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Abstract

We discuss the geometry of contact real hypersurfaces with constant mean curvature in 
the complex hyperbolic quadric Qm∗ = SOo

m,2
∕SOmSO2 , where m ≥ 3 . These hypersurfaces 

were classified in Berndt and Suh (Proc Am Math Soc 143:2637–2649, 2015), and we 
study the individual types (two types of tubes around totally geodesic submanifolds of  Qm∗ 
and one type of horosphere) that have been found in that classification.

Keywords Contact hypersurface · Kähler structure · Complex conjugation · Complex 
hyperbolic quadric
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1 Introduction

Following Sasaki [19] and Okumura [13], an odd-dimensional, smooth manifold M
2m−1 

is called an almost contact manifold if the structure group of its tangent bundle can be 
reduced to U

m−1
× 1 (where U

m−1
 refers to the natural real representation of the unitary 

group in m − 1 complex variables). M
2m−1 is called a contact manifold if there exists a 

smooth 1-form � on M2m−1 so that � ∧ d�
m−1 ≠ 0 ; such an � is then called a contact form on 

M
2m−1.
It was shown by Sasaki [19, Theorem 5] that M2m−1 is an almost contact manifold if and 

only if there exists an almost contact metric structure (�, �, �, g) on M2m−1 . Here � is an 
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endomorphism field on M2m−1 , � is a vector field on M2m−1 , � is a 1-form on M2m−1 and g 
is a Riemannian metric on M2m−1 , and these data are related to each other in the following 
way: First we have

for all vector fields X on M2m−1 , meaning that (�, �, �) is an almost contact structure, and 
moreover this structure is adapted to the Riemannian metric g by

for all vector fields X, Y on M2m−1.
Clearly, if M2m−1 has an almost contact metric structure (�, �, �, g) so that � ∧ d�

m−1 ≠ 0 
holds, then M2m−1 is a contact manifold. Conversely, if M2m−1 is a contact manifold, then 
for any contact form � on M2m−1 there exists an almost contact metric structure (�, �, �, g) 
with this � by a result due to Sasaki [19, Theorem 4].

Let us now consider a real hypersurface M of a Kähler manifold M̄ of complex dimen-
sion m. Then M has real dimension 2m − 1 , and the complex structure J and the Riemann-
ian metric g of M̄ induce an almost contact metric structure (�, �, �, g) on M: Let N be a 
unit normal vector field of M in M̄ , then we choose � as the structure tensor field defined 
by letting �X be the M-tangential part of JX for any X ∈ TM , choose � as the Reeb vector 

field � = −JN , and choose � = g( ⋅, �) . If there exists a smooth, everywhere nonzero func-
tion � on M in this setting so that

holds for all vector fields X, Y on M, then M is a contact manifold, and � a contact form on 
M. In this case M is called a contact hypersurface of M̄ , see also Blair [6], Dragomir and 
Perrone [7]. It was noted by Okumura [13, Eq. (2.13)] that the condition (1.1) is equivalent 
to

where S denotes the shape operator of the hypersurface M in M̄ with respect to the unit 
normal vector field N, and k = 2� . If the complex dimension of M̄ is at least 3 in this set-
ting, then the function � resp. k is necessarily constant, see [4, Proposition 2.5].

Pursuant to these ideas, the contact hypersurfaces have been classified in the Hermi-
tian symmetric spaces of rank 1, namely in the complex projective space ℂP

m and its non-
compact dual, the complex hyperbolic space ℂH

m . Yano and Kon showed in [24, Theo-
rem  VI.1.5] that a connected contact hypersurface with constant mean curvature of the 
complex projective space ℂP

m with m ≥ 3 is locally congruent either to a geodesic hyper-
sphere, or to a tube over a real projective space ℝP

n , m = 2n , embedded in ℂP
m as a totally 

real, totally geodesic submanifold. Vernon proved in [23] that a complete, connected con-
tact real hypersurface in ℂH

m with m ≥ 3 is congruent to a tube around a totally geodesic 
ℂH

m−1 in ℂH
m , a tube around a real form ℝH

m in ℂH
m , a geodesic hypersphere in ℂH

m , or 
a horosphere in ℂH

m . Note that all the contact hypersurfaces in ℂP
m or ℂH

m are homoge-
neous and therefore have constant principal curvatures, in particular constant mean curva-
ture. We would like to mention that Pérez has carried out a nice investigation of certain real 
hypersurfaces in ℂP

m in [14].
When we consider more complicated Hermitian symmetric spaces as ambient space 

M̄ , there can be contact hypersurfaces which do not have constant mean curvature. The 
class of all contact hypersurfaces M in M̄ is very complicated, and a full classification 
does not appear to be feasible at the present time. However, if one considers only contact 

�2
X = −X + �(X)� , �(�) = 0 , �(�X) = 0 , �(�) = 1

g(�X,�Y) = g(X, Y) − �(X) �(Y) and �(X) = g(X, �)

(1.1)d�(X, Y) = � ⋅ g(�X, Y)

(1.2)S� + �S = k ⋅ � ,
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hypersurfaces M with constant mean curvature, the classification problem becomes tracta-
ble at least when M̄ is a Hermitian symmetric space of rank 2.

The series of irreducible Hermitian symmetric spaces of rank 2 comprise the com-
plex quadrics Qm = SOm+2

∕SO
2
SOm (isomorphic to the real 2-Grassmannians G+

2
(ℝm+2) 

of oriented planes in ℝm+2 ), the complex 2-Grassmannians G
2
(ℂm+2) = SU

m+2
∕S(U

2
U

m
) , 

and their non-compact duals, the complex hyperbolic quadrics Qm∗ = SOo

2,m
∕SO2SOm and 

the duals of the complex 2-Grassmannians G∗
2
(ℂm+2) = SU2,m∕S(U2U

m
) . We would like to 

mention the very nice investigations by Pérez et al. of specific types of real hypersurfaces 
in Qm in [15] and in G

2
(ℂm+2) in [16] and [17].

The classification of contact hypersurfaces with constant mean curvature in the complex 
quadric Qm and in its non-compact dual, the complex hyperbolic quadric Qm∗ has been car-
ried out by Berndt and the second author of the present paper in [4]. The result for Qm∗ is 
stated as Theorem  A. For the case of the complex quadric Qm , a different classification 
proof has been given in [22] by the second author of the present paper.

In the complex 2-Grassmannians G
2
(ℂm+2) , the contact hypersurfaces with constant 

mean curvature have also been classified by the second author of the present paper in [21]. 
He shows that such a hypersurface is congruent to an open part of a tube around a totally 
geodesic quaternionic projective space ℍP

n in G
2
(ℂm+2) , where m = 2n . For the non-com-

pact dual G∗
2
(ℂm+2) of these Grassmannians, as far as we know there does not exist a classi-

fication of contact hypersurfaces with constant mean curvature. However, Berndt et al. [2] 
classified contact hypersurfaces of G∗

2
(ℂm+2) which satisfy another curvature condition, 

namely that the principal curvature function � corresponding to the Reeb vector field of 
the hypersurface is constant. The result of the classification is that any such hypersurface 
of G∗

2
(ℂm+2) is congruent either to an open part of a tube around a totally geodesic quater-

nionic hyperbolic space ℍH
n in G

2
(ℂm+2) (only if m = 2n is even), or to an open part of a 

horosphere in a certain position in G∗
2
(ℂm+2) . Note that all these hypersurfaces have con-

stant mean curvature (this follows from [2, Propositions 4.1, 4.2(ii)]).
The purpose of the present paper is to study the local geometry of the contact real 

hypersurfaces with constant mean curvature in the complex hyperbolic quadric Qm∗ . As 
mentioned above, those hypersurfaces were classified by Berndt and Suh. The result is as 
follows:

Theorem A (Berndt and Suh [4]) Let M be a connected orientable real hypersurface with 
constant mean curvature in the complex hyperbolic quadric Qm∗ , m≥3 . Then M is a contact 
hypersurface if and only if M is congruent to an open part of one of the following contact 
hypersurfaces in Qm∗:

 (i) the tube of radius r > 0 around the complex hyperbolic quadric Qm−1∗ which is 
embedded in Qm∗ as a totally geodesic complex hypersurface;

 (ii) a horosphere in Qm∗ whose center at infinity is the equivalence class of an �-principal 
geodesic in Qm∗;

 (iii) the tube of radius r > 0 around the n-dimensional real hyperbolic space ℝH
n which 

is embedded in Qm∗ as a real space form of Qm∗.

We want to describe the local geometry of the three types (i)–(iii) of real hypersurfaces 
in Qm∗ given in the above theorem. For this purpose we first need to study the geometry 
of  Qm∗ itself. In particular we need to describe the “fundamental geometric structures” of 
Qm∗ ; they are its Riemannian metric g, its Hermitian structure J and a certain S1-subbundle 
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� of  End(TQm∗) which can be used to characterize the orbits of the isotropy action on the 
tangent space of Qm∗ . The terms “ �-principal” which occurs in Theorem  A refers to one 
of the two singular orbits of this action. For the complex quadric Qm the corresponding S1

-bundle  � is obtained from the shape operator of the embedding Qm
↪ ℂPm+1 ; it has first 

been introduced by Reckziegel in [18] and has many times been shown to be very useful for 
the investigation of the submanifold geometry of Qm , for example for the classification of the 
totally geodesic submanifolds of Qm by the first author of the present paper in [9], and in sev-
eral classifications of real hypersurfaces in Qm satisfying certain curvature conditions by the 
second author of the present paper and his coauthors. We would like to base our investigation 
of real hypersurfaces in Qm∗ on the analogous S1-subbundle  � for Qm∗ , which has, as far as we 
know, not before been described in full detail in the literature. The situation is more compli-
cated for Qm∗ than for Qm here, because there does not exist a complex hypersurface embed-
ding of Qm∗ into ℂH

m+1 , as was shown by Smyth [20], therefore � for Qm∗ cannot be obtained 
in the analogous manner as for Qm . Instead it needs to be obtained from the representation of 
Qm∗ as the quotient manifold SO2,m∕SO2SO

m
 regarded as a non-compact Hermitian symmet-

ric space. We thus carry out the description of the symmetric space structure of Qm∗ and of the 
mentioned fundamental geometric structures in Sect. 2.

The remainder of the paper is concerned with the construction of the contact hypersurfaces 
in Qm∗ that are given in Theorem A. In Sect. 3 we construct the tubes around totally geodesic 
submanifolds that occur in Theorem A(i),(iii). Section 4 recalls how horospheres in non-com-
pact Riemannian symmetric spaces of rank 2 are constructed, and then a description of the 
horosphere of Theorem A(ii) is given.

2  The complex hyperbolic quadric

The m-dimensional complex hyperbolic quadric Qm∗ is the non-compact dual of the m-dimen-
sional complex quadric Qm , i.e.  the simply connected Riemannian symmetric space whose 
curvature tensor is the negative of the curvature tensor of Qm.

The complex hyperbolic quadric Qm∗ cannot be realized as a homogeneous complex hyper-
surface of the complex hyperbolic space ℂH

m+1 . In fact, Smyth [20, Theorem 3(ii)] has shown 
that every homogeneous complex hypersurface in ℂH

m+1 is totally geodesic. This is in marked 
contrast to the situation for the complex quadric Qm , which can be realized as a homogeneous 
complex hypersurface of the complex projective space ℂP

m+1 in such a way that the shape 
operator for any unit normal vector to Qm is a real structure on the corresponding tangent 
space of Qm , see [18] and [9]. Another related result by Smyth, [20, Theorem 1], which states 
that any complex hypersurface of ℂH

m+1 for which the square of the shape operator has con-
stant eigenvalues (counted with multiplicity) is totally geodesic, also precludes the possibility 
of a model of Qm∗ as a complex hypersurface of ℂH

m+1 with the analogous property for the 
shape operator.

Therefore we realize the complex hyperbolic quadric Qm∗ as the quotient manifold 
SO2,m∕SO2SO

m
 . As Q1∗ is isomorphic to the real hyperbolic space ℝH

2 = SO1,2∕SO2 , and Q2∗ 
is isomorphic to the Hermitian product of complex hyperbolic spaces ℂH

1
× ℂH

1 , we sup-
pose m ≥ 3 in the sequel and throughout this paper. Let G ∶= SO2,m be the transvection group 
of Qm∗ and K ∶= SO

2
SO

m
 be the isotropy group of Qm∗ at the “origin” p

0
∶= eK ∈ Qm∗ . 

Then
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is an involutive Lie group automorphism of G with Fix(�)
0
= K , and therefore Qm∗ = G∕K 

is a Riemannian symmetric space. The center of the isotropy group K is isomorphic to SO
2
 , 

and therefore Qm∗ is in fact a Hermitian symmetric space.
The Lie algebra � ∶= ��2,m of G is given by

(see [10, p. 59]). In the sequel we will write members of � as block matrices with respect to 
the decomposition ℝm+2

= ℝ
2 ⊕ℝ

m , i.e. in the form

where X
11

 , X
12

 , X
21

 , X
22

 are real matrices of the dimension 2 × 2 , 2 × m , m × 2 and m × m , 
respectively. Then

The linearization �
L
= Ad(s) ∶ � → � of the involutive Lie group automorphism � induces 

the Cartan decomposition � = �⊕� , where the Lie subalgebra

is the Lie algebra of the isotropy group K, and the 2m-dimensional linear subspace

is canonically isomorphic to the tangent space Tp
0
Qm∗ . Under the identification 

Tp
0
Qm∗

≅ � , the Riemannian metric g of Qm∗ (where the constant factor of the metric is 
chosen so that the formulae become as simple as possible) is given by

g is clearly Ad(K)-invariant and therefore corresponds to an Ad(G)-invariant Riemannian 
metric on Qm∗ . The complex structure J of the Hermitian symmetric space is given by

� ∶ G → G, g ↦ sgs−1 with s ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1

− 1

1

1

⋱

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

� =
{

X ∈ ��(m + 2,ℝ)||X
t
⋅ s = −s ⋅ X

}

X =

(

X11 X12

X21 X22

)

,

� =

{ (
X11 X12

X21 X22

) |
|
|||

X
t

11
= −X11, X

t

12
= X21, X

t

22
= −X22

}

.

� = Eig(�∗, 1) = {X ∈ �|sXs
−1 = X}

=

{ (
X11 0

0 X22

) |||||
X

t

11
= −X11, X

t

22
= −X22

}
≅ ��2 ⊕ ��

m

� = Eig(�∗,−1) = {X ∈ �|sXs
−1 = −X} =

{ (
0 X12

X21 0

) |||||
X

t

12
= X21

}

g(X, Y) =
1

2
tr(Y t

⋅ X) = tr(Y12 ⋅ X21) for X, Y ∈ � .
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Because j is in the center of K, the orthogonal linear map J is Ad(K)-invariant and thus 
defines an Ad(G)-invariant Hermitian structure on Qm∗ . By identifying the multiplication 
with the unit complex number i with the application of the linear map J, the tangent spaces 
of Qm∗ thus become m-dimensional complex linear spaces, and we will adopt this point of 
view in the sequel.

Like for the complex quadric (again compare [18] and [9]), there is another important 
structure on the tangent bundle of the complex quadric besides the Riemannian metric and 
the complex structure, namely an S1-bundle � of real structures (conjugations). The situation 
here differs from that of the complex quadric in that for Qm∗ , the real structures in � cannot be 
interpreted as the shape operator of a complex hypersurface in a complex space form, but as 
the following considerations will show, � still plays a fundamental role in the description of 
the geometry of Qm∗.

Let

Note that we have a
0
∉ K , but only a

0
∈ O

2
SO

m
 . However, Ad(a

0
) still leaves � invariant 

and therefore defines an ℝ-linear map A
0
 on the tangent space � ≅ Tp

0
Qm∗ . A

0
 turns out to 

be an involutive orthogonal map with A
0
◦J = −J◦A

0
 (i.e. A

0
 is anti-linear with respect to 

the complex structure of Tp
0
Qm∗ ), and hence a real structure on Tp

0
Qm∗ . But A

0
 commutes 

with Ad(g) not for all g ∈ K , but only for g ∈ SOm ⊂ K . More specifically, for 

g = (g1, g2) ∈ K with g
1
∈ SO

2
 and g

2
∈ SOm , say g

1
=

(

cos(t) − sin(t)

sin(t) cos(t)

)

 with t ∈ ℝ (so 

that Ad(g
1
) corresponds to multiplication with the complex number � ∶= e

it ), we have

This equation shows that the object which is Ad(K)-invariant and therefore geometrically 
relevant is not the real structure A

0
 by itself, but rather the “circle of real structures”

�
p

0
 is Ad(K)-invariant and therefore generates an Ad(G)-invariant S1-subbundle � of the 

endomorphism bundle End(TQm∗) , consisting of real structures (conjugations) on the tan-
gent spaces of Qm∗ . For any A ∈ � , the tangent line to the fibre of � through A is spanned 
by JA.

For any p ∈ Qm∗ and A ∈ �p , the real structure A induces a splitting

JX = Ad(j)X for X ∈ �, where j ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1

−1 0

1

1

⋱

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ K .

a
0
∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

− 1

1

1

⋱

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

A
0
◦Ad(g) = �

−2
⋅ Ad(g)◦A

0
.

�p
0
∶= {�A

0
|� ∈ S1} .
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into two orthogonal, maximal totally real subspaces of the tangent space TpQm∗ . Here V(A) 
resp. JV(A) are the (+1)-eigenspace resp. the (−1)-eigenspace of A. For every unit vector 
Z ∈ TpQm∗ there exist t ∈ [0,

�

4
] , A ∈ �p and orthonormal vectors X, Y ∈ V(A) so that

holds; see [18, Proposition 3]. Here t is uniquely determined by Z. The vector Z is singular, 
i.e. contained in more than one Cartan subalgebra of � , if and only if either t = 0 or t = �

4
 

holds. The vectors with t = 0 are called �-principal, whereas the vectors with t = �

4
 are 

called �-isotropic. If Z is regular, i.e. 0 < t <
�

4
 holds, then also A and X, Y are uniquely 

determined by Z.
Like for the complex quadric, the Riemannian curvature tensor R of Qm∗ can be 

fully described in terms of the “fundamental geometric structures” g, J and � . In fact, 
under the correspondence Tp

0
Qm∗

≅ � , the Riemannian curvature tensor R̄(X, Y)Z cor-
responds to −[[X, Y], Z] for X, Y , Z ∈ � , see [11, Chapter  XI, Theorem  3.2(1)]. By 
evaluating the latter expression explicitly, one can show that one has

for arbitrary A ∈ �p
0
 . Therefore the curvature of Qm∗ is the negative of that of the complex 

quadric Qm , compare [18, Theorem 1]. This confirms that the symmetric space Qm∗ which 
we have constructed here is indeed the non-compact dual of the complex quadric.

As Nomizu [12, Theorem 15.3] has shown, there exists one and only one torsion-
free covariant derivative ∇̄ on Qm∗ so that the symmetric involutions sp ∶ Qm∗

→ Qm∗ at 
p ∈ Qm∗ are all affine. ∇̄ is the canonical covariant derivative of Qm∗ . With respect to 
∇̄ , the action of any member of G on Qm∗ is also affine. Moreover, ∇̄ is the Levi-Civita 
connection corresponding to the Riemannian metric g, and therefore g is parallel with 
respect to ∇̄ . Moreover, it is well-known that Qm∗ becomes a Kähler manifold in this 
way, i.e. the complex structure J is also parallel. Finally, because the S1-subbundle � of 
the endomorphism bundle End(TQm∗) is Ad(G)-invariant, it is also parallel with respect 
to the covariant derivative ∇̄End induced by ∇̄ on End(TQm∗) . Because the tangent line 
of the fiber of � through some Ap ∈ � is spanned by JAp , this means precisely that for 
any section A of � there exists a real-valued 1-form q ∶ TQm∗

→ ℝ so that

From the presentation (2.1) of the curvature tensor it follows analogously as for Qm in [18, 
Sects. 5 and 6] that Qm∗ has rank 2, that a linear subspace  � ⊂ � is a Cartan subalgebra if 
and only if there exist A ∈ � and orthonormal vectors X, Y ∈ V(A) so that � = ℝX ⊕ℝJY  
holds, and that the positive root system Σ+ = {�1,⋯ , �4} (in terms of the vectors  �♯

k
∈ � 

dual to the roots  �
k
∈ �

∗ ) and the corresponding root spaces �
�

k
 are given by

TpQm∗
= V(A)⊕ JV(A)

Z = cos(t) ⋅ X + sin(t) ⋅ JY

(2.1)

R̄(X, Y)Z = − g(Y , Z)X + g(X, Z)Y

− g(JY , Z)JX + g(JX, Z)JY + 2g(JX, Y)JZ

− g(AY , Z)AX + g(AX, Z)AY

− g(JAY , Z)JAX + g(JAX, Z)JAY

∇̄End

v
A = q(v) ⋅ JAp holds for p ∈ Qm∗

, v ∈ TpQm∗
.
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 k �
♯

k

�
�

k

1
√

2 ⋅ JY J(V(A)⊖ℝX ⊖ℝY)

2
√

2 ⋅ X V(A)⊖ℝX ⊖ℝY

3
√

2 ⋅ (X − JY) ℝ(JX + Y)

4
√

2 ⋅ (X + JY) ℝ(JX − Y)

3  Tubes around the totally geodesic submanifolds Qm−1∗
⊂ Qm∗ 

and ℝHm
⊂ Qm∗

At first we let P be any submanifold of a Riemannian symmetric space M̄ , and for p ∈ P 
we let ⟂p P be the normal space of P in M̄ at p, and let  ⟂1

p
P ∶= {v ∈⟂p P ∣ ‖v‖ = r} 

be the unit sphere in ⟂p P . We let ⟂ P resp. ⟂r
P be the vector bundle resp. the sphere 

bundle of normal vectors resp. of unit length normal vectors over P, and let � ∶⟂ P → P 
be the bundle projection map. Moreover, we let K⟂ ∶ T(⟂ P) →⟂ P be the normal con-
nection map of ⟂ P , i.e.  K⟂

u = ∇
u
id

⟂P
 . For any � ∈⟂ P,

is then an isomorphism of vector spaces.
The tube map of radius r > 0 is the map

where exp
M̄ denotes the (geodesic) exponential map of  M̄ . If Φ is a diffeomorphism into 

M̄ , we call its image M the tube around P of radius r, it is then a real hypersurface of M̄ . 
Berndt [1, Corollary 4.4] has described how to calculate the eigenvalues and eigenvectors 
of the shape operator of the map Φ , and hence the principal curvatures, their multiplicities 
and the corresponding principal curvature directions of the tube M. We describe his results 
here only for the case where the submanifold P is totally geodesic.

Therefore suppose that P is a totally geodesic submanifold of M̄ . Let R̄ be the Riemannian 
curvature tensor of M̄ . For any   p ∈ P , � ∈⟂p P we let R̄� ∶= R̄( ⋅, �)� be the correspond-
ing Jacobi operator of M̄ and define R� ∶= R̄�|TpP . Let �

�
 be the unit speed geodesic of M̄ 

with �
�
(0) = p and �̇�(0) = � ; then �

�
(r) = Φ(p) ∈ M and �̇�(r) is a unit normal vector of 

M ; we say that �̇�(r) is pointing outward and that −�̇�(r) is pointing inward. For the descrip-
tion of the principal curvatures, we follow [1, Sect. 4.2] by considering for any � ∈ ℝ the 
solution functions  sin

�
 and cos

�
 of the second order differential equation y�� + �y = 0 with 

sin
�
(0) = 0 , sin

�

�
(0) = 1 and cos

�
(0) = 1 , cos

�
�
(0) = 0 . Explicitly one has

According to [1, Corollary 4.4], the shape operator SΦ with respect to the outward-pointing 
unit normal vector �̇(r) has two types of eigenvalues, and any eigenvalue or eigenvector of 
S
Φ is obtained by either of these two methods:

T�(⟂ P) → T�(�)P⊕ ⟂�(�) P, u ↦ (�∗u, K
⟂

u)

Φ ∶⟂1 P → M̄, � ↦ expM̄

p
(r �) ,

sin
�
(t) =

⎧⎪⎨⎪⎩

1√
�

sin(
√
� t) for � > 0

t for � = 0
1√
−�

sinh(
√
−� t) for � < 0

and cos
�
(t) =

⎧⎪⎨⎪⎩

cos(
√
� t) for � > 0

1 for � = 0

cosh(
√
−� t) for � < 0

.
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 (I) For any eigenvalue � of R
�
 , the number � ⋅

sin
�
(r)

cos
�
(r)

 is an eigenvalue of SΦ . The cor-

responding eigenspace of SΦ is given by 

 where E
�
 denotes the eigenspace of R

�
 for the eigenvalue �.

 (II) For any eigenvalue � of R̄�|(⟂�(�) P ⊖ℝ�) , the number − cos
�
(r)

sin
�
(r)

 is an eigenvalue of 

S
Φ . The corresponding eigenspace of SΦ is given by 

 where Ē
�
 denotes the eigenspace of R̄�|(⟂�(�) P ⊖ℝ�) for the eigenvalue �.

The principal curvatures of M at Φ(�) are precisely the eigenvalues of SΦ described above. 
The corresponding principal curvature spaces are the image under Φ

∗
 of the eigenspaces of 

S
Φ ; hence, they are obtained from the eigenspaces E

�
 (in the case (I)) resp.  Ē

�
 (in the case 

(II)) by parallel transport along the geodesic �
�
.

We will now apply the preceding results to tubes in the complex hyperbolic quad-
ric M̄ = Qm∗ around the two types of totally geodesic submanifolds that occur in Theo-
rem A(i),(iii). It follows from Eq. (2.1) that if the unit normal vector � ∈⟂

1 Qm∗ is �-prin-
cipal, the corresponding Jacobi operator is given by

It is easy to see that R̄� then has the two eigenvalues 0 and −2 . If A ∈ � is such that 
� ∈ V(A) holds, then the corresponding eigenspaces are ℝ� ⊕ J(V(A)⊖ℝ�) and 
(V(A)⊖ℝ�)⊕ℝJ� , respectively.

The obvious embedding of Lie groups SO
o

2,m−1
→ SO

o

2,m
 induces a totally geodesic 

embedding of Qm−1∗ = SO2,m−1∕SO2SOm−1 into Qm∗ = SO2,m∕SO2SOm . We will view 
Qm−1∗ as a totally geodesic complex hypersurface of Qm∗ by means of this embedding.

Proposition 3.1 The tube M around the totally geodesic Qm−1∗ in Qm∗ exists for every 
radius r > 0 . For M the following statements hold:

(1) Every normal vector N of M is �-principal.
(2) M has constant principal curvatures, and in particular constant mean curvature. Let N 

be the outward-pointing unit normal vector of M at q ∈ M . By (1) we have N ∈ V(A) 
for some A ∈ �q . Then the principal curvatures of M with respect to N and the cor-
responding principal curvature spaces are 

Principal curvature Principal curvature space Multiplicity

� = 0 J(V(A)⊖ℝN) m − 1

� = −
√

2 tanh(
√

2r) V(A)⊖ℝN m − 1

� = −
√

2 coth(
√

2r) ℝJN 1

(3) M is a Hopf hypersurface.
(4) The shape operator S and the structure tensor field � ( � = pr

TM
◦J  , where 

prTM ∶ TQm∗
→ TM denotes the orthogonal projection) satisfy 

{u ∈ T
�
(⟂1

P) ∣ �∗u ∈ E
�
, K

⟂
u = 0} ,

{u ∈ T�(⟂
1

P) ∣ �∗u = 0, K
⟂

u ∈ Ē�} ,

R̄�(X) = −X − AX + 2 g(X, �)� − 2 g(X, J�)J� .
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 In particular M is a contact submanifold.

Proof It follows from the construction of the S1-subbundle � of End(TQm∗) of real struc-
tures that for any p ∈ Qm−1∗ , both complex subspaces TpQm−1∗ and  ⟂p Qm−1∗ are invariant 
under every Ap ∈ �p . Because ⟂p Qm−1∗ thus is a complex one-dimensional subspace that 
is invariant under Ap ∈ �p , it follows that the vectors in this space are �-principal.

Now let q ∈ M be given. It follows from the construction of the tube M that there exists 
p ∈ Qm−1∗ and a unit normal vector � ∈⟂p Qm−1∗ so that the normal space ⟂q M of M at q 
is spanned by �̇�(r) . Because �̇�(0) ∈⟂p Qm−1∗ is �-principal by the preceding observation, 
and the S1-bundle � is parallel, it follows that also �̇�(r) and hence ⟂q M is �-principal.

Moreover the outward-pointing unit normal vector N of M at q equals �̇�(r) and is con-
tained in V(Aq) , where Aq ∈ �q is the parallel transport of Ap along the geodesic �

�
 . Note 

that TpQm−1∗ = (V(Ap)⊖ℝ�)⊕ J(V(Ap)⊖ℝ�) and ⟂p Qm−1∗
= ℝ� ⊕ℝJ� holds. We 

now apply the two cases (I) and (II) given above to obtain the principal curvatures of M 
with respect to N. For case (I), we note that  R� ∶= R̄�|TpQm−1∗ has the two eigenvalues 0 
and −2 , with eigenspaces J(V(Ap)⊖ℝ�) and V(Ap)⊖ℝ� , respectively. From the eigen-
value � = 0 we obtain the principal curvature � ⋅

sin
�
(r)

cos
�
(r)

= 0 = � , and from the eigenvalue 

� = −2 we obtain the principal curvature � ⋅

sin
�
(r)

cos
�
(r)

= −
√

2 tanh(
√

2 r) = � . In case (II), 

we have  ⟂p Qm−1∗ ⊖ℝ� = ℝJ� , and therefore the only eigenvalue of R̄�|(⟂p Qm−1∗ ⊖ℝ�) 
is   � = −2 with the eigenspace ℝJ� . This yields the principal curvature 
−

cos
�
(r)

sin
�
(r)

= −
cos

�
(r)

sin
�
(r)

= −
√

2 coth(
√

2 r) = � . The principal curvature spaces are obtained 

from the corresponding eigenspaces of R̄� by parallel transport along �
�
 and are therefore as 

stated in the proposition.
It follows from the calculation of the principal curvatures that M has constant princi-

pal curvatures, in particular constant mean curvature. The claim that M is Hopf means by 
definition that the Hopf vector field � = −JN is a principal vector field; this is the case by 
our previous calculation. The corresponding principal curvature is � = −

√

2 coth(
√

2r) . 
Moreover, it is easily seen that �(JN) = 0 holds, and that � acts as J on V(Aq)⊖ℝN and 
on  J(V(Aq)⊖ℝN) . Therefore the equation in (4) is easily verified on the principal curva-
ture spaces described in (2). Because Eq. (1.2) thus holds for M with k = � , it follows that 
M is a contact submanifold.   □

A similar discussion applies to tubes around the totally geodesic ℝH
m in Qm∗ . The 

obvious embedding of Lie groups SO1,m → SO2,m induces a totally geodesic embedding 
of ℝH

m = SO1,m∕SO
m

 into Qm∗ = SO2,m∕SO2SOm . We will view ℝH
m as a real form, 

i.e. a totally geodesic, totally real, real-m-dimensional submanifold of Qm∗ by means of 
this embedding.

Proposition 3.2 The tube M around the totally geodesic ℝH
m in Qm∗ exists for every radius 

r > 0 . For M the following statements hold:

(1) Every normal vector N of M is �-principal.
(2) M has constant principal curvatures, and in particular constant mean curvature. Let N 

be the outward-pointing unit normal vector of M at q ∈ M . By (1) we have N ∈ V(A) 
for some A ∈ �q . Then the principal curvatures of M with respect to N and the cor-
responding principal curvature spaces are 

S� + �S = � ⋅ �.
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Principal curvature Principal curvature space Multiplicity

� = 0 J(V(A)⊖ℝN) m − 1

� = −
√

2 coth(
√

2r) V(A)⊖ℝN m − 1

� = −
√

2 tanh(
√

2r) ℝJN 1

(3) M is a Hopf hypersurface.
(4) The shape operator S and the structure tensor field � ( � = pr

TM
◦J  , where 

prTM ∶ TQm∗
→ TM denotes the orthogonal projection) satisfy 

 In particular M is a contact submanifold.

Proof The proof of this proposition follows the same pattern as that of Proposition 3.1.
For any p ∈ ℝHm , there exists Ap ∈ �p so that TpℝHm = V(−Ap) and therefore 

⟂p ℝHm = JV(−Ap) = V(Ap) holds. In particular, both TpℝHm and ⟂p ℝHm are �-princi-
pal. Now let q ∈ M be given. Again there exists p ∈ ℝHm and � ∈⟂

1

p
ℝHm so that ⟂q M 

is spanned by �̇�(r) . Because �̇�(0) ∈⟂p ℝHm = V(Ap) is �-principal, it again follows that 
also �̇�(r) and hence ⟂q M is �-principal. Hence the outward-pointing unit normal vector 
N = �

�
(r) is contained in V(Aq) where Aq ∈ �q is the parallel transport of Ap along �

�
.

We again apply the two cases (I) and (II) given above to obtain the principal curvatures 
of M with respect to N. For case (I), we note that R� ∶= R̄�|TpℝHm has the two eigenvalues 
0 and −2 with eigenspaces J(V(Ap)⊖ℝ�) and ℝJ� , respectively. From the eigenvalue 
� = 0 we obtain  � ⋅

sin
�
(r)

cos
�
(r)

= 0 = � , and from the eigenvalue � = −2 we obtain the princi-

pal curvature � ⋅

sin
�
(r)

cos
�
(r)

= −
√

2 tanh(
√

2 r) = � . In case (II), we have 

⟂p ℝHm ⊖ℝ� = V(Ap)⊖ℝ� , and therefore the only eigenvalue of R̄�|(⟂p Qm−1∗ ⊖ℝ�) 
is � = −2 with the eigenspace V(Ap)⊖ℝ� . This yields the principal curvature 
−

cos
�
(r)

sin
�
(r)

= −
cos

�
(r)

sin
�
(r)

= −
√

2 coth(
√

2 r) = �.

The remaining parts of the proposition now follow in the same way as in the proof of 
Proposition 3.1.

4  Horospheres in Qm∗ 

Suppose that M̄ is a Hadamard manifold, i.e.  a simply connected, complete Riemannian 
manifold with sectional curvature ≤ 0 . We denote by d the Riemannian distance function 
on M̄ . Two unit speed geodesics �1, �2 ∶ ℝ → M̄ are said to be asymptotic to each other, 
if the function  t ↦ d(�1(t), �2(t)) remains bounded for t → ∞ . Asymptoticness defines an 
equivalence relation on the space of unit speed geodesics on M̄ . The equivalence classes 
are called points at infinity, and their set is denoted by M̄(∞) . For any unit speed geodesic 
� ∶ ℝ → M̄ , the corresponding point at infinity is denoted by �(∞) ∈ M̄(∞) . The horo-

sphere with center at infinity �(∞) through some point p ∈ M̄ is defined as

S� + �S = � ⋅ � .

C(p, �(∞)) =

{

q ∈ M̄
||
|
|

lim
t→∞

(
d(q, �(t)) − d(p, �(t))

)
= 0

}

.
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It can be shown that C(p, �(∞)) indeed does not depend on the choice of the represent-
ant � within the equivalence class �(∞) and that it is a real hypersurface of M̄ , see [8, 
Sect. 1.10].

We now suppose that M̄ is a Riemannian symmetric space of non-compact type and 
rank 2. The following construction principle for horospheres in M̄ was described by Berndt 
and Suh in [3, Sect. 2]. Let us consider M̄ = G∕K with the “origin” o ∶= eK ∈ M̄ , the Car-
tan decomposition � = �⊕� and a Cartan subalgebra � ⊂ � . Further consider the root 
system Σ ⊂ �

∗ and the corresponding root space decomposition � = �⊕ �� ⊕
⨁

�∈Σ
�� . 

For a positive root system Σ+
⊂ Σ , � ∶=

⨁

�∈Σ+ �� is a nilpotent subalgebra of � , and 
� = �⊕ �⊕ � is an Iwasawa decomposition of � . Let A and N be the connected Lie sub-
groups of G with Lie algebra � resp.  � . Then G = KAN is an Iwasawa decomposition of G, 
more precisely,  A and N are simply connected, K ∩ AN = {e} holds, and the maps

are surjective diffeomorphisms, see [10, Theorem VI.6.46, p. 374].
Now suppose that a unit vector H ∈ � is given. Then �

H
∶= (�⊖ℝH)⊕ � is a solvable 

Lie subalgebra of � . Let S
H

 be the connected subgroup of AN with Lie algebra �
H

 . Then 
the orbits of the action of S

H
 on M̄ are the horospheres of M̄ with the center at infinity 

�
H
(∞) , where �

H
 is the geodesic with �

H
(0) = o and �̇

H
(0) = H (and where we identify � 

with T
e
M̄ in the usual manner). In particular we have C(o, �

H
(∞)) = S

H
⋅ o . It was shown 

by Berndt and Tamaru in [5, Proposition 3.1(2),(3)] that the shape operator of C(o, �
H
(∞)) 

with respect to the unit normal vector H is given by ad(H)|�
H

 . Therefore the principal cur-
vatures are constant, and their values are given by 0 and by �(H) for every � ∈ Σ+ . The cor-
responding principal curvature spaces are �⊖ℝH and �

�
  ; under the standard identifica-

tion T
e
M̄ ≅ � , the latter space corresponds to �

�
= {X − �X ∣ X ∈ �

�
} (where � ∶ � → � 

denotes the Cartan involution).
We will now apply this construction to M̄ = Qm∗ and an �-principal vector H ∈ �.

Proposition 4.1 Let M be a horosphere in Qm∗ with its center at infinity being given by an 
�-principal geodesic � . Then the following statements hold:

(1) Every normal vector N of M is �-principal.
(2) M has constant principal curvatures, and in particular constant mean curvature. Then 

the principal curvatures of M with respect to the unit normal vector1  N ∶= −�̇(0) and 
the corresponding principal curvature spaces are 

Principal curvature Principal curvature space Multiplicity

0 J(V(A)⊖ℝN) m − 1

−

√

2 (V(A)⊖ℝN)⊕ℝJN m

 Here A ∈ � is chosen such that −�̇(0) ∈ V(A) holds.

(3) M is a Hopf hypersurface.
(4) The shape operator S and the structure tensor field � ( � = pr

TM
◦J  , where 

prTM ∶ TQm∗
→ TM denotes the orthogonal projection) satisfy 

K × A × N → G, (k, a, n) ↦ kan and A × N → M̄, (a, n) ↦ an ⋅ o

1 We choose the negative of �̇(0) as normal vector here so that the orientation matches the one considered 
for the tubes in Sect. 3.
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 In particular M is a contact submanifold.

Proof We use the description of the Cartan subalgebras, the roots and the root spaces 
of Qm∗ given at the end of Sect.  2. We may assume without loss of generality that 
�(0) = o and �̇(0) ∈ � holds. Because the geodesic � is �-principal, there exists A ∈ �

o
 

with  X ∶= �̇(0) ∈ V(A) , and we may further assume that the Cartan subalgebra � is given 
by � = ℝX ⊕ℝJY  with a unit vector  Y ∈ V(A)⊖ℝX . Numbering the positive roots of 
Qm∗ as in Sect. 2 we then have

It follows that the horosphere M has the two principal curvatures 0 with principal curva-
ture space (�⊖ℝX)⊕��

1

= J(V(A)⊖ℝX) , and −
√

2 with the principal curvature space 
��

2
⊕��

3
⊕��

4
= (V(A)⊖ℝX)⊕ℝJX.

The remainder of the statements follows in the same way as for the proofs of Sect. 3.

Remark 4.2 Note that for both the family of tubes around Qm−1∗ (Proposition 3.1) and the 
family of tubes around ℝH

m (Proposition 3.2), when one lets the radius r > 0 of the tube 
tend to infinity, the values of the principal curvatures and the corresponding principal cur-
vature spaces tend to the values and spaces of the horosphere with �-principal center at 
infinity (Proposition 4.1). In this sense, this horosphere is the joint limit of both mentioned 
families of tubes as r → ∞.
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