health measures. Case counts were much less than expected during this
period [XHE04], as suggested by a simple calculation. The expected total number
of cases of a disease is predicted to increase by a factor of R0 for every generation of
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disease transmission, where a generation is the average time between an individual
becoming infected and their infecting others. The average generation time (γ) for
SARS was estimated to be 9.7 ± 0.3 days [MPN05]. The cumulative number of
SARS cases after D days of transmission is predicted to be approximately

(10)

D/γ∑
i=0

(R0)i =
1 − R

D/γ+1
0

1 − R0
.

For R0 ranging between 2.2 and 3.6, this then suggests that the first four months of
SARS spreading in China should have produced somewhere between approximately
30,000 and 10 million cases [MPN05]. China ultimately reported only 782 cases
during this initial outbreak [Org03], which, by equation (10), suggests that the
reproductive rate of SARS was actually closer to 1.6.

Why do the initial estimates of R0 seem incompatible with the observed epidemi-
ology in China? The basic reproductive rate has two critical inputs: (1) intrinsic
properties of the pathogen that determine the transmission efficiency per contact
and the duration of the infectious period, and (2) the patterns of contacts between
infected and susceptible hosts in the population. While the first factor may be
fairly uniform across outbreaks, the second may be quite context dependent, vary-
ing both within and among populations. The problem with the SARS estimates
stems from the mass-action assumption of compartmental models—that all suscep-
tible individuals are equally likely to become infected. When this assumption does
not hold, the models may yield inaccurate estimates or estimates that do not apply
to all populations. The R0 estimates for SARS [LCC03, RFD03] were based largely
on outbreak data from a hospital and a crowded apartment building, with anoma-
lously high rates of close contacts among individuals. It may thus be inappropriate
to extrapolate estimates for R0 from these specific settings to the population at
large. Contact rates in the general community may be much lower and, therefore,
so may be the rate at which SARS spreads.

The transmission efficiency of SARS varied considerably. A few individuals were
responsible for a large proportion of disease transmission [LCH03, BMT03, DGL03].
In contrast to the mass-action assumption of standard compartmental models, con-
tact patterns may vary within a community. Consider two scenarios: a community
in which all individuals have approximately the same number of contacts and a
community in which a very small number of individuals have enormous numbers of
contacts while all other individuals have only one or very few contacts. The basic
reproductive rate of disease (R0) can be identical for the two communities, while
the resulting epidemiology will differ significantly.

While the mass-action assumption laid the groundwork for major advances in
epidemiological theory, it may be inappropriate when contact patterns are heteroge-
neous. To overcome this limitation, mathematical epidemiologists have developed
several methods to explicitly consider heterogeneity in contact patterns including
more complex deterministic and stochastic compartmental models with multiple de-
mographic groups [Bai75, HY84], branching process models [Bec77, FKG03], dyad
models [KRM97, FG00], Reed-Frost chain-binomial models [LP89], and individual-
based models [KG99, Dur99, SWS02, BRO02, VdPvVdV98, CHECC03, EGK04].
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Here we will consider a recent addition to this toolkit, contact network epidemiol-
ogy, which is an analytical framework that explicitly and intuitively captures the
diverse interactions that underlie the spread of diseases (Figure 1) [MPN05, KWM03,
MNP06, DdJM98, New02, SS88, BMST97, Mor95, Lon88, LM01, MNMS03].

Contact network epidemiology

The methods of contact network epidemiology can be divided into three steps.
First we attempt to build a realistic network (graph) model of the contact pat-
terns at an appropriate temporal and spatial scale. Second, we mathematically
predict the spread of disease through the population based on intrinsic features of
the pathogen and structural properties of the network. Third, we manipulate the
network to model control strategies and analyze the epidemiological impact of such
manipulations. We will now discuss each of these steps with illustrative examples.

The contact networks. A contact network model captures the patterns of inter-
actions that can lead to the transmission of an infectious disease. In a contact net-
work, each person (or location) translates into a vertex, and contacts among people
(or locations) translate into edges that connect appropriate vertices. For example,
one might model the contacts between individuals in a hospital or city that might
lead to respiratory disease transmission [MPN05, EGK04, MNP06, MNMS03], the
contacts between different geographical regions via human travel patterns that
might lead to long-range transmission, or the sexual interactions within a high
school that might lead to sexually transmitted disease transmission [Rot01, RST97].

The number of edges emanating from a vertex is called the degree of the vertex
and indicates the number of possible contacts that can lead to disease transmission
to or from an individual. The distribution of the number of such contacts within a
population (the degree distribution) is fundamental to the ability of disease to spread
through the population. The mass-action assumption of compartmental models is
tantamount to assuming that the underlying contact patterns form a random graph
with a Poisson degree distribution. If a network departs significantly from this ideal
structure, then the traditional modeling approach may be invalid.

The contact (or social) network is a hot concept across many disciplines, in-
cluding sociology, epidemiology, biology, computer science and physics [AO04]. Re-
searchers look for universal properties and have paid special attention to small-world
networks, characterized by high levels of both local clustering and global connec-
tivity [Wat99]; and scale free networks, characterized by degree distributions that
follow a power law distribution with a small fraction of very highly connected
hubs [BA99]. Several epidemiological-relevant contact networks, including sexual
contact networks and the Internet, for example, have been characterized as scale
free [LEA01, LEA03, PSV01].

Realistic contact networks, however, do not always fall into one of these well-
studied families of networks [MNMS03, MPN05, MNP06]. Some have more complex
structures, for example, those depicted in Figure 2. Bipartite networks, in which
there are two types of nodes, have been used to represent asymmetric probabilities
of transmission between caregivers and patients in a medical facility [MNMS03].
Semi-directed networks, in which some contacts are reciprocal and others are uni-
directional, have been used to capture situations in which a person may infect
another person but the converse is not true [MNP06]. This situation may arise,
for example, when infected individuals seek medical treatment during an outbreak.
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Figure 2. Contact networks. (A) Undirected network; (B) Bi-
partite network; and (C) Semi-directed network. Figure
from [MNP06].

Suppose individual A is normally healthy and thus has no reason to go to the hos-
pital until he or she becomes infected. At that point, individual A may come into
contact and potentially spread disease to caregivers at the hospital. In contrast, if a
caregiver at the hospital acquired the disease while individual A remained healthy,
then there would be no opportunity for transmission in the opposite direction. This
asymmetry can be modeled by directed edges pointing from individual A to health
care workers. As described next, the mathematical methods of contact network epi-
demiology can accommodate such complex random networks with arbitrary degree
distributions.

Predicting disease dynamics. Imagine that an infectious disease first appears
at a randomly chosen vertex in a contact network (epidemiologically speaking, that
vertex represents patient zero). Disease will propagate through the network as
described for the compartmental models, except that the Poisson distribution of
contacts is replaced by the structure of the contact network. The initial vertex will
remain infected and infectious for some period of time, during which it has the po-
tential to transmit disease to each of its contacts. The secondary cases likewise can
transmit disease to their contacts during their infectious period, and so on. This
process resembles bond percolation and can be analyzed using percolation mod-
els from statistical physics [New02, MPN05, MNP06, MNMS03, SWS02, PMS05].
This approach was initially suggested by Grassberger [Gra83] and has been ex-
tended into a flexible framework for infectious disease prediction by Newman and
colleagues [New02, MPN05, MNP06, MNMS03, FBMBss]. In what follows, we will
review Newman’s derivations of fundamental epidemiological quantities for an undi-
rected random network with an arbitrary degree distribution and some practical
corollaries.

The percolation of disease through a network depends on both the level of con-
tagion and the structure of the contact network. Following Newman [New02], every
edge in a network has a per unit time probability of disease transmission associated
with it (rij), that is, the probability that vertex i, if infected, will transmit disease
to vertex j in a given time increment. Assuming discrete time steps, if vertex i
is infectious for τ time steps, then the probability that j will be infected by i is
Tij = 1 − (1 − rij)

τ . For continuous time, 1 − Tij = lim
δt→0

(1 − rijδt)
r/δt = e−rijτ ,

and thus Tij = 1 − e−rijτ . The quantity rij summarizes core aspects of disease
transmission, including the likelihood that a contact will lead to transmission and
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individual susceptibility and will therefore vary across individuals. If rij is as-
sumed to be an independent identically distributed (iid) random variable chosen
from a distribution P (r), then Tij is also an iid random variable. Therefore the
spread of disease will depend only on the mean probability of transmission between
individuals (henceforth, the average transmissibility), which is given by

(11) T = 〈Tij〉 = 1 −
∫ ∞

0

Q (r) dr

where Q (r) = 1−P (r) (1 − r)τ or Q (r) = 1−P (r) e−rτ , for discrete or continuous
time, respectively.

Probability generating functions. To predict the fate of an outbreak, we use
probability generating functions (pgf’s), quantities that describe probability distri-
butions, and here summarize useful information about the structure of the contact
network. The pgf for the degree distribution of a network is

(12) G0(x) =
∞∑

k=1

pkxk

where pk is the relative frequency of vertices of degree k in the network. The average

degree equals the derivative of this function at x = 1, that is, 〈k〉 =
∞∑

k=1

kpk.

If we choose a random edge and follow it to one of its vertices, then the number
of remaining edges connected to the vertex is called the excess degree of the vertex.
The higher the degree of a vertex, the more likely it is to lie at the end of a randomly
chosen edge. In particular, the likelihood of reaching a vertex with degree k, and
thus with excess degree k − 1, will be proportional to k. Thus the probability that
a vertex at the end of a random edge has excess degree k − 1 is kpk

〈k〉 . This yields a
generating function for the excess degree of a vertex of

(13) G1(x) =

∞∑
k=1

kpkxk−1

∞∑
k=1

kpk

.

and an average excess degree of

〈ke〉 =

∞∑
k=1

k(k − 1)pk

∞∑
k=1

kpk

=

〈
k2

〉
〈k〉 − 1.

When disease is introduced into a network, it will traverse some but not all of
the edges according to the average transmissibility T . The edges that are infected
during an epidemic are called occupied. Once the disease has run its course, the
cluster of vertices connected to the first infected vertex by a continuous chain of
occupied edges is exactly the outbreak. Ultimately we will characterize the size
and distribution of this occupied cluster. We begin by deriving the pgf for the
distribution of occupied edges attached to a randomly chosen vertex as a function
of the average transmissibility T . The probability that a vertex has m of its k edges

occupied is simply
(

k
m

)
Tm (1 − T )k−m, which leads to a probability generating

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



72 LAUREN ANCEL MEYERS

function for the occupied degree of a vertex of

(14) G0 (x; T ) =
∞∑

m=0

∞∑
k=m

pk

(
k
m

)
Tm (1 − T )k−m xm = G0 (1 + (x − 1) T ).

Analogously, the pgf for the excess occupied degree, that is, the number of occupied
edges emanating from a vertex reached by following a randomly chosen edge, is given
by

(15) G1 (x; T ) = G1 (1 + (x − 1)T ) .

Predicting the fate of a small outbreak. In general, percolation theory de-
scribes the behavior of connected groups of vertices in a random graph and thus
can be applied to predict the size of the infected cluster, that is, the number of ver-
tices reached via disease transmission along the edges in the network. For a fixed
network, there typically exists a threshold transmission rate below which only small,
finite-sized outbreaks occur and above which large-scale epidemics (comparable to
the size of the entire network) are possible.

First we will consider Newman’s derivation of the epidemic threshold and the
expected size of small outbreaks below the threshold [New02]. These calculations
assume that mildly contagious diseases spread via branching, yielding short trans-
mission chains that do not loop back on themselves. Later, we relax this assumption
and consider diseases that are above the epidemic threshold.

Let s denote the number of vertices contained in a small outbreak that begins
at a randomly selected vertex and let H0(x; T ) be the generating function for the
distribution of outbreak sizes. Then

(16) H0(x; T ) =
∑

s

Ps(T )xs

where Ps(T ) is the probability that a single initial case sparks an outbreak of size s
at the specified average transmissibility T . Let H1(x; T ) be the generating function
for the size of the cluster of connected vertices at the end of a randomly chosen
edge.

To solve for the average value of s, we consider an outbreak that originates with
a transmission event along a randomly chosen edge. The set of vertices reached by
occupied edges can be represented in graphical form as in Figure 3. There are many
possible outcomes: the disease does not spread along the edge, it spreads along the
edge but no further, or it spreads along the edge and then subsequently along one
or more additional edges emanating from the destination vertex. This is captured
in a recursive equation

(17) H1 (x; T ) = xG1 (H1 (x; T ) ; T ) .

This is roughly interpreted to mean that the size of a cluster proceeding from a
randomly chosen edge E is the equal to the sum of the sizes of the clusters at the
end of each occupied edge emanating from the vertex V at the end E plus one
for the vertex V itself. Likewise, the cluster emanating from a random vertex is
generated by

(18) H0 (x; T ) = xG0 (H1 (x; T ) ; T ) .
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Figure 3. Future transmission diagram. When disease reaches an
edge, we can consider all possible patterns of future transmission.
The disease may not spread along the edge in the first place, it
may spread along the edge but no further, it may spread along the
original edge and then subsequently along another edge, it may
spread along the original edge and then subsequently along two
edges, etc. We can construct recursive equations to consider all
possible outcomes.

Consider now the average size 〈s〉 of an outbreak starting from a random vertex,
which is given by

(19)

〈s〉 =
∑

s

sPs(T ) = H ′
0(1; T ) = 1 + G′

0(1; T )H ′
1(1; T )

= 1 +
TG′

0 (1)
1 − TG′

1 (1)
= 1 +

T 〈k〉
1 − T

(
〈k2〉

/
〈k〉 − 1

)
where the prime denotes differentiation with respect to the first variable. Note
that for any normalized generating function f(x), f(1) = 1. The expression for 〈s〉
diverges when the denominator in equation (19) is zero and predicts the expected
size of the outbreak only when the denominator is greater than zero. Thus the
equation

(20) TG′
1 (1) = 1

marks the phase transition at which the size of an outbreak first becomes extensive.
Hence an epidemic is possible only when the average transmissibility of a disease is
greater than the critical transmissibility

(21) Tc =
1

G′
1 (1)

=

∑
k

kpk∑
k

k (k − 1) pk
=

〈k〉
〈k2〉 − 〈k〉 ,

where 〈k〉 and
〈
k2

〉
are the mean degree and mean square degree (respectively) of

the network. We call Tc the epidemic threshold.

The basic reproductive rate. Recall that the basic reproductive rate is the
number of secondary infections caused by a single infected host in a completely
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näıve population. In the contact network framework, this is simply the average
number of occupied edges emanating from a vertex, that is,

(22) R0 = G′
1 (1; T ) = TG′

1 (1) = T

(〈
k2

〉
− 〈k〉

〈k〉

)
.

Recall that Tc is the critical transmissibility value above which population is vulner-
able to large-scale epidemics (but is not guaranteed to experience an epidemic) and
below which only small local outbreaks occur. If the transmissibility of a disease
equals the epidemic threshold (T = Tc), then R0 = 1.

Notice that the basic reproductive rate depends explicitly on the structure of the
network (on 〈k〉 and

〈
k2

〉
). A single pathogen may therefore have very different

transmission dynamics depending on the population through which it spreads. If
two networks have the same mean degree, 〈k〉, then the one with the larger variance
in degree,

〈
k2

〉
−〈k〉2, will be more vulnerable to the spread of disease. Estimates of

R0 that assume a mass-action model may therefore be invalid for populations with
non-Poisson contact patterns and, in particular, underestimate the actual growth
rate of the disease in highly heterogeneous networks.

Probability and size of a large-scale epidemic. When the transmissibility
of a disease lies above the epidemic threshold, then equation (19) no longer ap-
plies. Disease transmission is so frequent that transmission chains are likely to loop
back upon themselves and, therefore, the assumption underlying the calculations
(depicted in Figure 3) no longer holds. When a disease is above the epidemic thresh-
old, an epidemic can occur, and we can calculate two quantities: the probability
that a large-scale epidemic occurs and the expected fraction of individuals infected
in such an epidemic. In an undirected network, these quantities are equal to each
other and to the fraction of vertices from which an extensive numbers of others can
be reached by following occupied edges. In the language of percolation, this is the
giant component defined by occupied edges.

The probability of a full-blown epidemic, S, is derived by first calculating the
likelihood that a single infection will lead to only a small outbreak instead of a full-
blown epidemic, and then subtracting that value from one. Recall that H0(x; T )
is the generating function for the size of small outbreaks. Therefore H0(1; T ) is
the total probability that a randomly chosen initially infected vertex will lead to a
finite-sized outbreak. The probability of a large-scale epidemic is then given by

(23) S = 1 − H0 (1; T ) = 1 − G0 (u; T )

where u = H1 (1; T ). Thus u is the solution to the equation

(24) u = G1 (u; T ) .

In terms of the degree distribution, the probability of a large-scale epidemic and
the expected fraction of the network infected during such an epidemic is

(25) S = 1 −
∑

k

pk (1 + (u − 1) T )k

where u is the solution to the self-consistency equation

(26) u =

∑
k

kpk (1 + (u − 1)T )k−1

∑
k

kpk
.
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We use numerical root finding methods to solve for u.

Other useful epidemiological quantities. We have recently extended New-
man’s results [New02] to provide insight into other epidemiological processes. In
particular, we have derived the probability of becoming infected and sparking an
infection as a function of the degree of a vertex, the probability of an epidemic
starting from an outbreak that is already under way, and the residual structure of
a network after an epidemic has run its course.

The probability that an individual will spark an epidemic [MPN05]. The probability
εk that an individual (patient zero) with degree k will start an epidemic is equal to
the probability that transmission along at least one of the k edges emanating from
that vertex will lead to an epidemic. For any of its k edges, the probability that the
disease does not get transmitted along the edge is 1 − T , and the probability that
disease is transmitted to the attached vertex but does not proceed into a full-blown
epidemic is Tu. Thus

(27) εk = 1 − (1 − T + Tu)k.

The probability that a disease cluster will spark an epidemic [MPN05]. The prob-
ability that an outbreak with N cases will spark a large-scale epidemic is given

by 1 −
N∏

i=1

(1 − εki
) where ki is the degree of individual i in the original outbreak.

This is simply one minus the probability that not one of the N infected individuals
starts an epidemic. Suppose now that we know the number of cases in the initial
outbreak but not the degrees of each of those individuals. Then we can estimate
the probability of an epidemic similarly, replacing each of the (1 − εki

)’s with the
probability that a typical infected individual does not start an epidemic. The ex-
cess degree pgf gives the number of edges along which an infected individual can
initiate an epidemic, and 1− T + Tu is the probability that one of those edges will
lead to an epidemic. Combining the two, we find that the probability that none of
the edges on a typical infected individual will lead to an epidemic is⎛

⎜⎜⎝
∞∑

k=1

kpk(1 − T + Tu)k−1

∞∑
k=1

kpk

⎞
⎟⎟⎠ ,

and thus the probability that an outbreak of size N sparks an epidemic is

1 −

⎛
⎜⎜⎝

∞∑
k=1

kpk(1 − T + Tu)k−1

∞∑
k=1

kpk

⎞
⎟⎟⎠

N

.

Individual risk of infection [MPN05]. The probability νk that an individual with
degree k will be infected during a large-scale epidemic is equal to one minus the
probability that disease is not transmitted along any of the k edges leading to that
individual. The probability that a contact does not transmit the disease is equal
to the probability that the contact was never infected, u, plus the probability that
the contact was infected at some point but did not transmit the disease to the
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individual in question, (1 − u)(1 − T ). A randomly chosen vertex of degree k will
therefore become infected during an epidemic with probability

(28) νk = εk = 1 − (1 − T + Tu)k.

Frailty and interference [FBMBss]. If hosts are immunized following infection, an
epidemic will change the structure of the epidemiologically active network (the re-
maining susceptible nodes and the edges that connect them). We characterize the
structural evolution of a network due to an epidemic in terms of frailty, the degree to
which highly connected individuals are more vulnerable to infection; and interfer-
ence, the extent to which the epidemic cuts off connectivity among the susceptible
population that remains following an epidemic. For a vertex that never becomes
infected during an epidemic, we can distinguish between its original degree k and
its degree in the residual network consisting of all nodes that remain uninfected by
the epidemic, kr. To understand the structural evolution of the network we derive
two new network statistics: the mean original degree of individuals remaining in
the residual network 〈k〉r and the mean residual degree of the individuals remaining
in the residual network 〈kr〉r.

Recall that νk is the probability that a randomly chosen vertex of degree k will
become infected in an outbreak. The fraction of individuals of degree k who remain
uninfected throughout an epidemic is given by rk = pk(1−vk)∑

j

pj(1−vj)
. Therefore the mean

original degree in the residual network is given by

(29) 〈k〉r =
∑

k

krk =
∑

kpk(1 − vk)∑
pk(1 − vk)

.

To calculate the residual degree after an epidemic, we divide the network into
the vertices that become infected and those that do not and then calculate the
fraction of edges that connect individuals within the uninfected group. We call the
two ends of an edge its stubs. A vertex with degree k will have exactly k stubs
attached to it, and the total number of stubs in the network is N

∑
kpk where

N is the number of vertices. For each of the approximately N
∑

pkvk vertices in
the infected group, infection of that vertex necessarily occurred along an edge with
both its origin and destination stub attached to vertices in the infected group. For
simplicity, we ignore the first infection, which did not occur along an edge within
the population. The total number of stubs in the network excluding those along
which infections took place is then N

∑
pk (k − 2vk). In other words, this quantity

is the total number of uninfected stubs.
Now suppose we randomly choose an edge along which disease was not trans-

mitted during an epidemic. We can calculate the probability that the node at the
end of the edge was infected during the epidemic. If the degree of this node is
k, then this equals the probability that it was not infected along any of its other
k − 1 edges. Recall that the probability that a contact does not transmit the dis-
ease is equal to the probability that the contact was never infected, u, plus the
probability that the contact was infected at some point but did not transmit the
disease to the individual in question, (1− u)(1− T ). Thus the probability that the
node of degree k at the end of a randomly chosen uninfected edge was infected is
ωk = 1 − (1 − T + Tu)k−1.

We use this quantity to calculate the following probability that a randomly
chosen uninfected stub attaches to an uninfected node:

∑
kpk(1−ωk)∑
pk(k−2vk) . If instead
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we randomly choose an uninfected edge rather than an uninfected stub, then the
probability that it connects two uninfected nodes is given by the square of that

quantity,
(∑

kpk(1−ωk)∑
pk(k−2vk)

)2

. To then calculate the average residual degree in the
residual network, we multiply this probability by the total number of stubs and
then divide by the number of vertices remaining in the residual network,
(30)

〈kr〉r =
(∑

kpk(1 − ωk)∑
pk(k − 2vk)

)2 (
N

∑
pk(k − 2vk)

N
∑

pk(1 − vk)

)
=

(
∑

kpk(1 − ωk))2∑
pk(k − 2vk)

∑
pk(1 − vk)

.

Taking a slightly different approach, Newman derived a similar quantity for the
average residual degree [New05].

We next calculate frailty, the extent to which high degree vertices are preferen-
tially infected during an epidemic. In particular, frailty is equal to the difference
between the mean degree in the original network and the mean original degree in
the residual network, scaled by the mean original degree,

(31) φ =
〈k〉 − 〈k〉r

〈k〉 .

Finally we calculate interference, the extent to which the epidemic disconnected
the remaining susceptible population. Interference is calculated as the difference
between the mean original degree in the residual network and the mean residual
degree in the residual network, again scaled by the mean original degree,

(32) θ =
〈k〉r − 〈kr〉r

〈k〉 .

Epidemiological dynamics on random networks. All of the quantities above per-
tain to the final outcome of an outbreak or epidemic. Volz has recently developed
a system of nonlinear differential equations to model the dynamical progression
of a disease spreading through a random network with arbitrary degree distribu-
tions [Volss]. His model considers the state of each edge and each stub (one end
of an edge) in the network. An edge is considered occupied if it has ever been a
conduit for disease transmission, refractory if it is connected to a recovered vertex
and is not occupied, and susceptible if it is neither occupied nor refractory. The
state of the stub depends on the state of its edge and on which end of the edge it oc-
cupies. The four equations of the model track the changing distribution of edge and
stub states as disease percolates through the network. This model provides impor-
tant insight into the interaction between population structure and epidemiological
dynamics and will be an important tool for optimizing the timing and targets of
control measures.

Predictions on more complex contact networks. Newman extended the anal-
ysis described above to random networks in which transmission rate is correlated
with the degree of either the infecting vertex or the vertex becoming infected
[New02]. We have derived the epidemiological quantities described above for bi-
partite [MNMS03] and semi-directed contact networks [MNP06]. Here we briefly
discuss some interesting features of disease transmission on semi-directed networks.

In a semi-directed network, each vertex has an undirected degree representing
the number of undirected edges attached to the vertex as well as both an in-degree
and an out-degree representing the number of directed edges pointing towards or
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away from the vertex, respectively. The undirected-degree and in-degree indicate
the numbers of contacts that can spread disease to the individual and thus is related
to the epidemiological vulnerability of the individual. The undirected-degree and
out-degree indicate the numbers of contacts that may be infected by that individual
should he or she become infected and thus is related to the potential epidemiological
impact of an individual. The semi-directed degree distribution is the joint proba-
bility distribution pjkm that a vertex has j incoming edges, k outgoing edges, and
m undirected edges.

Our derivations in [MNP06] reveal that semi-directed networks are more com-
plicated than undirected networks in two important respects. First, there can be
two different distributions of transmission rates: one for the directed edges and one
for the undirected edges. When these distributions differ, the epidemic threshold
is no longer a single value but a line dividing the two-dimensional space of trans-
mission rates into a region in which there are only small outbreaks that die out
before reaching a sizable fraction of the population and another region in which an
epidemic is possible.

Second, recall that, in an undirected network, the probability of an epidemic and
the expected fraction of the network infected during an epidemic are equal. In a
semi-directed network, however, when the in-degree and out-degree distributions
differ, then so do the probability of an epidemic and the expected incidence should
one occur. These quantities are equivalent to the fraction of vertices from which an
extensive number of others can be reached by following occupied edges and the frac-
tion of vertices contained in such an extensive interconnected group, respectively.
In the language of percolation theory, the set of vertices from which one can reach
most other vertices consists of the giant strongly connected component (GSCC)

Figure 4. Structure of a semi-directed network. The largest set of
vertices in which you can move between any two by following edges
in the correct direction is the giant strongly connected component
(GSCC). The set of vertices not contained in the GSCC that can be
reached by following edges in the correct direction from the GSCC
is called the giant out-component (GOUT). The set of vertices
not contained in the GSCC from which the GSCC can be reached
by following edges in the correct direction is called the giant in-
component (GIN). Vertices that are not in the GSCC, GIN, or
GOUT but can either be reached from the GIN or can reach the
GOUT are in the tendrils of the network. Figure from [MNP06].
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and the giant in-component (GIN), whereas the set of vertices that can be reached
from most others consists of the GSCC and the giant out-component (GOUT). Fig-
ure 4 provides a diagram of a typical semi-directed network. The probability of a
large-scale epidemic corresponds to the relative size of the region shaded in vertical
lines, and the expected fraction of the population that will become infected during
such an epidemic corresponds to the relative size of the region shaded in horizontal
lines.

Evaluating control strategies

A primary public health goal is to bring disease from above an epidemic thresh-
old value to below the threshold value, thereby eliminating the threat of a large-
scale epidemic. This can be achieved through interventions that either directly
impact the infectiousness of the pathogen, modify patterns of interaction so that
the pathogen cannot easily spread through the population, or immunize segments
of the population. We call these three forms of intervention transmission reducing,
contact reducing, and immunizing [PMS05].

Transmission reducing interventions introduce physical barriers to interrupt the
spread of respiratory droplets or other infectious particles (e.g. face masks, gowns
and gloves, hand hygiene, disinfection of animate objects). These interventions are
modeled by reducing Tij, the probability of transmission from vertex i to vertex j,
at an appropriate subset of vertices.

Contact reducing interventions include isolation of infected persons, quarantine
of persons during their incubation period, patient and/or staff cohorting in hospi-
tals, and closing public spaces (e.g. schools). These interventions are modeled by
removing appropriate edges between vertices. For example, one can model school
closures in an urban contact network by removing all edges that represent contacts
between students, teachers, staff, etc., that take place during school.

Immunizing interventions include prophylactic medication and diverse vaccina-
tion strategies (e.g. ring vaccination, vaccinating individuals in contact with the
identified infected case; targeted vaccination, vaccinating specific groups of individ-
uals based on risk factors such as age, health, and place of employment; and general
vaccination). Vaccination prior to an outbreak is tantamount to removing the im-
munized individuals from the network entirely and thus is modeled by removing
vertices corresponding to those individuals.

To evaluate candidate control measures, we first modify the contact network
accordingly and then quantify the impact of these changes on the size of an outbreak
and demographic distribution of infections, identify segments of the population
where compliance is most critical to successful control, and predict the individual
and social benefits of complying with control measures. We will conclude with two
practical examples.

Example 1: Controlling walking pneumonia outbreaks in closed settings.
Walking pneumonia is a relatively mild form of pneumonia that spreads rapidly in
closed settings such as hospitals, nursing homes, military communities, and col-
lege campuses. As with many diseases, conducting human experiments to test
control measures is often infeasible or unethical. In collaboration with U.S. Cen-
ters for Disease Control and Prevention (CDC) officials, we built some of the first
network-based models of health-care settings with which we evaluated candidate
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strategies [MNMS03]. This work led the CDC to reject prior candidate strate-
gies (including isolation of sick patients and antibiotic prophylaxis) in favor of the
following intuitive yet previously overlooked strategy: upon the first diagnosis of
walking pneumonia, reassign caregivers so that they limit their interactions to fewer
wards. Although intuitive in retrospect, this insight came directly from analyzing
disease transmission in a realistic model of the underlying network of interactions.

Example 2: Optimal distribution of influenza vaccines. Pandemic influenza
is characterized by wide geographic person-to-person spread of a novel strain toward
which the population has no immunity. The three major pandemics of the 20th
century—in 1918, 1957 and 1968—collectively caused at least 600,000 deaths in the
U.S. and over 40 million deaths worldwide. Between major pandemics, the U.S.
experiences seasonal outbreaks of interpandemic flu that kill over 30,000 people
annually.

The threat of another avian influenza pandemic and the 2004-2005 influenza
vaccine supply shortage in the United States has sparked a debate about optimal
vaccination strategies to reduce the burden of morbidity and mortality caused by
the influenza virus. During the 2004-2005 vaccine shortage, priority was given to in-
dividuals most at risk for hospitalization and death: healthy infants, the elderly, and
individuals with chronic illnesses. These demographics, however, are not the pri-
mary spreaders of the influenza virus. Influenza outbreaks hinge, instead, on trans-
mission by healthy schoolchildren [LKMF82, FHCF82, JM78, TPGC82], college stu-
dents, and employed adults who are mobile and have many daily contacts [Gle96].
Some epidemiologists have therefore suggested that vaccines be given first to school-
age children rather than to at-risk groups [LHNY04, LH05, WEH05].Vaccination of
the children who are typically responsible for propagating disease throughout the
community may slow the spread of disease and thereby indirectly decrease infection
and mortality rates in the at-risk groups. This strategy has been supported both
theoretically and empirically [MKL85, RSF01]. One modeling study suggests that
vaccinating 80% of all schoolchildren is almost as effective as vaccinating 80% of
the entire population [LHNY04].

Using an urban contact network based on demographic data for the city of Van-
couver (with 260,000 individuals in 100,000 households), we quantitatively com-
pared these two strategies for both interpandemic and pandemic influenza [BPMss]:
(1) a mortality-based strategy that targets demographics with highest mortality
rates (infants, elderly, and health-care workers for interpandemic flu; and infants,
adults, and health-care workers for pandemic flu) and (2) a morbidity-based strat-
egy that targets school-aged children [BPMss].

In contrast to prior studies [LHNY04], this study considers a relatively large
population and the entire spectrum of viral transmission rates estimated for vari-
ous influenza strains. As illustrated in Figure 5, the optimal strategy appears to
depend critically on the viral transmissibility (reproductive rate) of the virus, with
morbidity-based strategies outperforming mortality-based strategies for moderately
transmissible strains, while the reverse is true for highly transmissible strains. This
result holds for both interpandemic flu and pandemic flu. Furthermore, delays in
vaccination and multiple introductions of disease into the community decrease the
relative effectiveness of morbidity-based strategies. Thus, mortality-based strate-
gies may be the prudent choice for outbreaks of new or atypical strains of influenza,
when public health officials may not have reliable estimates for all (or any) of the
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Figure 5. Expected mortality under different vaccination strate-
gies for epidemic (top) and pandemic (bottom) influenza. Arrows
mark transition between mildly contagious diseases which are bet-
ter controlled by morbidity-based interventions and more highly
contagious diseases which are better controlled by mortality-based
interventions. The dashed regions along the x-axis give the range
of transmission rates estimated from influenza data from annual
epidemics (top) and the 1918 pandemic (bottom).

first three inputs and vaccination may be delayed. When reliable estimates of the
key inputs are available significantly prior to an outbreak, then this approach can
be applied to design optimal (rather than just prudent) priorities.

Conclusions

Mathematical epidemiology continues to evolve, offering more detailed forecast-
ing and more effective control. Much of the recent progress has been fueled by
the importation of relatively simple ideas from dynamical systems, probability
theory and statistical mechanics. Despite these steps forward, infectious disease
control is more often than not based on intuition rather than quantitative reason-
ing. This is particularly true for newly emerging diseases, for which we know little
about the natural history and epidemiology of the pathogen. The variable pub-
lic health response to SARS provides a compelling example of such uncertainty.
When SARS emerged as a global threat in March 2003 [DGL03], the WHO and
other agencies issued travel warnings for affected cities. Hong Kong, Singapore
and China closed schools [Bei03]. A U.S. university denied attendance to students
from China [CNN03a]. Public health authorities worldwide put thousands under
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quarantine [CDC03]. Patients were strictly isolated [CDC04], and specific hospitals
in some cities were designated to receive SARS cases [CNN03b].

Contact network epidemiology can provide quantitatively grounded guidance for
public health officials facing newly emerging diseases like SARS and avian influenza.
Consider the previously cited analysis of flu vaccine strategies [BPMss]. In contrast
to other published mathematical approaches to this problem, our analytical meth-
ods have two advantages: they simultaneously capture realistic diversity in contact
patterns ignored by many compartmental models and shortcut the extensive com-
puter simulations required by agent-based models. In general, these advantages en-
able highly detailed and systematic consideration across several disease strains and
intervention strategies. In the case of flu, such a study yielded important insight. If
faced with a limited vaccine supply for either an interpandemic or pandemic strain
of flu, morbidity-based strategies (e.g., targeting schoolchildren) are predicted to
outperform mortality-based strategies (e.g., targeting elderly and infants) for strains
that are mildly contagious, while the reverse is true for moderately to highly con-
tagious strains. Furthermore, mortality-based strategies are generally advisable for
populations experiencing repeated introductions of disease from other communities
or delayed vaccination. This suggests that the U.S. Centers for Disease Control’s
2004 decision to prioritize the very young, the old, and the immunocompromised—
those most at risk for complications from flu—is generally more prudent than the
recently promoted alternative strategy of vaccinating schoolchildren.

This methodology also sheds light on the incompatability between early esti-
mates of R0 for SARS and the case count in China (discussed above). This likely
stemmed from the anomalously high contact rates in the hospital and apartment
building upon which the R0 estimates were based. Equation (22) clarifies that the
basic reproductive rate of a disease is context dependent; that is, it fundamentally
depends on the contact patterns of the population through which it spreads. Thus,
while the SARS estimates may be valid for unusually crowded settings, they proba-
bly do not hold for typical rural or urban communities in general, like those through
which SARS initially spread in China.

This example suggests that the emphasis on estimating the R0 for an infectious
disease may be misguided. Estimating the average transmissibility T instead of
R0 may be more valuable. This means reporting not just the number of new
infections per case, but also the total estimated number of contacts during the
infectious period of that case. Given the primary role of contact tracing in infectious
disease control, the relevant data is often collected. Unlike R0, T can be justifiably
extrapolated from one location to another even if the contact patterns are quite
disparate. We offer a simple example to illustrate the benefits of measuring T .
Suppose we measure R0 = 2.7 in a hospital where the average individual comes in
close contact with 100 other individuals. Then the probability that an individual
will catch the disease from an infected contact is just 2.7% or, in network terms,
T = .027. Now suppose the typical individual in the general population has 10 close
contacts that could potentially lead to the spread of a disease. If we extrapolate
R0 = 2.7 to the general public, then we predict that, on average, 2.7 out of every 10
contacts or 27% of contacts become infected. However, if we extrapolate T = .027
to the general public, we still have only 2.7% of contacts becoming infected, which
gives us a much reduced expectation for the spread of the disease.
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In closing, mathematical epidemiology is a rapidly developing field that thrives on
collaborations among scientists, mathematicians, and public health officials. Con-
tact network epidemiology is a particularly promising approach in which progress
is fueled by both scientific curiosity and public health concerns. As demonstrated
by the variable response to SARS, there is need for greater quantitative reasoning
in public health. The onus is on the modelers not only to make technical advances
but also to demonstrate the utility and accessibility of our models.
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