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Abstract

We study the geometry of surfaces in R
3 with corank 1 singularities. At a singular

point we define the curvature parabola using the first and second fundamental forms

of the surface, which contains all the local second order geometrical information about

the surface. The curvature parabola is used to introduce the concepts of asymptotic

directions and umbilic curvature, which are related to contact properties of the surface

with planes and spheres.

1 Introduction

The aim of this paper is to introduce a new tool for the study of the differential geometry

of second order of surfaces in Euclidean 3-space with corank 1 singularities: the curvature

parabola. It induces the definitions of the asymptotic directions and of the umbilic curvature

function on the singular set of the surface. With these tools we recover some of the results

in [4, 12, 15] and obtain some other geometrical properties of the surface.

Surfaces in R
3 are often defined explicitly as the image of a smooth mapping f : U → R

3,

possibly with singularities, where U is an open subset of R2. Two maps germs f, g : (R2, q) →
(R3, p) are said to be A-equivalent, denoted by f ∼ g, if g = φ ◦ f ◦ ψ−1 for some germs

of diffeomorphisms ψ and φ of the source and target, respectively. D. Mond gave in [10] a

list of normal forms of germs of surfaces under the A-equivalence. If we consider surfaces

in the same A-orbit, clearly these surfaces have diffeomorphic image but may not have the

same local differential geometry. So, if we are interested in the study of the geometry of the

image, and no merely in its diffeomorphism type, we can not take a normal form given in

[10] as a parametrisation for the surface.
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The cross-cap is a singular surface image of any map germ g : (R2,0) → (R3,0) which

is A-equivalent to the normal form f(x, y) = (x, y2, xy) given in [10]. The geometry of

the cross-cap was carried out, for instance, in [3, 5, 6, 7, 11, 12, 15]. It is shown in [3]

that there are generically two types of cross-caps, one labeled hyperbolic cross-cap where

all non-singular points of the immersed surface are hyperbolic, and the other labeled elliptic

cross-cap where the parabolic set consists of two smooth curves meeting tangentially at the

singularity and partitions the surface into hyperbolic and elliptic regions. The passage from

one type to another is realized at a parabolic cross-cap whose parabolic set has a cusp.

This classification turned out to be very useful when seeking to understand the projections

of smooth two dimensional surfaces in R
4 to 3-spaces and to obtain geometric information

about the surface (see [11]).

The differential geometry of cross-caps is also investigated in [4], where the authors obtain

several criteria of the singularity types of fronts of cross-caps in terms of differential geometric

language. They also study singularities of the distance squared unfolding and investigate

the focal set of cross-caps.

In [12] the authors study the flat geometry and the singularities of the parabolic set in

the source as well as those of the height functions on surfaces parametrised by map-germs

A-equivalent to one of the normal forms given in [10]. More specifically, they consider the

contact of theses surfaces with planes and then they apply their results to the flat geometry

of surfaces in R
4.

Let M ⊂ R
3 be a surface with corank 1 singularities non necessarily isolated). This

means that M is the image of a smooth map g : M̃ → R
3 from a smooth regular surface M̃

whose differential has rank ≥ 1 at any point. Hence, the tangent space TpM at a singularity

p degenerates to a line and so there is a plane NpM of directions orthogonal to TpM . In

Section 2 we consider the first and second fundamental forms of M at p and, using them,

we define the curvature parabola ∆p as a subset of NpM (see Definition 2.2). The curvature

parabola is in fact a parabola, which can degenerate in a half-line, line or a point. It is worth

observing that the definitions of the fundamental forms do not depend on the choice of local

coordinates on M̃ and so neither the curvature parabola (although they may depend on the

map g which parametrises M , see Example 2.3).

D. Mond gives in [10] a partition in four orbits of the set of all corank 1 map germs

f : (R2,0) → (R3,0) according to their 2-jets under the action of A2, which is the space

of 2-jets of diffeomorphisms in the source and target (see Proposition 2.4). We show that

the curvature parabola can be easily used to distinguish between the four types of corank

1 singularities just by looking at the type of degeneracy of the parabola (Theorem 2.5).

Furthermore, we show that two corank 1 2-jets (R2,0) → (R3,0) are equivalent under the

action of the subgroup R2 × O(3) of 2-jets of diffeomorphisms in the source and linear

isometries of R3 if and only if there exists an isometry between the normal planes preserving

the respective curvature parabolas (Theorem 2.7). In this sense we claim that the curvature

parabola contains all the local second order geometrical information about the surface.
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In Section 3 we look at the geometry of the surface M at a singular point p by means

of the analysis of the singularities of the height and the distance-squared functions on the

surface. The second order invariants are given in terms of the curvature parabola and its

position with relation to the origin in the normal plane of the surface at p. Using the

curvature parabola we define the asymptotic directions of M at p, the binormal directions

in NpM and the osculating planes, which are those with a degenerate contact with M at p.

Moreover, if the singularity p is a cross-cap, then the asymptotic directions coincide with the

limiting tangent directions at p of the parabolic set. When the singularity is not a cross-cap,

we also use the curvature parabola to introduce the concept of umbilic curvature κu(p) of

M at p. Geometrically, κu(p) either is the distance between p and the line containing ∆p,

when the curvature parabola is a half-line or a line, or κu(p) is the distance between p and

∆p, when it is a point.

The umbilic curvature κu(p) turns out to be an important invariant: if κu(p) 6= 0, then

1/κu(p) is the radius of the unique sphere with umbilical contact (that is, contact of type Σ2,2

in Thom-Boardman terminology) with M at p and, if κu(p) = 0, then there is a plane with

umbilical contact with M at p (see Theorems 3.11 and 3.15). As an immediate consequence,

the singular point is a non-flat 2-rounding of M or a 2-flattening of M respectively, according

with the definitions given in [6] (Corollary 3.17).

Our definition of umbilic curvature κu(p) generalizes the concept of limiting normal

curvature defined in [13] for cuspidal edges to corank 1 singularities. This fact follows from

the results of the first named author and K. Saji in [8]. In fact, they show that

κ2 = κ2u + κ2s,

where κ is the curvature of the singular curve of the cuspidal edge and κs is the singular

curvature in the sense of [13]. This equality can be seen as a singular counterpart of the well

known relation κ2 = κ2n + κ2g , between the normal and the geodesic curvatures κn and κg
respectively, in the case of a regular surface. Thanks are due to Saji, Umehara and Yamada

for pointing out the coincidence between our umbilic curvature and the normal curvature of

cuspidal edges which appears in [13].

2 The second fundamental form at a corank 1 singularity

Given a smooth regular surface M in R
3 parametrised by f(x, y), where (x, y) is the usual

Cartesian coordinate system of R
2, consider the Gauss map N : M → S2 given by N =

(fx × fy)/‖fx × fy‖. At a point p ∈ M , the map −dN(p) : TpM → TN(p)S
2 can be thought

of as an automorphism of TpM , which is the classical shape operator Sp, or S by simplicity.

The first fundamental form Ip : TpM × TpM → R is defined as Ip(u, v) = 〈u, v〉, where 〈 , 〉
is the Euclidean metric in TpM induced by that of R3. The coefficients of Ip are given by

E(p) = 〈fx, fx〉 (q) , F (p) = 〈fx, fy〉 (q) , G(p) = 〈fy, fy〉 (q) ,

3



where f(q) = p. The second fundamental form IIp : TpM × TpM → R is IIp(u, v) =

〈S(u), v〉, whose coefficients are given by

l(p) = 〈S(fx), fx〉 = 〈N, fxx〉 = det(fx, fy, fxx) /
√
EG− F 2 ,

m(p) = 〈S(fx), fy〉 = 〈N, fxy〉 = det(fx, fy, fxy) /
√
EG− F 2 ,

n(p) = 〈S(fy), fy〉 = 〈N, fyy〉 = det(fx, fy, fyy) /
√
EG− F 2 ,

with derivatives calculated at q.

In the case of surfaces with singularities, we run into a problem as there is no a well

defined normal vector to the surface at singular points.

Let M ⊂ R
3 be a surface with a singularity of corank 1 at p ∈ M . We assume that

M is the image of a C∞ map g : M̃ → R
3, where M̃ is a smooth regular surface and

q ∈ M̃ is a singular point of g of corank 1 such that g(q) = p. Given a coordinate system

φ : U → R
2 defined on some open neighbourhood U of q in M̃ , we say that f = g ◦ φ−1 is a

local parametrisation of M at p.

We define the tangent line to M at p as TpM = Im g∗, where g∗ : TqM̃ → TpR
3 is

the differential of g at q. We also have the normal plane NpM at p, in such a way that

TpR
3 = TpM ⊕NpM and we denote the corresponding orthogonal projections by:

⊤ : TpR
3 → TpM ⊥ : TpR

3 → NpM

w → w⊤ w → w⊥

The Euclidean metric of R3 induces the first fundamental form I : TqM̃ × TqM̃ → R in

the obvious way:

I(X,Y ) = 〈g∗X, g∗Y 〉 , ∀X,Y ∈ TqM̃ .

However, I is not a Riemannian metric on TqM̃ , but a pseudometric. Taking a local para-

metrisation f = g ◦ φ−1 of M at p, since {∂x, ∂y} provides a basis of TqM̃ , the coefficients

of the first fundamental form with respect to φ are:

E(q) = I(∂x, ∂x) = 〈fx, fx〉 (φ(q)), F (q) = I(∂x, ∂y) = 〈fx, fy〉 (φ(q)),
G(q) = I(∂y, ∂y) = 〈fy, fy〉 (φ(q)).

Notice that if X = a∂x + b∂y then I(X,X) = a2E(q) + 2abF (q) + b2G(q).

Now we define the second fundamental form II : TqM̃ ×TqM̃ → NpM of M at p. Given

local coordinates of M at p as before, we define

II(∂x, ∂x) = f⊥xx(φ(q)) , II(∂x, ∂y) = f⊥xy(φ(q)) , II(∂y, ∂y) = f⊥yy(φ(q)) ,

and we extend II to TqM̃ × TqM̃ in a unique way as a symmetric bilinear map. Notice that

if X = a∂x + b∂y then II(X,X) = a2f⊥xx(φ(q)) + 2abf⊥xy(φ(q)) + b2f⊥yy(φ(q)).

Lemma 2.1 The definition of the second fundamental form does not depend on the choice

of local coordinates on M̃ .
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Proof Let φ be another coordinate system of M̃ at q with coordinates u, v and let us

denote f = g ◦ φ−1
. We have

fu = fxxu + fyyu, f v = fxxv + fyyv.

Now we compute the second order derivatives:

fuu = fxxuu + fyyuu + fxxx
2
u + 2fxyxuyu + fyyy

2
u,

fuv = fxxuv + fyyuv + fxxxuxv + fxy(xuyv + xvyu) + fyyyuyv,

fvv = fxxvv + fyyvv + fxxx
2
v + 2fxyxvyv + fyyy

2
v .

Finally, we take the orthogonal projection to NpM :

f
⊥
uu = f⊥xxx

2
u + 2f⊥xyxuyu + f⊥yyy

2
u,

f
⊥
uv = f⊥xxxuxv + f⊥xy(xuyv + xvyu) + f⊥yyyuyv,

f
⊥
vv = f⊥xxx

2
v + 2f⊥xyxvyv + f⊥yyy

2
v .

We see that f
⊥
uu, f

⊥
uv, f

⊥
vv and f⊥xx, f

⊥
xy, f

⊥
yy are related by the equations of basis change in

a symmetric bilinear map with respect to the matrix
(
xu xv
yu yv

)
.

But this is the matrix of basis change from {∂x, ∂y} to {∂u, ∂v} in TqM̃ . Hence, both

coordinate systems define the same symmetric bilinear map. 2

For each normal vector ν ∈ NpM , we can consider the form IIν : TqM̃×TqM̃ → R which

we shall call the second fundamental form of M at p along ν, given by

IIν(X,Y ) = 〈II(X,Y ), ν〉 .

The coefficients of IIν in terms of local coordinates (x, y) are:

lν(q) =
〈
f⊥xx, ν

〉
(φ(q)) , mν(q) =

〈
f⊥xy, ν

〉
(φ(q)) , nν(q) =

〈
f⊥yy, ν

〉
(φ(q)) .

Given X = a∂x + b∂y then it holds that IIν(X,X) = a2lν(q) + 2abmν(q) + b2nν(q) and,

if we fix an orthonormal frame {ν1, ν2} of NpM then

II(X,X) = IIν1(X,X) ν1 + IIν2(X,X) ν2
= (a2lν1 + 2abmν1 + b2nν1) ν1 + (a2lν2 + 2abmν2 + b2nν2) ν2 ,

(1)

with the above coefficients calculated at q. Furthermore, the second fundamental form can

be represented by the following matrix of coefficients:
(
lν1 mν1 nν1
lν2 mν2 nν2

)
.

We should remark that this matrix of coefficients will depend on the choices of coordinates

on M̃ and of the orthonormal frame of NpM , although the second fundamental form does

not depend.
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2.1 The curvature parabola

Definition 2.2 Let Cq be the subset of unit vectors of TqM̃ and let η : Cq → NpM be the

map given by η(X) = II(X,X). We define the curvature parabola of M at p, which we shall

denote by ∆p, as the image of this map, that is, ∆p = η(Cq).

It is worth observing that ∆p = {II(X,X) | I(X,X)1/2 = 1} and that it follows from

Lemma 2.1 that the above definition does not depend on the choice of the local coordinates

on M̃ .

Example 2.3 Let M be the surface image of M̃ = R
2 by the map g(x, y) = (x, y2, xy). So

M is the cross-cap surface given in Figure 2.3.

φ

x

u

v

w

y

Cq
∆p

NpM

gq

p

f = g ◦ φ−1

M̃ M

Figure 1: The cross-cap surface of Example 2.3.

Taking coordinates (u, v, w) in R
3 and q = p = 0 then the tangent line TpM to M at p is

the u-axis and so, the normal plane NpM is the vw-plane. Then, for any X = a∂x + b∂y ∈
TqM̃ , it holds that: E = 1, F = G = 0, I(X,X) = a2 and II(X,X) = (0, 2b2, 2ab). Therefore

Cq = {(±1, y); y ∈ R} and the curvature parabola ∆p is a non-degenerate parabola which

can be parametrised by η(y) = (0, 2y2, 2y).

Other interesting examples are the following:

1. The cuspidal edge is the surface M given by the image of g(x, y) = (x, y2, y3) and it

holds that ∆p is the half-line parametrised by η(y) = (0, 2y2, 0), for all p = (x, 0, 0)

with x ∈ R.
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2. We can consider now the surface parametrized by g(x, y) = (x, (y3 + x)2, (y3 + x)3),

whose image set is in fact the same cuspidal edge of the above example. Then for p = 0

we have that ∆p is just the point {(0, 2, 0)}. Thus, although ∆p does not depend on

the choice of local coordinates in M̃ , it depends on the map g which parametrises M .

3. The swallowtail is the surface M defined as the image of g(x, y) = (x, 2xy+4y3, 3y4 +

xy2). Then p = 0 is a corank 1 singularity of M and it is easy to check that η(y) =

(0, 4y, 0) is a parametrisation for ∆p, which is a line in NpM through the origin.

In general, since g has corank 1 at q, we can choose the coordinate system φ and make

rotations in R
3 in such a way that f(x, y) = g ◦ φ−1(x, y) = (x, f2(x, y), f3(x, y)), with

(fi)x = (fi)y = 0 at φ(q), for i = 2, 3. In that case, we get E = 1 and F = G = 0. With these

coordinates, given X ∈ Cq and writing X = x∂x+y∂y, since x
2E(q)+2xyF (q)+y2G(q) = 1,

then we have x = ±1. Hence, fixing an orthonormal frame {ν1, ν2} of NpM and using (1),

it holds that

y 7→ (lν1 + 2mν1y + nν1y
2) ν1 + (lν2 + 2mν2y + nν2y

2) ν2 (2)

is a parametrisation for ∆p in the normal plane. In particular, we deduce that ∆p is a

parabola in NpM , which can degenerate.

We recall the following result due to Mond [10], which gives a partition of all corank 1

map germs f : (R2,0) → (R3,0) according to its 2-jet under the action of A2, which denotes

the space of 2-jets of diffeomorphisms in the source and target. We will denote by J2(2, 3)

the space of 2-jets j2f(0) of map germs f : (R2,0) → (R3,0) and by Σ1J2(2, 3) the subset

of 2-jets of corank 1.

Proposition 2.4 (Classification of 2-jets, [10]) There exist four orbits in Σ1J2(2, 3) un-

der the action of A2, which are

(x, y2, xy), (x, y2, 0), (x, xy, 0), (x, 0, 0).

We should remark that j2f(0) has type (x, y2, xy) if and only if the germ f is A-

equivalent to the cross-cap (Whitney umbrella), since it is 2-determined with respect to

the A-classification.

In the next theorem, we show that the curvature parabola can be easily used to distinguish

between the four types of corank 1 singularities, just by looking at the type of degeneracy

of the parabola.

Theorem 2.5 Let M ⊂ R
3 be a surface with a singularity of corank 1 at p ∈ M . We

assume for simplicity that p is the origin of R
3 and denote by j2f(0) be the 2-jet of a local

parametrisation f : (R2,0) → (R3,0) of M . Then the following holds:

a) ∆p is a non-degenerate parabola if and only if j2f(0) ∼ (x, y2, xy);
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b) ∆p is a half-line if and only if j2f(0) ∼ (x, y2, 0);

c) ∆p is a line if and only if j2f(0) ∼ (x, xy, 0);

d) ∆p is a point if and only if j2f(0) ∼ (x, 0, 0).

Proof Without loss of generality we can assume that

j2f(0) = (x,
1

2
(a20x

2 + 2a11xy + a02y
2),

1

2
(b20x

2 + 2b11xy + b02y
2)).

We denote the standard basis of R3 by {e1, e2, e3}. So, TpM is generated by e1 and {e2, e3}
gives an orthonormal frame of NpM . Then, the matrix of coefficients of the second funda-

mental form with respect to these coordinates is

(
a20 a11 a02
b20 b11 b02

)
.

According to [10], the classification of j2f(0) follows from the analysis of the coefficients

a02, b02, a11, b11:

a) j2f(0) ∼ (x, y2, xy) if and only if a11b02 − a02b11 6= 0;

b) j2f(0) ∼ (x, y2, 0) if and only if a11b02 − a02b11 = 0 and a202 + b202 > 0;

c) j2f(0) ∼ (x, xy, 0) if and only if a02 = b02 = 0 and a211 + b211 > 0;

d) j2f(0) ∼ (x, 0, 0) if and only if a02 = b02 = a11 = b11 = 0.

On the other hand, according to (2), the curvature parabola ∆p is parametrised by

η(y) = (0, a20 + 2a11y + a02y
2, b20 + 2b11y + b02y

2) . (3)

We have that

det(e1, η
′, η′′) =

∣∣∣∣∣
2a11 + 2a02y 2a02
2b11 + 2b02y 2b02

∣∣∣∣∣ = 4(a11b02 − a02b11).

Thus, the parabola is degenerate if and only if a11b02 − a02b11 = 0, which gives (a). The

remaining cases (b), (c) and (d) follow immediately from the parametrisation of the parabola.

2

We denote by R2 the group of 2-jets of diffeomorphisms from (R2,0) to (R2,0) and by

O(3) the group of linear isometries of R3. Then, R2 ×O(3) is a subgroup of A2 which also

acts on Σ1J2(2, 3), the subspace of 2-jets of corank 1.

We shall show that 2-jets of corank 1 map germs (R2,0) → (R3,0) are equivalent under

the action R2×O(3) if and only if there exists an isometry preserving the respective curvature
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parabolas. For the proof of this, we first find “good parametrisations” for corank 1 surfaces

in R
3 (that is, parametrisations obtained with changes of coordinates at source and target

which preserve the geometry of the image) according to the classification given in Proposition

2.4. The cross-cap case is done in [4, 15] and we include here for completeness.

Proposition 2.6 Let f : (R2,0) → (R3,0) be a corank 1 map germ. Then after using

smooth changes of coordinates in the source and isometries in the target, we can reduce f to

the form

(x, y) 7→ (x , a x2 + b xy + cy2 + p(x, y), xy + q(x, y) ) , (4)

if j2f(0) ∼ (x, y2, xy), or

(x, y) 7→ (x , a x2 + y2 + p(x, y) , d x2 + q(x, y) ) , (5)

if j2f(0) ∼ (x, y2, 0), or

(x, y) 7→ (x , xy + p(x, y) , d x2 + q(x, y) ) , (6)

if j2f(0) ∼ (x, xy, 0), or

(x, y) 7→ (x , p(x, y) , d x2 + q(x, y) ) , (7)

if j2f(0) ∼ (x, 0, 0), where a, b, c, d are constants, c > 0, and p, q ∈ M3
2 .

Proof Since f has rank 1 at the origin then there exist a rotation in (R3,0) and a diffeo-

morphism in (R2,0) that transform j2f(0) into

(x , a20 x
2 + a11 xy + a02 y

2 , b20 x
2 + b11 xy + b02 y

2) .

Now we use conditions given in the proof of Theorem 2.5 for each case of j2f(0). For

the case in that j2f(0) ∼ (x, y2, xy), see [4], Proposition 2.1.

Suppose then that j2f(0) ∼ (x, y2, 0). So we can take a02 6= 0. Then a change of

coordinates in the variable y (making y = −(a11/2a02)x+ y′ ) transforms j2f(0) into

(x , a′20 x
2 + a02 y

2 , b′20 x
2 + b′11 xy + b′02 y

2) .

From the hypothesis that f is not a cross-cap we have that a02 b
′
11 = 0, what implies that

b′11 = 0 . Next, considering coordinates (u, v, w) in R
3, we choose a rotation in (R3,0)

through the angle θ = arctan (b′02/a02) about the u-axis what transforms j2f(0) into

(x, ã20 x
2 + ã02 y

2 , b̃20 x
2) ,

where ã02 = cos θ((a02)
2 + (b′02)

2)/a02 6= 0. Finally, with a change in the variable y (and an

isometry in the target if necessary), we can make ã02 = 1, getting (5).

If j2f(0) ∼ (x, xy, 0) then j2f(0) ∼ (x , a20 x
2 + a11 xy , b20 x

2 + b11 xy), and we can

suppose that a11 6= 0. So, with an analogous way that was done before, we get (6).

If j2f(0) ∼ (x, 0, 0) then j2f(0) ∼ (x , a20 x
2 , b20 x

2), and just with isometries in the

target we get (7). 2
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Now we give the main result of this section, which tell us that the curvature parabola

contains all the second order information of the surface M , i.e., we shall show that the

geometry of second order of a surface at a singular point p is given by the curvature parabola

and its position with relation to the origin in the normal plane of the surface at p.

Theorem 2.7 Let M1,M2 ⊂ R
3 be two surfaces with a corank 1 singularity at points

p1 ∈ M1 and p2 ∈ M2, parametrised by f and g, respectively. The 2-jets j2f(0), j2g(0) ∈
Σ1J2(2, 3) are equivalent under the action of R2 × O(3) if and only if there is a linear

isometry φ : Np1M1 → Np2M2 such that φ(∆p1(M1)) = ∆p2(M2).

Proof Assume that j2f(0), j2g(0) have both A2-type (x, y2, xy). Then, by Proposition

2.6, they can be reduced to the form:

j2f(0) = (x, ax2 + 2bxy + cy2, xy), j2g(0) = (x, ax2 + 2bxy + cy2, xy),

with c, c > 0. We denote the coordinates in R
3 by (u, v, w). Then the normal planes Np1M1,

Np2M2 are both equal to the vw-plane and the curvature parabolas ∆p1(M1), ∆p2(M2) are

both non-degenerate and are given respectively by v = a+2bw+cw2 and v = a+2bw+zw2.

Suppose there is (ψ, φ) ∈ R2×O(3) such that φ◦j2f(0)◦ψ = j2g(0). Since j2f(0), j2g(0)

are both homogeneous we can assume that ψ is also a linear map. We denote the matrices

of ψ and φ respectively as

P =

(
p q

r s

)
, A =




a11 a12 a13
a21 a22 a23
a31 a32 a33


 ,

where detP 6= 0 and AAt = I.

By comparing coefficients in ψ ◦ j2f(0) ◦ φ and j2g(0) we get the following system of

equations:

a11p = 1, a21p = 0, a31p = 0, a11q = 0, a21q = 0, a31q = 0,

aa12p
2 + a13rp+ a12brp+ a12cr

2 = 0,

aa22p
2 + a23rp+ a22brp+ a22cr

2 = a,

aa32p
2 + a33rp+ a32brp+ a32cr

2 = 0,

2aa12pq + a13rq + a12brq + a13ps+ a12bps+ 2a12crs = 0,

2aa22pq + a23rq + a22brq + a23ps+ a22bps+ 2a22crs = b,

2aa32pq + a33rq + a32brq + a33ps+ a32bps+ 2a32crs = 1,

aa12q
2 + a13sq + a12bsq + a12cs

2 = 0,

aa22q
2 + a23sq + a22bsq + a22cs

2 = c,

aa32q
2 + a33sq + a32bsq + a32cs

2 = 0.
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From the analysis of this system we deduce easily that p, s 6= 0, q = r = 0, a11, a33 6= 0,

a22 > 0, and a21 = a31 = a12 = a32 = a13 = 0. Hence the system reduces to:

a11p = 1, aa22p
2 = a, a23ps+ a22bps+ 2a22crs = b, a33ps = 1, a22cs

2 = c.

Now the fact that AAt = I implies a23 = 0, a11 = ±1, a22 = 1 and a33 = ±1. Thus, there

are only four possible solutions to the system:

1. p = s = 1, a11 = a33 = 1 and (a, b, c) = (a, b, c);

2. p = 1, s = −1, a11 = 1, a33 = −1 and (a, b, c) = (a,−b, c);

3. p = −1, s = 1, a11 = a33 = −1 and (a, b, c) = (a,−b, c);

4. p = s = −1, a11 = −1, a33 = 1 and (a, b, c) = (a, b, c).

In any case, we conclude that φ preserves the vw-plane and that φ(∆p1(M1)) = ∆p2(M2).

For the converse, suppose that there is a linear isometry φ in the vw-plane such that

φ(∆p1(M1)) = ∆p2(M2). We denote now by Ã the matrix of φ. By comparing coefficients

in the equations of the parabolas and using similar arguments, we find there are only two

possibilities:

1. Ã =

(
1 0

0 1

)
and (a, b, c) = (a, b, c);

2. Ã =

(
1 0

0 −1

)
and (a, b, c) = (a,−b, c).

Hence, we extend φ to a linear isometry of R3 in the obvious way, so that φ◦j2f(0) = j2g(0).

The remaining cases where the 2-jets have type (x, y2, 0), (x, xy, 0) or (x, 0, 0) are treated

in a similar way. Details are left to the reader. 2

3 Second order contact properties

An usual approach of getting information about the geometry of smooth surfaces is to analyse

their generic contacts with planes and spheres. Such contacts are measured by composing

the implicit equation of the plane or sphere with the parametrisation of the surface, and

seeing what types of singularities arise.

Given a local parametrisation f : U ⊂ R
2 → R

3 of a surface M in R
3, let hv and du be

the height and distance-squared functions, which are defined on M by hv(x, y) = 〈v, f(x, y)〉
and du(x, y) = |u− f(x, y)|2, respectively, where v,u ∈ R

3 with v a unit vector. Then,

for contact with a plane (resp. sphere), it is enough to study the singularities of the height

function hv, with v an orthogonal vector to the plane (resp. of the distance-squared function
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du, with u being the centre of the sphere), and we label the contact with the type of this

singularity.

Recall that the An and Dn singularities are singularities (R2,0) → (R,0) that are R-

equivalent to:
A±

n : (x, y) 7→ ±x2 ± yn+1 n ≥ 1,

D±
n : (x, y) 7→ x2y ± yn−1 n ≥ 4 .

For regular surfaces the following result is well known.

Proposition 3.1 [1, 2] Suppose that M is a generic smooth surface in R
3. The height

function hv can only have singularities of types An, n = 1, 2, 3. The distance squared function

du can only have singularities of types An, n = 1, 2, 3, 4 and D4.

We shall now deal with similar approach for corank 1 surfaces in R
3. Recall that Σ2,2

is the Thom-Boardman submanifold in the jet space Jr(R2,R), r ≥ 2, given by the jets

whose partial derivatives up to order 2 are equal to zero. First we shall define asymptotic

and binormal directions, and umbilic curvature, which are directly related with degenerate

singularities of the height and the distance squared functions.

In this section M = g(M̃ ) ⊂ R
3 denotes a surface with a singularity of corank 1 at

p = g(q) and ∆p is its curvature parabola at p.

3.1 Asymptotic and binormal directions

The following definitions of asymptotic and binormal directions are inspired by those of a

regular surface in R
4, where we have the curvature ellipse in the normal plane (see [9]). We

define both concepts in terms of the second fundamental form and then, we characterize

them geometrically by means of the curvature parabola ∆p.

Definition 3.2 We say that a non zero tangent direction X ∈ TqM̃ is asymptotic if there is

a non zero normal vector v ∈ NpM such that IIv(X,Y ) = 0, for any Y ∈ TqM̃ . Moreover,

in such case we say that v is a binormal direction.

Let (x, y) be local coordinates on M̃ near q and take an orthonormal frame {ν1, ν2} of

NpM such that the coefficient matrix of the second fundamental form is

(
lν1 mν1 nν1
lν2 mν2 nν2

)
.

Lemma 3.3 A tangent direction X = x∂x + y∂y ∈ TqM̃ is asymptotic if and only if

∣∣∣∣∣∣∣

y2 −xy x2

lν1 mν1 nν1
lν2 mν2 nν2

∣∣∣∣∣∣∣
= 0.
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Proof Given another tangent vector Y = u∂x + v∂y ∈ TqM̃ and a normal vector v =

αν1 + βν2 ∈ NpM we have that

IIv(X,Y ) = α(lν1xu+mν1(xv + yu) + nν1yv) + β(lν2xu+mν2(xv + yu) + nν2yv).

Then X is asymptotic if and only if there is (α, β) 6= (0, 0) such that the above expression

is 0, for any (u, v). By looking at the coefficients in u, v and after eliminating α, β we arrive

to the desired quadratic equation:

x2(lν1mν2 − lν2mν1) + xy(lν1nν2 − lν2nν1) + y2(mν1nν2 −mν2nν1) = 0.

2

Remark 3.4 Let A,B be the coefficient matrices of the quadratic forms IIν1 and IIν2
respectively, that is,

A =

(
lν1 mν1

mν1 nν1

)
, B =

(
lν2 mν2

mν2 nν2

)
.

Then, the asymptotic and binormal directions are the solutions of the so called generalized

eigenvalue problem of the matrix pair (A,B). This means that X = x∂x+ y∂y is asymptotic

associated with the binormal direction v = αν1 + βν2 if and only if

αA

(
x

y

)
= βB

(
x

y

)
.

We can choose local coordinates for M̃ such that the curvature parabola is parametrised

in the normal plane by (2). The parameter value y ∈ R corresponds to a unit tangent

direction X = ∂x + y∂y ∈ Cq. We also denote by y∞ the parameter value corresponding to

the null tangent direction X = ∂y. In the case that ∆p degenerates to a line or a half-line

we define η(y∞) = η′(y∞) as η′(y)/|η′(y)| where y > 0 is any value such that η′(y) 6= 0. In

the case that ∆p degenerates to a point ν, then we define η(y∞) = ν and η′(y∞) = 0. In the

case that ∆p is a non-degenerate parabola, η(y∞) and η′(y∞) are not defined.

Lemma 3.5 A tangent direction given by a parameter value y ∈ R ∪ {y∞} is asymptotic if

and only if η(y) and η′(y) are collinear (provided they are defined).

Proof Given y ∈ R, we compute the determinant of η(y) and η′(y) in the normal plane:

det(η(y), η′(y)) = 2
(
(lν1mν2 − lν2mν1) + y(lν1nν2 − lν2nν1) + y2(mν1nν2 −mν2nν1)

)
,

which coincides with the equation of asymptotic directions for x = 1.
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When y = y∞, then η(y) and η′(y) are always collinear, provided they are defined. Thus,

η(y) and η′(y) are collinear if and only if ∆p is a degenerate parabola. But this happens if

and only if

mν1nν2 −mν2nν1 = 0,

(see proof of Theorem 2.5) which is again the equation of asymptotic directions for x = 0

and y = 1. 2

Now we analyse the different possibilities for the asymptotic directions for each type of

curvature parabola (see Figure 2):

1. If ∆p is a non-degenerate parabola then it can exist 0, 1 or 2 asymptotic directions,

according to p lies “inside”, on or “outside” ∆p, respectively.

2. If ∆p is a half-line, then either there exist two asymptotic directions {yv, y∞}, with
η(yv) being the vertex of ∆p, or every y ∈ R ∪ {y∞} is an asymptotic direction,

according to the line containing ∆p does not pass through p or it does, respectively.

3. If∆p is a line, then either y∞ is the only asymptotic direction or every y ∈ R∪{y∞} is

an asymptotic direction, according to the line does not contain p or it does, respectively.

4. If∆p is a point, then every y ∈ R ∪ {y∞} is an asymptotic direction.

η(y1)

η(y1)

η(y2)

η(yv)
∆p∆p∆p

∆p

∆p

∆p

∆p

∆p

A = {y1, y2} A = {y1}

η(y∞)η(y∞)
η(y∞)

η(y∞)

A = ∅

A = {yv, y∞} A = R ∪ {y∞} A = {y∞} A = R ∪ {y∞} A = R ∪ {y∞}

Figure 2: Possibilities for ∆p and the set A of asymptotic directions of M at p.

The following lemma follows immediately from the computations in Lemmas 3.3 and 3.5.
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Lemma 3.6 A normal direction v ∈ NpM is binormal if and only if there is an asymptotic

direction y ∈ R ∪ {y∞} such that v is orthogonal to the subspace spanned by η(y) and η′(y).

Definition 3.7 Given a binormal direction v ∈ NpM , the plane through p orthogonal to v

is called an osculating plane of M at p.

Again the number of binormal directions (and hence of osculating planes) depends on the

different possibilities for the curvature parabola ∆p. If ∆p is non-degenerate, then we may

have 0,1 or 2 binormal directions, one for each asymptotic direction. When ∆p is a half-line,

there are three possibilities: if the line containing ∆p does not pass through the origin there

are 2 binormal directions, if it does but the vertex of the parabola is not the origin there is

1 binormal direction, but if the vertex is the origin then all directions are binormal. If ∆p is

a line or a point different from the origin, then there is a unique binormal direction. Finally,

if ∆p is the origin, then any normal direction is binormal.

We finish this part by showing that the asymptotic directions, in the case of a singularity

of cross-cap type, can be seen as the limiting tangent directions to the parabolic set in the

source.

Proposition 3.8 Assume that ∆p is non-degenerate. Then X ∈ TqM̃ is asymptotic if and

only if it is a limiting tangent direction to the set of points q′ ∈ M̃ , in a neighbourhood of q,

such that g(q′) is a parabolic regular point of M .

Proof By Proposition 2.6, we choose coordinates such that M is locally parametrised by

f : (R2,0) → (R3,0) given by

f(x, y) = (x, ax2 + bxy + cy2 + p(x, y), xy + q(x, y)),

where a, b, c ∈ R, c > 0 and p, q ∈ M3
2. The equation of the parabolic set is:

det(fx, fy, fxx) det(fx, fy, fyy)− det(fx, fy, fxy)
2 = 4c(ax2 − cy2) + h.o.t. = 0.

The limiting tangent directions are computed by the initial part ax2 − cy2 = 0, which

coincides with the equation of asymptotic directions. 2

3.2 Umbilic curvature

Suppose that M is not of cross-cap type at p, that is, ∆p is a degenerate parabola. Given

an orthonormal frame {ν1, ν2} of NpM and X ∈ TqM̃ , recall that

II(X,X) = IIν1(X,X) ν1 + IIν2(X,X) ν2 . (8)

Let us consider a special frame of NpM . Suppose first that ∆p is not a point. Then

the asymptotic direction y∞ is well defined. Denote by v∞ the infinite binormal direction

15



such that {η(y∞),v∞} is an orthonormal positively oriented frame of NpM . Suppose now

that ∆p is a point which is not the origin. Then η(y) is a non null constant and so take the

orthonormal positively oriented frame {v, η(y)
|η(y)|} of NpM such that v is a binormal direction.

We call the above frames of adapted frames of NpM . We remark that when ∆p is the origin

then any orthonormal frame of NpM can be taken as an adapted frame. See Figure 3.

η(y∞)

v∞

v

∆p

∆p

TpMTpM

NpMNpM

Figure 3: Adapted frame of NpM .

Given X ∈ Cq, then II(X,X) ∈ ∆p. Thus, it follows from (8) that in an adapted frame

{ν1, ν2} of NpM , IIν2(X,X) does not depend on X ∈ Cq, up to the sign. This suggest us

the following definition.

Definition 3.9 Given a unit vector X ∈ TqM̃ and an adapted frame {ν1, ν2} of NpM , we

call the positive number

κu(p) = | 〈II(X,X), ν2〉 | = |IIν2(X,X)|

the umbilic curvature of M at p.

Remark 3.10 (1) The definition of umbilic curvature does not depend on the choice of the

adapted frame of NpM , nor the parametrisation for ∆p, nor the choice of local coordinates

in M̃ . However, it may depend on the map g : M̃ → R
3 which parametrises M . In fact,

the cuspidal edge parametrised by g(x, y) = (x, y2, y3) has κu(0) = 0, but the same cuspidal

edge parameterised by g(x, y) = (x, (y3 + x)2, (y3 + x)3) has κu(0) = 2 (see Example 2.3).

(2) (Geometric interpretation for the umbilic curvature) If ∆p is a point, then κu(p) is the

distance between ∆p and p. Furthermore, κu(p) = 0 if and only if either ∆p = {p} or ∆p is

contained in a line through p in the case that ∆p is a half-line or a line.

If ∆p is a half-line or a line then κu(p) is the length of the projection of ∆p on the

direction given by an infinity binormal direction. Then it follows the formula:

κu(p) =

∣∣∣∣
〈
η(y),

η′(y)× e

|η′(y)|

〉∣∣∣∣ =
1

|η′(y)| |det(η(y), η
′(y), e)|,
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where η is a parametrisation for ∆p, e is a unit vector in TpM and y is any real number

such that η′(y) 6= 0. Equivalently, since in this case κu(p) also can be seen as the distance

between p and the line containing ∆p then we also can write

κu(p) =
|η(y)× η′(y)|

|η′(y)| , (9)

which does not depend on y ∈ R, with η′(y) 6= 0.

(3) For any X ∈ TqM̃ and {ν1, ν2} adapted frame of NpM , it holds that

κu(p) =
|IIν2(X,X)|
I(X,X)

.

In fact,

|IIν2(X,X)| = |X|2|IIν2(
X

|X| ,
X

|X| )| = I(X,X)κu(p),

since we are considering in TqM̃ the pseudometric induced by the first fundamental form I.

(4) The umbilic curvature is not defined for singularities of cross-cap type.

(5) If M has a singularity of cuspidal edge type at p, then the umbilic curvature coincides

with the limiting normal curvature defined in [13]. This follows from the results of [8].

3.3 Contact with planes

In this section we shall deal with contact of planes with M at p. So we consider the singu-

larities of the height function hv, with v a unit vector in R
3. Recall that a plane in R

3 is

said to be transverse to M at p if hv is a submersion at p.

Theorem 3.11 Let M ⊂ R
3 be a surface with a singularity of corank 1 at p ∈ M . Then

hv is singular at p if and only if v ∈ NpM . Furthermore:

(i) Assume ∆p is not a point. Then hv has a degenerate singularity at p if and only if

v is a binormal direction at p. Moreover, the singularity is of type Σ2,2 if and only if

∆p is degenerate, κu(p) = 0 and v is a infinite binormal direction at p.

(ii) Assume ∆p is a point. Then hv has a degenerate singularity at p for all direction

v ∈ NpM . Moreover, the singularity is of type Σ2,2 if and only if either κu(p) = 0 or

κu(p) 6= 0 and v is a binormal direction at p.

Proof The first assertion that hv is singular at p if and only if v ∈ NpM is obvious. We

show (i) and (ii) by looking at the different types of curvature parabolas. We denote by

(u, v, w) the coordinates in R
3 and assume for simplicity that p = 0.

(1) ∆p is non-degenerate. This case corresponds to a singularity of cross-cap type and

the degenerate singularities of the height function can be found in [15]: if we take the
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parametrisation given at (4), then the directions with a degenerate singularity are: v1 =

(0, 1,−b − 2c
√

a
c ) and v2 = (0, 1,−b + 2c

√
a
c ) (for a ≥ 0). On the other hand, ∆p is

parametrised by

η(y) = 2(0, a + by + cy2, y) ,

and a simple computation shows that the asymptotic directions occur at y = ±
√

a
c and the

corresponding binormal directions are v1 and v2. Moreover, there are no Σ2,2 singularities

in this case.

(2) ∆p is a half-line. By Theorem 2.5, j2f(0) ∼ (x, y2, 0). Taking the parametrisation given

at (5), the curvature parabola is parametrised by

η(y) = 2(0, a + y2, d) ,

with a, d ∈ R constants, such that κu(p) = 2|d|. We have 3 subcases:

• d 6= 0. In this case the line containing ∆p does not pass through the origin and

there are 2 asymptotic directions y = 0 and y∞, whose binormal directions give v1 =

(0,−d, a)/(
√
a2 + d2) and v∞ = (0, 0, 1), respectively.

• d = 0 and a 6= 0. In this case the line containing ∆p passes through the origin, but the

origin is not the vertex of the parabola. Any direction y ∈ R ∪ {y∞} is asymptotic,

but there is only one binormal direction v∞.

• d = a = 0. The vertex of ∆p is the origin. Any direction is binormal.

The height function in the direction v = (u, v, w) is hv(x, y) = ux+v(ax2+y2)+wdx2+

h.o.t.. Then 0 is a degenerate singularity if and only if u = 0 and v(av + dw) = 0. We see

that the solutions are exactly the binormal directions in the 3 subcases. Moreover, we have

a Σ2,2 singularity only in the case that d = 0 and v = v∞.

(3) ∆p is a line. So, j2f(0) ∼ (x, xy, 0) and taking f as in (6), the curvature parabola is

parametrised by

η(y) = 2(0, y, d) ,

where d ∈ R and κu(p) = 2|d|. Any direction is asymptotic, but there is only one binormal

direction v∞ = (0, 0, 1). The height function hv(x, y) = ux + vxy + wdx2 + h.o.t., has a

degenerate singularity at the origin if and only if u = v = 0 which gives v = v∞. Moreover,

we have a Σ2,2 singularity only in the case d = 0.

(4) ∆p is a point. In this case j2f(0) ∼ (x, 0, 0) and taking f as in (7), then

η(y) = (0, 0, 2d).

where d ∈ R and κu(p) = 2|d|. If d 6= 0 there is only one binormal direction v = (0, 1, 0).

Otherwise, if d = 0 any direction is binormal. On the other hand, the height function is
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given by hv(x, y) = ux+ wdx2 + h.o.t. If d 6= 0, then any normal direction (u = 0) gives a

degenerate singularity but only the binormal direction v = (0, 1, 0) gives a Σ2,2 singularity.

Otherwise, if d 6= 0, then any normal direction gives a Σ2,2 singularity. 2

Corollary 3.12 Let M ⊂ R
3 be a surface with a singularity of corank 1 at p ∈M . If ∆p is

not a point, then a plane has degenerate contact with M at p if and only if it is an osculating

plane of M at p.

Example 3.13 Let M be the swallowtail surface given in Example 2.3. Since v = (0, 0, 1)

is the unique binormal direction of M at 0, then the orthogonal plane to v is the unique

osculating plane of M at p. It follows from Theorem 3.11 that this is the unique plane having

degenerate contact with M at p. Moreover, since κu(0) = 0, the contact is of type Σ2,2.

Now, let M be the cuspidal edge from the same example. Since the vertex of ∆p is the

origin of NpM then all unit directions in NpM are binormal directions with v = (0, 0, 1)

given the infinite binormal direction. So, it follows that every plane containing the u-axis

is an osculating plane of M at p. Since κu(p) = 0 so, by Theorem 3.11, such planes have

degenerate contact withM at p and the uv-plane is the only one having contact of type Σ2,2.

3.4 Contact with spheres

We shall deal now with contact of the surface M with spheres.

Definition 3.14 The focal set of M at p is the locus of points of R3 which are centres of

spheres with degenerate contact with M at p or, equivalently, it is the locus of points u ∈ R
3

such that du has a degenerate singularity at p, where du is the distance-squared function on

M .

In the following result, the cross-cap case can be found in [4], Proposition 3.2 and 3.4

(see also [15]) but we include it in the statement for completeness. When M has not a cross-

cap type singularity, let {ν1, ν2} be an adapted frame of NpM , ε = sgn IIν2(X,X), for any

X ∈ Cq, and let ℓp ⊂ NpM be the line through p parallel to ν2, that is, ℓp = {p+ tν2 ; t ∈ R}.
Note that when ∆p is a half-line or a line, then ℓp is the line in NpM through p orthogonal

to ∆p.

Theorem 3.15 Let M ⊂ R
3 be a surface with a singularity of corank 1 at p ∈ M . The

function du is singular at p if and only if u ∈ NpM . Furthermore, the following possibilities

hold:

(i) If ∆p is a non-degenerate parabola then the focal set of M at p is a conic. More

precisely, it is either an ellipse, parabola or hyperbola according to p is “inside”, on or

“outside” of ∆p, respectively.
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(ii) If ∆p is a half-line then the focal set of M at p either is the union of two transverse

lines intercepting at u = p + ε
1

κu(p)
ν2 (if κu(p) 6= 0) or it is the union of two parallel

lines in NpM (if κu(p) = 0), which can be coincident. In both cases, ℓp is one of the

lines of the focal set.

(iii) If ∆p is a line then the focal set of M at p is the line ℓp .

(iv) If ∆p is a a point then the focal set of M at p is the plane NpM .

Moreover, du has a singularity of type Σ2,2 if and only if ∆p is a degenerate parabola,

κu(p) 6= 0 and u = p+ ε 1
κu(p)

ν2.

Proof The first assertion that du is singular if and only if u ∈ NpM is obvious and the

proof of case (i) can be found in [4, 15], so we consider only the other cases. In all the

cases we assume that p = 0 and that M is given by the corresponding parametrisation

in Proposition 2.6. If we denote the coordinates in R
3 by (u, v, w), in all the three cases

we have that {ν1, ν2} = {(0, 1, 0), (0, 0, 1)} is the adapted frame of NpM , ℓp is the w-axis,

κu(0) = 2|d| and ε = sgn(d).

(ii) Suppose that ∆p is a half-line. Given u = (u, v, w) we have

du(x, y) = (u− x)2 + (v − ax2 − y2)2 + (w − dx2)2 + h.o.t.

Hence, 0 is a degenerate singularity of du if and only if u = 0 and v(1 − 2av − 2dw) = 0.

If d 6= 0, we have two transverse lines, intercepting at (0, 0, 1
2d ). Otherwise, if d = 0, we

have two parallel lines. In both cases, v = 0 is one of the lines. Moreover, there is a Σ2,2

singularity only in the case that d 6= 0 and u = (0, 0, 1
2d ).

(iii) Let us suppose now that ∆p is a line. The distance-squared function is now given by

du(x, y) = u2 − 2ux+ (1− 2dw)x2 − 2vxy + h.o.t.

Then du has a degenerate singularity at 0 if and only if u = v = 0. Furthermore, the

singularity is of type Σ2,2 if and only if d 6= 0 and u = (0, 0, 1
2d).

(iv) Finally, suppose now that ∆p is a point, then

du(x, y) = u2 − 2ux+ (1− 2dw)x2 + h.o.t.

We conclude that for any u = 0 we have a degenerate singularity at the origin. Moreover, it

is a Σ2,2 singularity if and only if d 6= 0 and u = (0, 0, 1
2d ).

2

Example 3.16 Let M be the swallowtail surface given in Example 2.3. Since ∆p is a

line (the v-axis) and κu(0) = 0 then, by Theorem 3.15, it follows that the only spheres
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with degenerate contact with M at 0 are those ones with center belonging to the w-axis.

Moreover, there are no spheres with Σ2,2 contact.

Let M be the cuspidal edge surface image of f(x, y) = (x, ax2 + y2, by2 + cy3). So, the

singular set of f is the x-axis and its image in R
3 by f is {(x, ax2, 0) ; x ∈ R}. Taking p = 0,

a parametrisation for ∆p is η(y) = (0, 2a, 0) + (0, 2, 2b)y2 , y ∈ R, which is a half-line in NpM

contained in a line passing through the origin if and only if ab = 0. Then η′(y) = 4(0, y, by)

and so η(y∞) = 1√
1+b2

(0, 1, b). Therefore taking the infinite binormal vector v∞ = (0,−b, 1)
we get that {η(y∞),v∞} is an adapted frame of NpM . By (9), we have

κu(0) =
2|ab|√
1 + b2

.

Since ε = sgn 〈η(y),v∞〉 = sgn(−ab), we deduce the following conclusion: (a) if ab = 0 then

the only spheres with degenerate contact with M at 0 are those ones with center belonging

to the line ℓp = {t(0,−b, 1); t ∈ R} and there are no spheres with Σ2,2 contact; (b) if ab 6= 0

then the sphere with centre at u = ε 1
κ(p)v∞ is the unique sphere having Σ2,2 contact with

M at 0.

Given a surface M ⊂ R
3 and a local parametrisation f : (R2, q) → (R3, p), recall that

p is a 2-rounding of M if p is either a 2-flattening, that is, there is v ∈ S2 such that

jrhv(q) ∈ Σ2,2, r ≥ 2, or a non-flat 2-rounding, that is, it is not a 2-flattening and there is

u ∈ R
3 such that jrdu(q) ∈ Σ2,2. It is known that a regular (resp. singular) point of f is a

2-rounding if and only if it is an umbilic point (resp. it is not a cross-cap point). See [6] for

details. One concludes from Theorems 3.11 and 3.15 the following corollary:

Corollary 3.17 Let M ⊂ R
3 be a surface with a singularity of corank 1 at p which is not a

cross-cap. If the umbilic curvature of M at p is non zero then p is a non-flat 2-rounding of

M ; if the umbilic curvature is zero, then p is a 2-flattening of M .
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R. Cristóvão Colombo, 2265, CEP 15054-000
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