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ABSTRACT 

Certain problems in which a cooled rigid punch indents an elastic half-space have no steady state solution. 
A simple model is described in which it is shown that this paradox is avoided by the assumption of a 
thermal resistance varying inversely with contact pressure. A limiting case of this system retains linearity 
and introduces a state of "imperfect" contact in which contact pressure is negligible but there is significant 
thermal contact resistance. 

This approach is generalized to permit the formulation of three dimensional contact problems and one 
such problem is solved for an axisymmetric geometry. Particular results are given for the identation of a 
half-space by a cooled rigid sphere. 

RI~SUMI~ 

Les probl~mes de contact thermo61astiques pour un demi-espace entaill6 par un poin~on rigide refroidi 
n'ont pas parfois de solution 6tablie. On d6crit un module simple demontrant qu'on 6vite ce paradoxe en 
supposant une r6sistance thermique varient en raison inverse du pression de contact. On retiens linearit6 
avec un eas limitatif de ce syst~me en introduisant une condition de contact "imparfait" ou ie pression de 
contact est n6gligeable mais il y a de la r6sistance thermique de contact signifieative. 

On g6n6ralise cette m6thode pour permetter la formulation des probl~mes de contact thermique dans 
trois dimensions et un probl~me de ee type est r6solu en cas de symetrie axiale. On donne des resultats 
particuli~res pour le demi-espace entaill6 par une sph6re rigide refroidie. 

I.  Introduction 

In  thermoelas t ic  contac t  p rob lems ,  it is cus tomary  to assume that  perfect  the rmal  

contac t  occurs in all regions  of mechanica l  contact ,  whilst  over  the rest of the solid 

surfaces there  is no  hea t  t ransfer .  

Wi th  this fo rmula t ion ,  it is found  that  cer ta in  p rob lems  have no s teady-s ta te  

solut ion.  For  example ,  if a cooled rigid sphere  is pressed in to  an  elastic half-space,  

the a s sumpt ion  of,\a circular contact  area  leads to unaccep tab le  tensi le contact  

stresses nea r  the ou te r  radius  [1]. However ,  the only  a l te rna t ive  ax isymmetr ic  

contact  geomet ry  is ~ system of concent r ic  annul i ,  which is ru led  ou t  by a t he o r e m 

[2] r equ i r ing  that  the contact  area should  no t  be  mul t ip ly -connec ted .  

In  the more  g e n e ~ l  case where  bo th  solids are deformable ,  s imilar  p rob lems  tend  
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to arise when the hotter solid has the higher thermal distortivity (~) defined by 

a(1 + v) 
-- K ' (1) 

where a, K, v are respectively the coefficient of linear thermal expansion, thermal 
conductivity and Poisson's ratio for the material [3]. 1 

2 .  A o n e - d l m e n s i o n a l  m o d e l  

The main features of the problem and the proposed solution can best be exposed by 
considering the simple one-dimensional system shown in Figure 1, for which I am 
indebted to Professor Dundurs [4]. Two rigid walls, A, B, separated by a distance l 
are maintained at temperatures TA, TB, respectively and a uniform elastic rod of unit 
cross-sectional area is built into wall A as shown. The length of the rod is ( l -go)  at 
the temperature To. Now suppose that TB is maintained constant at the value To, 
whilst TA takes various values. If the rod fails to make contact with wall B, the gap g 
will be determined by 

_a__o 
g = g o - a  ( T - T o )  d x =  go Oc ' (2) 

where Q is the quantity of heat required to raise the temperature of the rod to this 
state from a datum at To, and p, c, are respectively the density and specific heat of 
the rod material. 

The system will tend to a steady state in which T = TA throughout the rod, there 
being no heat loss from the end, and hence 

g = g o - a l ( T A  - To). (3) 

The gap g cannot be negative and hence we can only have continuous non-contact as 
long as 

(TA -- To) "~ go/M. (4) 
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Figure 1 

1 If the cooler solid has the higher distortivity, there can be problems of lack of uniqueness. 
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Now suppose the rod expands sufficiently to make contact with wall B. Heat  will 
be conducted along it and in the steady-state there will be a linear variation of 
temperature  from TA at one end to To at the other.  In this case there will be a 
contact pressure p, between the rod and wall B given by 

Ea (TA -- To) Ego 
P = 2 l (5) 

where E is Young's modules for the material of the rod. This contact pressure cannot 
be negative (tensile) and hence 

( TA -- To) >- 2go~cal. (6) 

Considering the two inequalities (4, 6), we must therefore conclude that in the 
range 

go/al < (TA - To) < 2go/al (7) 

the system cannot exist in a steady-state either of contact or non-contact.  
The absence of a uniform steady-state solution suggests that a cyclic condition will 

be reached in which there are alternating periods of contact and non-contact.  
In such a condition, the non-contact  period must follow a period of contact and 

the initial gap size must therefore be zero. However ,  during the non-contact  period, 
the flow of heat into the rod from wall A must be positive and hence, from equation 
(2), dg/dt<O-- i .e ,  the gap can only get smaller. 

It follows that contact must be re-established as soon as it is broken and it is easily 
shown that the contact period also can have only an infinitesimal duration. Hence,  
unless a physical meaning can be given to the concept of Contact and non-contact  
alternating with infinite frequency, we must conclude that a cyclic solution is 
impossible. 

3. Introduction of a pressure dependent contact resistance 

A possible cause of this difficulty is the fact that the change from contact to 
non-contact  (i.e. from zero to infinite contact resistance) is discontinuous. In a 
practical system, some resistance to heat flow across the contact will be experienced 
before the contact pressure has fallen to zero. The range of conditions over which 
this effect is significant may be small, but  it introduces the possibility of conditions 
intermediate between the extremes of perfect contact and non-contact.  

Suppose the system of Figure 1 is modified to include a pressure dependent  
contact resistance R. 

The temperature  at that end of the rod which makes contact with the wall B can 
now differ from T O and will be denoted by Tc. In the steady-state, Tc is given by 

K(TA - Tc) = (Tc  - To) (8) 
l R ' 

where K is the thermal conductivity of the rod material. 
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The contact resistance, R, would be expected to fall as the contact pressure, p, 
rises and hence it will be provisionally 2 represented in the form 

R = A/p (9) 

where A is a constant. 
The contact pressure, which depends upon the mean temperature of the rod, will 

now be given by 

Ea(TA + T c - 2 T o )  
Ego/l (10) P =  2 

(cf. equation (5) in which Tc = To). 
Eliminating Tc and R between equations (8, 9, 10) we obtain the relation 

E K A  
pZ + (go/l + KA/EI  - a (T  A - -  To)/2)Ep + (go / / -  ot (TA - -  To)) ~ = 0 (11) 

between p and ( T A -  To), which is illustrated in Figure 2. 
Equation (11) defines a hyperbola whose asymptotes are the lines 

p = - 2 A K / l ,  (i) ~ (12) 

p = Ea(TA - T o ) / 2 - A K / l - E g o / l ,  (ii) ) 
which are shown dotted in Figure 2. For values of ( T A -  To)< go/al, both values of p 
are negative and of no physical significance. In this range, we have continuous 
non-contact as indicated by the simpler model (inequality (4)). However, we now 
have a solution with positive contact pressure for all values of ( T A -  To) >~ go/od, 

P J 

Cu 

Figure 2 

2 In fact, the exact form of this inverse relationship proves irrelevant to the later stages of the argument. 
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corresponding to the upper branch of the hyperbola of Figure 2 to the right of .point 
N. Thus, the introduction of a pressure dependent thermal contact resistance 
removes the anomalies of the system of Figure 1 and permits a steady-state solution 
to be obtained under all applied conditions. 

4. A limiting case 

In principle, this approach could be extended directly to problems in two and three 
dimensions, but at the considerable cost of making the controlling integral or 
differential equations non-linear. However, a compromise can be achieved by 
examining the behaviour of the system as the constant A in equation (9) becomes 
small. 

As A tends to zero, the horizontal asymptote 12 (i) in Figure 2 approaches the 
axis p = 0 and the hyperbola crowds more closely into its asymptotes near their point 
of intersection. The point N at which p for the upper branch becomes positive does 
not move. 

In the limit, the upper branch to the right of point N consists of the two lines 

p = 0 ;  2go/al>~(TA-To)>~go/al, (i) ~ (13) 

p=Ea(TA-To)/2-Ego/l; (TA-To)>2go/al. (ii) J 
The physical interpretation of this result is that, when there is a non-zero contact 

pressure, the thermal contact resistance is negligible and we have conditions of 
perfect contact (compare equations (5) and (13(ii))). However, in the range 2go/al > 
(TA- To)> go/al the contact pressure is negligibly small and the contact resistance 
can be significant. We might describe this as a state of imperfect thermal contact. 
Finally, when (TA-To)<go/al, the contact is broken and a positive gap, g, is 
developed as in the simple model. 

It should be noted that in the state described here as imperfect contact, we know 
that the contact pressure is negligible (zero in the limit) and that the gap g is zero, 
but nothing is known about the temperature of the end of the rod except that it must 
lie in the range TA > Tc> To, since contact resistance cannot be negative. This 
inequality defines the conditions under which imperfect contact will occur (i.e. (13(i)) 
above). 

S. Thermoelastic indentation problems for the half-space 

The above approach can now be extended to problems in which a frictionless elastic 
half-space is indented by a perfectly conducting rigid punch. The half-space is taken 
to occupy the region z > 0 and the normal displacement and traction at the surface 
are denoted by uz, trzz respectively, tensile tractions being considered as positive. 
The temperature field in the half-space is denoted by T. 
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We now postulate that the surface of the half-space consists of regions of perfect 
contact, imperfect contact and non-contact, in which the boundary conditions are as 
follows: 

(a) Perfect contact 

T = To, (i) 

uz = Uo, (ii) 

o'zz < 0; (iii) 

(b) Imperfect contact 

uz = Uo, (i) 

o-,~ = 0, (ii) (14) 

OT> 
( T -  To) ~z 0; (iii) 

(c) Non-con tac t  

tr~z = O, (i) 

OT/Oz = 0, (ii) 

u~ > Uo; (iii) 

where Uo, To are prescribed functions describing the profile and the temperature 
respectively of the punch. The tangential tractions trxz, o'yz, are taken to be zero 
throughout the surface. Note that those thermoelastic contact problems which can be 
solved with the conventional boundary conditions are included within this system as 
cases in which there are no regions of imperfect contact. 

If the temperature field has reached a steady state, T will be a harmonic function 
and it is possible to express the state of stress in the half-space in terms of two 
harmonic potential functions [5]. We note that the surface displacement uz and the 
contact stress o'z~ each appear in two of the equations (14) and hence it is helpful to 
choose a representation in which these quantities take a particularly simple form. 
Such a representation can be derived from Williams' solution [5] by replacing tO by 
(qJ-X) in his equations (9-11), giving the solution 

u = VX - zVOx/Oz - 2(1 - v)V~b + 4(1 - v) k 0--~, dZ 

T = -  

where 
The 

32X cqEx 
s J 2 G  = k - s - s -  z V  3 Z  2 '  

O Z -  

(15) 

2(1 - v) p2~b O2X~, (16) 
a ( l + v )  t0Z 2 ~Z2J 

u is the displacement vector and X, qJ are two harmonic potential functions. 
component of stress acting on the z plane is 

(17) 

where G is the modulus of rigidity. 
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On the surface plane, z = 0, this component reduces to a purely normal stress 

ozz = 2 G  02x (18) 
OZ 2' 

whilst the normal displacement at the surface is 

0~0 (19) uz = 2 ( 1 -  v) ~z,  

from equation (15). 

6. Indentation by a cooled sphere 

To illustrate the use of these results we shall consider the case in which the 
half-space is indented by a cooled rigid sphere. If this problem is treated by making 
the conventional assumption of a dichotomy between non-contact and perfect 
contact, it is found that tensile contact stresses are required at the edge of the 
contact circle [1]. With the modified boundary conditions developed above, we 
should therefore expect to find an annulus of imperfect contact surrounding a central 
circle of perfect contact. 

Denoting the inner and outer ratio of this annulus by a, b respectively and using 
equations (14, 16, 18, 19) above, we have the following boundary conditions at the 
surface plane, z = 0: 

0 <~ r <~ a perfect  contact  

Otk/Oz = u/2(1 - v), (i) 

a(1 + v ) T  (ii) 021~]OZ2--O2X/OZ2 = 2 ( 1 -  v) ' 

a < r <~ b imperfect  contact  

O~b/Oz = u /2(1-  v), (iii) 

02X/Oz 2 = 0, (iv) 

b < r < oc non-con tac t  

a2X/Oz 2 = 0 (v) 

~31~/~Z3 --  0 3 X / 0 z 3  = 0 (vi) 

(20) 

where u, T are prescribed functions of radius, r, describing the profile and the 
temperature respectively of the punch. 
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7 .  S o l u t i o n  

The conditions 20 (iv, v) can be satisfied identically by representing the harmonic 
function 02X[OZ 2 in the form 

0z2=2--~ gl(t) (r2_(z+it)2)~/2 (r2+(z+i t )2)v2  dt 

" gl(t) dt 
= I m  (r 2 + (z - it)2) rE' (21) 

where gl, is an unknown function of t to be determined from the other boundary 
conditions. This method of treating axisymmetric boundary value problems was 
developed by Green [6, 7] and Collins [8]. 

Differentiating equation (21) with respect to z we obtain 

i o 03X= Im - ( z  - it)g1(t) dt 
OZ 3 (r 2 + (z -- it)2) 3/2 

(r 2 + (z - it)2)v2 J" 

At the boundary z = 0, these expressions approach the limits 

O2X/OZ2= I a gx(t) dt (t2_r2)l/2; O<~r~a (i) (23) 

= 0; r > a (ii) 

03X/OZ3= 1 d fmin(r, a) tga(t) dt 
- r  d-~ Jo (g-~ ?~72' (24) 

subject to suitable conventions concerning the signs of the square roots. These 
conventions are more fully discussed by Green [6]. 

It is convenient to represent the second harmonic function, ~, as the sum of two 
functions, 0a, 02, the first of which satisfies the boundary conditions 

O ~ b J O z = u / 2 ( 1 - v ) ;  O<-r<~b, (i) (25) 

02~bl/0Z 2= 0; r > b. (ii) 

This function can be represented in the same form as X above as 

~ b j( t)  at 
oed/t/Oz 2 = Im (r 2 + (z - it)2) 1/2' 

On the boundary z = O, this simplifies to 

i 
b j(t) dt 

821~1/0Z2 ~'~ (t2 r2)l/2, O<~r<~b, 

=0 ;  r>b ,  

(26) 

(27) 

thus satisfying 25(ii) identically. 
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The other boundary condition 25(i) requires that 

d2u 1 _ ~ ) /  (02 010~1 0301 V2 
 7F+7 2 ( 1 -  v) = ~ r 2 + r  [since a@x/az = 0] ~ ]  Og = 0Z 3 

1 d [" q(t) dt 
= r d--r ,o (r 2_ t2)1/2 ; 0 ~< r ~< b (28) 

by comparison with equation (24). 
The surface displacement, u, is a prescribed function and hence equation (28) can 

be treated as an Abel integral equation for j(r) whose solution is 

1 d ~r (t 2 du/dt) dt 
](r) = I r (1 -  v)r dr .~ (r E_ tE)U 2 ; 0 ~< r ~< b (29) 

(see Copson [9] Lemma 2). 
In that part of the surface where r >  b, 

031//1 1 d fb tj(t) dt 
OZ 3 ~ -  r dr Jo (r 2 -  t2~  TM (30) 

Treating ~1, as a known function, the following boundary conditions remain to be 
satisfied by 1~2 and X: 

002/0z=0; O<~r<~b, (i) ) 

l a ( l + v ) T  2 
= ~0 ~1. O ~ r ~ a ,  (ii) (31) 0 2 X/OZ2  - -  021~12/0Z2 2(1 -- /2) OZ 2 ' 

03X/OZ 3 --  031112/0Z 3 = 031111/0Z3"~ r >! b. (iii) 

Condition 31(i) can be satisfied by representing 0~2/0z in the form 

= . /'Jr 
O0---~2=Imoz Jb [ Jfg2(t)~ln[(r2+(z-it)2)x/2+(Z-lt)]+-2~ dt (32) 

and the remaining two conditions will then give two simultaneous integral equations 
for the unknown functions gl, gz. 

Equation (32) can be differentiated to give 

021//2 = I m  g2(t) dt 
Oz 2 (r 2 + (z - it)2) 1/2' 

0302= Im { l  d ( z -  it)g2(t)dt 
0Z 3 ~ I? (r2 +(z--it)2)l/zJ 

and, on the boundary z = 0, these expressions reduce to 

02~b2= ~ g2(t) dt 
0Z2 L ax(r,b) ( t 2 -  72) I/2'  

031//2 1 d [ '  tg2(/) dt 
Oz 3 = - r  d-r ~, (r 2_ t2)1/2; r > b (i) 

-- O; 0 ~< r ~< b. (ii) 

(33) 

(34) 

(35) 

(36) 
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We now substitute for 02)(fOZ 2, 02~/1/OZ 2, 02~2/0Z 2, from equations (23, 27, 35) 
respectively into the boundary condition 28(ii), obtaining 

fb ~ g2(t) dt  fb j.(t) dt fa g,(t)dt a ( l + v ) T  
( t2 - r2) l /2"FJr  ( t2-r2)  1/2 Jr (t2-----r-2") "i~2= 2 ( l - v )  ' O<'r<~a" (37) 

This can be treated as an Abel  integral equation for ga whose solution is 

gl(x)= 2 d fall= g2(s2a  fb j(s).a  
~" dx J~ [Jb (S z -  t2) 1/2 J, ( s 2 -  t2)t/2 2(1-- v) J 

see Copson [9], Lemma 3) 

tdt 
x ~ ;  O<~x<~a, (38) 

The order of integration in the last two terms can be changed to give 

a ( l + v )  d [a tT(t) dt 
gl(x) = w(1 - v-~) dx .Ix ( t2 - -  X2) 1/2 

2 d f Cb ~min(s,a) tdt 
( t 2 - - x 2 ) l / 2 ( S 2 - - t 2 )  112 

(t2_x2)9~s2_t2)l/2 J O<~x<~a 

and on performing the inner integration this becomes 

gl(x) = - -  a ( l + v )  d I f  tT(t) dt 
w(1 - v) dx (t 2_ x2)1/2 V j(x) 

2x {Iab(SZ-a2)l/Zj(s)ds 
q" 7r(a 2 -- X2)l/2 (S 2 -- X 2) 

~-IfO(s2-a2)l/2g2(s)ds} ; ( s :  - x 2 ) 

(39) 

O~x~a .  

(40) 

The second integral equation, obtained from condition 31(iii) by substituting from 
equations (24, 30, 36) is 

r dr (r2- t2) l /2+Jo (r2-t2) 1/2 Jo (rZ-t2)v2J 0; r > b  (41) 

and it can be solved to give 

g2(s) = ' ~ s  d--s B -  Jo ( r 2  t2)1/2 4- Jo ( r 2 -  t2)1/2/(s  2 -  r2)l/2J ' s I> b (42) 

where B is a constant of integration to be determined from considerations of 
continuity at s = b. 

On changing the order of integration and performing the inner integral, this 
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becomes 

2 { ~bt(b2-t2)l/2j(t)dt 
g2(s) =- qT(S2 b2)1/2 B - (s 2_  t2 ) 

f ~ t(b 2-(__~_~t2)l/2gl(t ) dt } 
+ Jo , s >~ b.  (43) 

The constant  B is de termined f rom the condit ion that  tempera ture  and hence 
02@2/az 2 should be cont inuous at r = b. This is only satisfied if g2(r) is bounded  at 
r = b; hence 

~o b tj(t) dt ~o a tgl(t) dt 
B = (b2_ t2)~/2 (b2_ t2)1/2 , (44) 

and 

g2($) = _ _  (s2_ t2)(b2 - t2)1/2 __ (s2_tZ)(b2 _t2)1/2J, S>I b. (45) 

This expression for g2(s) can now be substi tuted into equat ion (40) to give 

gl(x) = ~r2(a2_ x2)1/2 (s 2_ t2)(b 2_ t2)1/2 
fa tgl(t) dt / ( s 2 -  a2)l/2(s2-- b2)1/2 ds 
Jo (s 2 - t2)(b 2 - t2)1/2 j (s 2 - x 2) 

a ( l + v )  d fa tT(t) dt 
v) dx £ j(x) 

2x Iab (S 2 -  a2)l/2j(s) ds 
"q 7r(a2x2)l /2 (s2 X2 ) O<~x<~a, (46) 

which can be expressed as a Fredholm integral equat ion of the second kind for gx(x) 
of the form 

g~(x) = K(x, t) g~(t) dt+f(x); O~x~a ,  (47) 

where  
4xt foo (s 2_  a2)l/2(s 2_ b2)1/2 ds, 

K(x, t) = ~ 2 (b 2 -  tz)l/2(a 2- x2) 1/2 Jo -(s-5-S_ xZ)(s2_ t2 ) (48) 

2X f fb (S 2_  a2)l/2j(s) ds 
f (x)=j(x)+, lr(a2-x2) l /2  [J a ( s 2 - x  2) 

2 - b " O(O dsl + -  
or (s 2 -  xZ)(s 2 -  t2)(b 2 -  t2) 1/2 J 

a ( l + v )  d f~ tT(t) dt 
-F ~ r ( 1  dx J~ (t 2 -  x2)~/2. (49) 

A n  iterative solution to equat ion (47) can be obta ined if the ratio a/b is small. 
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In the physical problem, the radii of the perfect and imperfect contact areas, a, b, 
are not known a priori. One equation for determining these radii is obtained from 
the requirement that temperature be continuous at r=  a. This condition is only 
satisfied if the terms involving (a2-x2) -1/2 on the right hand side of equation (46) 
are self cancelling. 

The second equation follows from the fact that the total compressive force on the 
punch, P, is a prescribed quantity. Using equations (18, 23), we have 

a 2 
P = - 2zmrzz(r, O) dr = ~a -4"trG~ ~zX2 (r, O)r dr 

= _4ztG~al ~ rgl(t)dtdr 
( t 2  r2)1/2. (50) 

On reversing the order of integration and performing the inner integral, this reduces 
to 

P=41rG tgl(t) dt. (51) 

It is also of interest to find the total heat flux through the contact area which is 

r b KOT 
0 = Jo 2ztr-~z (r, O) dr 

41rK(X-v)~b{ d [  du\ l d l  "m.'''~' tg , ( t )dt i .  
a ( l + v )  . . _ ' 2 ( 1 1 v ) r d r k ' r ~ r ) - r - ~ r J o  (r-TL--p~i721rar 

2'ITK ~b dld ~o a tgl(/.~)d~ /, (52) 
- o t ( l + v ) [  dr ( b ) - 2 ( 1 -  v) (b2_t2)1/2 J 

from equations (16, 24, 25, 28). 

8. The spherical punch at uniform temperature 

We now consider in detail the case where the punch is a sphere of radius R(>> b) 
maintained at a uniform temperature To. The profile of such a punch is described by 

du r 
dr R (53) 

and hence 

j(r) 1 d ~o r t3dt 2r 
= - r  d-'r ~-(1- v)R(r 2 -  tz) 1/z = I t ( l -  v)R' (54) 

from equation (29). 
Substituting this result and T = To (constant) into equation (49) and simplifying, 
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we find 

f ( x )  = 
a(1 + v)Tox 2x(b 2 -  x2) 1/2 

7r(1 - v)(a 2 -  x2) 1/2 *r(1 - v)R(a 2 -  x2) 1/2 

4x I~  (s - (s 2 -  a2)l/2)(s 2 -  b2) 1/2 ds (55) 
~r2(1 - v)R(a 2 -  x2) 1/2 (s 2 - x 2) • 

An iterative solution to equation (47) can now be found by expanding this 
expression in terms of the ratio of contact radii (a/b). At each stage in the iteration 
process, the temperature To is determined from the condition that the singular term 
in (a 2 -  x2) -1/2 be self-cancelling (see above, Section 7). Thus, for the purpose of the 
solution, a/b is treated as an independent variable which determines the value of To. 

The solution obtained is 

_ x ( a  2 _  X2)1/2 ( ,~2 a 2 x'* a 2 x  2 a 4 [ a6\ ) 
gl(x)= ~r(1-v)Rb / 1 + ~ - ~ + 8 - ~ + ~ - ~ + - ~ + 1 - ~ + 0 k b - 6 ) / '  

(56) 

{ - 2 b  a2 5a4 l l a 6  ÷0 (57) 
T o = a ( l + v )  R 1 4b 2 64b4 256b 6 ~-~ • 

Substituting these results into equation (51, 52) we find the total load 

~rGb 3 f a  4 a 6 21a 8 / a l ° \ }  
P=4(1-v)R [~+~-~+ 1-~+0[b -i-~) 

and the thermal contact conductance 

Q f a 2 a 4 a 6 /aS \ )  

(58) 

(59) 

A numerical solution has been developed which extends this procedure to terms of 
the order (a/b) 2°. The results suggest that the first two terms in equations (57-59) 
give an accuracy of 1% in the range 0 ~< a/b <~ 0.5. 

If the temperature To is large and negative and the load P is small, the ratio a/b 
will become small and, in the limit, the outer radius b of the imperfect contact region 
approaches 

b = - a ( 1  + v) ToR/2 (60) 

from the first term in equation (57). 
The radius a, dividing the perfect from the imperfect contact region, can then be 

found by substituting into equation (58) and is approximately given by 

= ( -2PaT°R2( l  - 1)2)) TM. (61) 

The limiting value of the thermal contact conductance is 

Q 
= -'trot (1 + v)ToKR/2. (62) To 
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It is of interest to compare these results with an extrapolation of the hot sphere 
result--i .e,  a solution based on the assumption of a single circular region of perfect 
contact without regard to the conseque'r~t occurrence of tensile contact stresses when 
To is negative (1). The radius obtained for this single region when To is large and 
negative is 

b = - 3 a ( 1  + v)ToR/21r (63) 

whilst the thermal contact conductance is 

Q 
- -  = - 6 a  (1 + v) ToKR/or. (64) 
To 

These results differ from equations (60, 62) in the ratios 1.05, 1.22 respectively. 

9. Conclusions 

The states of contact defined in equations (14) describe an idealization of a system 
with a pressure dependent  thermal contact resistance which avoids the paradoxes 
incident to cooled indentation problens whilst retaining the desirable attribute of 
linearity in the boundary conditions of the resulting boundary value problems. 

The example treated shows that such boundary value problems can be solved in 
simple cases and results are given for the indentation of a half-space by a cooled 
rigid sphere which extend the solution for the heated sphere previously obtained (1). 
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