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ABSTRACT

The contact problem for a thin elastic reinforcement bonded
to an elastic plate is considered. The stiffening layer is
treated as an elastic membrane and the base plate is assumed to
be an elastic continuum. The bonding between the two materials
is assumed to be either one of direct adhesion or through a
thin adhesive layer which is treated as a shear spring. The
solution for the simple case in which both the stiffener and
the base plate are treated as membranes is also given. The
contact stress is obtained for a series of numerical examples.
In the direct adhesion case the contact stress becomes infinite
at the stiffener ends with a typical square root singularity
for the continuum model and behaving as a delta function for
the membrane model. In the case of bonding through an adhesive
layer the contact stress becomes finite and continuous along
the entire contact area.
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1. INTRODUCTION

The purpose of this paper is to investigate the distribution

of the adhesive shear stress in elastic plates reinforced by an

orthotropic elastic layer. The generalized plane stress analysis

of lap joints shows that if the stress variation in thickness

direction is not taken into account and if the Poisson's ratios

of the two bonded plates are equal, then the load transfer from

one plate to the other takes place along the edges of the bonded

region only [1,2]. This means that the contact shear between

the layers is zero everywhere except along the line boundary of

the contact area where its magnitude is infinite. Even when the

two Poisson's ratios are different, the magnitude of the contact

shear in the cont.act area away from immediate neighborhood of

the boundary is found to be extremely small [2]. This result is

rather disturbing because of the fact that in reinforcing the

plates with unidirectionally strong layers or straps the load

transfer is expected to take place through the adhesive bond and

the extremely large adhesive shear along the edge of the bonded

region means that the debonding would take place under relatively

low values of the external loads.

In practice the thickness of the reinforcing layer is

generally very small compared to the thickness of the base plate

and the in-plane dimensions of the layered medium. Hence in

analyzing the problem the reinforcing layer may be treated as a

"membrane". On the other hand for the base plate, because of

its relatively large thickness, a similar assumption neglecting
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the thickness variation of stresses may not be justified and the

base plate may have to be treated as an elastic continuum. Also

since the nature of the bonding between the layer and the base

plate is expected to be an important factor influencing the

behavior of the contact stresses, it would be useful to solve

the problem under different contact conditions.

In this paper we will consider the problem of an elastic

plate reinforced by an orthotropic layer under the assumptions

that, (a) the stress state in the layered medium is independent

of the z coordinate (see the insert in Figure 1), (b) the bend-

ing stiffness of the layer 2 is n e g l i g i b l e , (c) the base plate 1

is an elastic continuum, (d) the only external load acting on

the medium is the uniaxial tension c, °° = a away from the rein-
IX U

forcement region, and (e) the bonding between the two materials

may be accomplished through either a direct adhesion (insert in

Figure 1) or an adhesive layer of finite thickness h« (insert in

Figure 3). The solution for the special case in which the base

plate is also treated as a membrane w i l l also be given and

results will be compared with that of the continuum solution.

The solution for the limiting case of this problem for h-j = °°

and h = 0 is given in [3-8].

This means that the dimension of the composite medium in
z-direction is either very small or very large compared to
the x-dimension 2a of the stiffener. In the former case
^ave. = °' In the latter elz = £2z = eo • Eo * -Vlao/El
if the plate is under uniaxial tension a-jx = aQ away from the
stiffener and eQ = 0 if the plate is pulled through fixed
grips sufficiently close to the stiffener.
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2. THE CASE OF DIRECT ADHESION

Consider an isotropic elastic plate of thickness h-, stiff-

ened by an orthotropic layer of thickness h2 and width 2a (insert

in Figure 1). Let the base plate be subjected to a uniaxial

tension a, °° = a away from the stiffening region. Assuming
I A O

that the dimensions of the plate in x and z directions are suffi-

ciently large, the strains in z-direction may be expressed as

where E-, and v-, are the elastic constants of the base plate.

Also, for this case it may be assumed that the stresses in the

composite medium are independent of the z coordinate. Defining

the contact stress at y = 0 by

alxy(x,0) = - p(x) (2)

and treating the stiffening layer as a membrane, the e q u i l i b r i u m

of the layer and the condition of symmetry give

a a
h?aoY(x) = / p(t)dt , / p(t)dt = 0 , p(x) = - p(-x)
c ** x -a

(3.a-c)

Using (1) and the stress-strain relations

3u2 1

£2x = 3JT = F^ (°2x - V2xa2z) '

£2z ' - HTf = E^ («^^ - V2za2x> » (4'a'b)

from (3. a) we obtain

3u0 1 - v9uv0, a -̂1̂ 0,°,,
E -2L2x x t'\
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For the base plate solving the related field equations under

the boundary conditions

f-P(x) , |x|<a
a] (x,0) = 0 , aixv(x'0) = 1 , ,ly lxy I- 0 , |x|>a

alv(x,-h1) = 0 , tflYV(
x>-hi) = ° (6)

I J * * "Jf '

and adding a homogeneous solution due to a , for the displacement

•derivative at y = 0 we find

a a. 1-v-i a ,
" ../.. n\ _ 0 I f r I i. / .. j. \ i _ /
0X I t -I TT \if t~XI i -a

where the bounded function k(x,t) is given by

. 2L 2 o >, L o -2h-ia
oo 4a h, + 2 - 4ah, - 2e '

k (x , t ) = / —:—• -^ 2^- s ina ( t -x )da (8)
0 4a2h1

2 + 2 - e ] - e ]

Now, if the bonding along the interface y = 0 is one of direct

adhesion, using (5) and (7) from the continuity condition

U2(x) = u-,(x,0), (-a<x<a) we obtain the following singular

integral equation to determine the unknown function p(x):
a a a

fr / ̂  dt ' ¥ / k(x,t)p(t)dt + % / p(t)dt

r , (-a<x<a) , (9)
2(l-v 1)

where k(x,t) is given by (8) and

At the end points x = + a, p(x) must have integrable

*Using, for example, a technique similar to that outlined in [9],
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singularities. Hence, referring to [10], it may be shown that

the index of the integral equation is K = +1 and the solution

contains an arbitrary constant which is determined from the

equilibrium condition (3.b).

Let us now assume that h-|/a too is sufficiently small so

that the base plate can also be treated as an elastic membrane.

In this case, in addition to (1), (3) and (5), from the equilib-

rium of the base plate and from the stress-strain relations we

obtain

alx ' CTo - hT/ P(^dt •
I A

2 29un 1-v, VT a^

Substituting from (5) and (11), the continuity condition

j~ = 3-5- » (-a<x<a), gives

a
B - A / p(t)dt = 0 ,

x
2

1 - v,v~_ 1-v, 1 - v? v?
B = F

 ] 2z an , A = r-F1- + H F • (12.a-c)El ° h!El h2E2x

From (12) and (3.b,c) it is easily seen that

p(x) = f [6(x-a) - 6(x+a)] , (13)

that is, p(x) is zero everywhere except at x = + a where it is

infinite. For this simple model, the stresses in the stiffener

and in the base plate are found to be
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B_
2

n(x) = { R (14.a,b)

3. ADHESION THROUGH AN ELASTIC SHEAR LAYER

If the bonding between the base plate and the stiffener is

accomplished by using an adhesive material with elastic proper-

ties different than that of the plate and the stiffener, the

solution given in the previous section w i l l not be va l i d . In

this section the effect of the adhesive layer w i l l be taken into

account by assuming that due to its relatively very small thick-

ness the adhesive may be treated as a "shear spring". That is,

referring to the insert in Figure 3 if u2(x) and u-|(x,y) are the

x-components of the displacement vectors in the stiffener and in

the base plate, respectively, and if h3 is the thickness and y,

is the shear modulus of the adhesive, the continuity condition

along the interface may be expressed by

h3
u^x.O) - u2(x) = ̂ - p(x) (15)

where p(x) is the contact shear defined by (2), and the stiffener

is again treated as a membrane. Noting that u2(0) = 0, from (5)

we obtain

Viv9-7°n 1 ~ V?YV?7 x a

u2(x) = V ° x + . |x 2z / ds / p(t)dt
d Ll "2b2x o s

V 7 Y 7x z Px - x z / (x-t)p(t)dt ,
h2L2x h2b2x o

(16)
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where P is a constant defined by

P = / p(t)dt . (17)
o

Similar ly, express ing (7) in the range (0 ,a ) and integrating,

we find

u^x.O) = ^ x - -̂J- / [ log | t+x | - l o g | t - x |

- k^x.tHpdOdt , (0<x<a) , (18)

where
~ 7 -2ah,

» 4a hj + 2 - 4ah, - 2e '
k^x. t ) = / - — - - rzHH- - ^— [cosa ( t - x )

0 a(4a2h1
Z + 2 - e ] - e ])

- cosa ( t+x ) ]da . (19)

Subst i tut ing now from (16) and (18) into (15 ) we obtain the

fo l lowing integral equat ion to determine the unknown funct ion

P ( x ) :

I /nog|£f| - k 1 ( x , t ) ] p ( t ) d t - £ / ( x - t ) p ( t ) d t + y \ }_ l } p (x )
O \j O I

p,
^ - ^ ^ ' (0<x<a) (20)

where the constants X and P, and the kernel k,(x,t) are given by

(10), (17), and (19), respectively.

If h,/a is sufficiently small for this problem too a very

simple solution may be obtained by treating the base plate as

well as the stiffening layer as a membrane. In this case the

equations (3), (5) and (11) remain valid. Thus, differentiating
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the continuity condition (15) and substituting from (5) and (11),

we obtain the following simple i ntegrodiff erenti.al equation to

determine the unknown function p(x):

B - A / p(-t)dt = -2- J- p(x) , (0<x<a) (21)
x y3 ax

where B and A are given by (12.b,c). Solving (21) under the con-

dition that p(0) = 0, we obtain

n(v) = £ ShaX a = /̂ lx ft - —I 177 * C\pu; a chaa ' .a ( h,' ' 3 ~ h ' (ZZ.a-c)
O _ O

It may be seen that (22) reduces to (13) as h3->-0. To do

this note that for small values of h3 we have

£=0(h-V, a = 0(h -^ , |JM = 0(e-a(a-x)) . (23)
u. o o t* n Otd

Thus, since lim z"2e"ez ->• 0 as z -»•« for any e>0, from (22) we

obtain

rO , (0<x<a) ,
1 i m p (x) = <
h3^0 {«> , (x = a) ,

a B
. lim / p(x)dx = ̂  , (24.a,b)

ho~*"0 o

which is the result found in the previous section.

4. SOLUTION OF THE INTEGRAL EQUATIONS AND NUMERICAL RESULTS

Referring to [10], the solution of the singular integral

equation (9) is of the form

p(x) = f(x)(a2-x2)"}'2 , (25)

where f(x) is a bounded odd function. The integral equation is

solved by using the technique described in [11]. The major
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numerical problem here is the evaluation of the kernel k(x,t)

given by (8) for which a modification of Filon's integration

formula given in [12] is used. In this problem the physical

parameters which may be varied are the thickness ratio h-j/a for

the base plate and the dimensionless constant X defined by (10),

In the numerical examples given in this section the following

material constants are used:

Base plate: Aluminum (E-, = 10 psi, v, = 0.3),

Stiffener: Boron-Epoxy Composite (E2x = 32.4x10 psi,

v~ =0.23, E9_ = 3.5xl06 psi, v,_ = 0.025,
C. A C-i £ Z

U2 = 1.23xl06 psi),

Adhesive: Epoxy (y3 = 1.65xl0
5 psi, v3 = 0.35).

For a fixed value of h,/a = 0.25 the contact stress p(x)

obtained from (9) for various values of X is shown in Table 1.

Similar results for a fixed value of X = 0.5 and various values

of h-,/a are shown in Figure 1. At the end points x = + a the

contact stress has a conventional square root singularity the

strength of which may be characterized by a constant defined by

(see (25))

K = lim /2(a-x) p(x) = f(a)//a . (26)

Figure 2 shows the variation of the constant K with h^/a and X

The values of K corresponding to the results given in Table 1

are shown in Table 2 where

o- /ao
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Table 1. Distribution of contact stress for a stiffener
directly bonded to an elastic plate (Materials:
1 Aluminum, 2 Boron-Epoxy composite, h-,/a = 0.25)

Va

T= 9 .9862953E-01
T= 9 .8768834E-01
T= 9 .6592583E-01
T= 9 .3358043E-01
T= 8 .9100652E-01
T= 8 .3867057E-01
T= 7 . 7 7 1 4 5 9 6 E - 0 1
T= 7 .0710678E-01
T= 6 .2932039E-01
T= 5 .4463904E-01
T= 4 .5399050E-01
T= 3 .5836795E-01
T= 2 .5881905E-01
T= 1 .5643447E-01
T= 5 . 2 3 3 5 9 5 6 E - 0 2

Va
T= 9 . 9 8 6 2 9 5 3 E - 0 1
T= 9 .8768834E-01
T= 9 .6592583E-01
T= 9 .3358043E-01
T= 8 .9100652E-01
T= 8 .3867057E-01
T= 7 .7714596E-01
T= 7 .0710678E-01
T= 6 .2932039E-01
T= 5 .4463904E-01
T= 4 .5399050E-01
T= 3.5836795E-01
T= 2.5881905E-01
T= 1 .5643447E-01
T= 5 . 2 3 3 5 9 5 6 E - 0 2

20-v/) p( t i )

1 ~ v v 0
1 2.2. 0

X = 5

4.1003254E+00
1 .1602731E+00
5 . 3 5 4 7 8 9 6 E - 0 1
2 .6658982E-01
1 . 2799551E-01
5 . 4 9 5 8 6 7 6 E - 0 2
1 . 9 5 2 8 1 4 5 E - 0 2
5 . 1 3 6 8 2 5 9 E - 0 3
7 . 3 0 0 9 1 7 7 E - 0 4

- 9 . 8 3 4 5 7 8 0 E - 0 5
-9 .4163598E-05
- 2 . 9 8 7 8 9 0 7 E - 0 5
-5 .4920568E-06
- 4 . 0 9 7 7 3 6 4 E - 0 7

6 .0685120E-08

X = 0.5

5 .1721770E+00
1 .5959247E+00
8 .2024154E-01
4 .5769981E-01
2 .4751027E-01
1 .2129973E-01
5 .0959695E-02
1 . 7369433E-02
4 .4618109E-03
7 .1678844E-04

- 6 . 3 5 1 2 7 8 6 E - 0 6
-4 .8336798E-05
-1 .8338700E-05
-4 .3008397E-06
-6 .2258680E-07

X = 2

4.7358320E+00
1 .4171615E + 00
7 . 0 0 6 7 1 4 6 E - 0 1
3 . 7 5 0 0 2 4 2 E - 0 1
1 .9403152E-01
9 .0503116E-02
3 . 5 7 3 7 6 3 3 E - 0 2
1 . 1123089E-02
2 .4095920E-03
2.0800832E-04

-8 .6114432E-05
- 4 . 7 7 2 2 4 3 3 E - 0 5
-1 .3046450E-05
- 2 . 2 5 7 4 1 3 4 E - 0 6
- 2 . 0 6 9 3 2 8 7 E - 0 7

X = 1/3

5 .2277471E+00
1.6187991E+00
8 . 3 5 7 7 3 3 4 E - 0 1
4 .6866637E-01
2 . 5 4 7 7 5 1 6 E - 0 1
1 .2560020E-01
5 .3156164E-02
1 .8309233E-02
4 .7891450E-03
8 . 0 5 9 5 7 0 4 E - 0 4
1 .0913307E-05

-4.6879506E-05
-1 .8822525E-05
-4 .5782013E-06
-6 .8811183E-07

X = 1

5.0147577E+00
1 .5312509E + 00
7 . 7 6 6 0 1 1 2 E - 0 1
4 .2715300E-01
2 .2748018E-01
1 .0958186E-01
4 . 5 0 5 8 7 2 0 E - 0 2
1 .4889820E-02
3 .6196458E*03
4 . 9 6 3 8 8 0 7 E - 0 4

- 4 . 5 5 5 7 4 2 5 E - 0 5
- 5 . 0 2 5 0 1 2 1 E - 0 5
-1 .6648501E-05
-3 .5199361 E-06
- 4 . 5 0 7 1 1 9 2 E - 0 7

X = 0.2

5.2734079E+00
1 .6376110E+00
8 .4858310E-01
4 . 7 7 7 4 7 2 4 E - 0 1
2 .6081943E-01
1 .2919782E-01
5 .5005804E-02
1 .9107330E-02
5 .0703810E-03
8 .8397127E-04
2 . 6 5 7 3 5 3 1 E-05

-4 .5328367E-05
-1 . 9 1 6 2 5 2 1 E - 0 5
-4 .8039158E-06
- 7 . 4 3 4 7 0 3 1 E - 0 7
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Table 2. Strength of stress singularity K
corresponding to Table 1 (—L = 0.25)a

X

K

^

5

0.2187 '

2

0.2511

1

0.2653

0.5

0.2733

1/3

0.2762

0.2

0.2785

For the stiffened plate problem in which a separate adhesive

layer is used to join the stiffener to the base plate the numer-

ical results obtained from the solution of (20) are shown in

Figures 3 and 4. Here the kernel of the integral equation is

square integrable. Hence the equation is that of a Fredholm

integral equation of the second kind. Consequently, its solution

p(x) w i l l be bounded and continuous in the closed interval 0£x<^a.

Because of the logarithmic term in the kernel, from the integral

equation (20).it can be shown that at the end point x = a

dp/dx will be infinite. Figure 3 shows the effect of h-j/a on

p(x) for a constant A = 5 (which, for the materials under con-

sideration, corresponds to h2/a = 0.0336) and h3/a = 0.004. For

h,/a = 0.25 the effect of X is seen in Figure 4. The figures

indicate that there is a severe stress concentration at the end

point x = a and for relatively small h^a, because of the "bend-

ing" of the base plate, there is a sign reversal in the shear

stress p(x) acting through the adhesive. The same stress rever-

sal effect (in a smaller degree) is also observed in the direct

adhesion (i.e., h3 = 0) case shown in Table 1.

Figure 5 shows the comparison of the results obtained by
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using three different models. Curve (a) corresponds to the

direct adhesion (ho = 0) problem in which the stiffener is

treated as a membrane and the base plate is an elastic continuum

(equation (9)). Curve (b) contains the effect of the adhesive

layer in addition to the assumptions made for (a) (equation (20)).

Curve (c) is obtained from (22) where both the stiffener and the

base plate are treated as membranes and the bonding is through

an adhesive layer. The fourth model (i.e., two membranes bonded

without any adhesive) would simply give a peak of infinite magni-

tude at x = a and zero values elsewhere (equation (13)). The

numerical solutions of the integral equations (9) and (20) indi-

cate that as h,/a and hp/a decrease the convergence becomes

slower and hence computations become costlier. On the other

hand Figure 5 shows that even for a relatively large h,/a the

difference between the membrane solution (c) and continuum base

plate solution (b) may not be considered high enough to justify

the elaborate and complicated analysis required by the latter.

For smaller values of h./a (i=l,2) the difference would, of

course, be even smaller. Hence, it may be concluded that in the

type of problems discussed in this paper the closed form solution

given by (22) may give adequate results provided h-j/a and h2/a

are "sufficiently small" . The results also show that in the

*The results given in this paper may be a useful guide in attempt-
ing to interpret the phrase "sufficiently small" quantitatively.
For example, from these results it is clear that for the practi-
cal problems considered in [13], the membrane assumption would
be perfectly adequate. Another model for problems of this kind
would be the treatment of the elastic layers as "plates" with
certain bending stiffnesses and the approximation of the adhesive
by a combination of uncoupled shear and tension springs. This
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presence of an adhesive layer the direct adhesion model de-

scribed in section 2 is totally unsuitable for the analysis

of bond rupture.

would give rise to normal as well as shear contact stresses
along the contact area. For geometries such as lap joints the
concentration of the normal stresses would be quite signifi-
cant, playing an important role in bond rupture studies. For
the symmetric geometries, however, one would expect that the
dominant contact stress would be the shear stress which would
be approximately the same as that obtained from the membrane
theory.
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Figure 1. Distribution of contact stress for the direct
adhesion case. Materials: 1 Aluminum, 2 Boron-Epoxy Composite;i _ ,. ,.
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Figure 3. Distribution of contact stress for the case of
bonding through an adhesive layer. Materials: 1 Aluminum,
2 Boron-Epoxy Composite, 3 Epoxy; X = 5, h3/a = 0.004,
Pn ' °«0 -v^-
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Figure 4. Same as Figure 3 for constant hj/a = 0.25 and
h0/a = 0.004 and varying A; P() = oo(l - v,v2z)/(2(l-V]
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Figure 5. Contact stress distribution calculated from various
models: (a) Stiffener: membrane, Base Plate: elastic continuum,
Contact: direct adhesion; (b) Stiffener: membrane, Base Plate:
elastic continuum, Contact: bonding through an adhesive layer;
(c) Stiffener and Base Plate: membrane, Contact: bonding through
an adhesive layer. X = 5, a/h-j = 4, h /a = 0.004.


