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Abstract: Polysomnography (PSG) remains the gold standard for sleep monitoring but is obtrusive
in nature. Advances in camera sensor technology and data analysis techniques enable contactless
monitoring of heart rate variability (HRV). In turn, this may allow remote assessment of sleep
stages, as different HRV metrics indirectly reflect the expression of sleep stages. We evaluated a
camera-based remote photoplethysmography (PPG) setup to perform automated classification of
sleep stages in near darkness. Based on the contactless measurement of pulse rate variability, we use
a previously developed HRV-based algorithm for 3 and 4-class sleep stage classification. Performance
was evaluated on data of 46 healthy participants obtained from simultaneous overnight recording
of PSG and camera-based remote PPG. To validate the results and for benchmarking purposes, the
same algorithm was used to classify sleep stages based on the corresponding ECG data. Compared to
manually scored PSG, the remote PPG-based algorithm achieved moderate agreement on both 3 class
(Wake–N1/N2/N3–REM) and 4 class (Wake–N1/N2–N3–REM) classification, with average κ of 0.58
and 0.49 and accuracy of 81% and 68%, respectively. This is in range with other performance metrics
reported on sensing technologies for wearable sleep staging, showing the potential of video-based
non-contact sleep staging.

Keywords: remote photoplethysmography; heart rate variability; pulse rate variability; sleep stage
classification; contactless monitoring

1. Introduction

While sleep is something natural for many of us, it is not the case for everyone. For
some, it will be necessary to obtain more detailed and objective information on sleep
structure, to assess any potential sleep disorder. The gold standard to measure sleep is
polysomnography (PSG). Although PSG is widely used in clinical practice and in research,
it has some drawbacks. PSGs are typically performed in (specialized) sleep centres using
many wired sensors measuring multiple physiological parameters, such as cortical activity,
cardiac activity and breathing. During these measurements patients may feel unfamiliar
with the environment, and cables may feel obtrusive. Besides these shortcomings that
influence actual sleep quality [1,2], in-lab (video) PSG is rather costly, and analysis is
complex. Therefore, it is rarely used for sleep assessment over consecutive nights and may
be insufficient to unearth infrequent events, or night-to-night variability, resulting in a less
representative picture of sleep [2]. A less obtrusive way of measuring sleep could alleviate
these issues, especially in populations who are less tolerant to PSG, such as children or
patients with intellectual disabilities [3].

Sleep stages are traditionally scored by analysing the electroencephalogram, elec-
trooculogram and electromyogram signals that are part of the PSG measurement. Extensive
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research has been conducted to obtain surrogate measures of sleep and sleep stages staging
using other, less obtrusive, techniques. A frequently used and proven technique is by
measuring heart rate variability (HRV). Different HRV metrics indirectly reflect autonomic
nervous system activity, which in turn are known to express sleep stages; as such, it has
been used to identify sleep stages with reasonable accuracy [4–6]. The gold standard sensor
for measuring cardiac activity is the electrocardiogram (ECG), a wired setup which is
obtrusive as well, especially during sleep. Recent advances in sensor technology and data
analysis techniques facilitated research on alternative and less obtrusive sleep monitor-
ing setups based on HRV [7]. Wrist-worn devices for measuring photoplethysmography
(PPG) and actigraphy have shown promise in this area [8–12]. However, these devices
still require contact with the body of the subject being measured and suffer, albeit to a
lesser extent, of issues related to comfort and obtrusiveness. Camera-based monitoring is a
promising example of contactless estimation of vital signs that are generally part of a sleep
assessment [13]. Previous work showed the monitoring of vital signs during sleep, focus-
ing on the detection and estimation of body movements and body posture [14,15], heart
rate [16,17], respiration [14,16,18,19], or blood oxygen saturation [16], all without requiring
any cables or sensors connected to the patient and in near darkness. Researchers have
applied the monitoring of body movements directly towards the automated classification
of sleep stages [20]. Others used estimated respiratory movements to detect characteristic
features of different sleep stages [21] and respiratory events during sleep [18]. To the best
of our knowledge, no previous work was carried out on camera HRV-based monitoring of
sleep stages.

The purpose of this study is to evaluate, in near darkness, a camera-based, remote PPG
setup for the contactless measurement of pulse rate variability and automated classification
of sleep stages in healthy subjects. The system makes use of measured pulse-to-pulse
HRV and a previously developed sleep staging algorithm based on HRV features. Results
of the estimated sleep stages are compared with sleep stages manually scored from a
simultaneously recorded PSG.

2. Methods
2.1. Experimental Protocol

The system was evaluated on the HealthBed-cohort of healthy adults (aged 18 or
above). Exclusion criteria were: a presence of any previously diagnosed sleep disorders,
a Pittsburgh Sleep Quality Index larger than 5, an Insomnia Severity Index larger than 7,
a Hospital Anxiety and Depression Scale score larger than 8, shift-work, pregnancy, use
of any medication, except for birth control medicine, or any clinically relevant neurologic
or psychiatric disorders or other somatic disorders that could influence sleep or limit
the ability to adhere to the study procedures. All participants were recruited via online
advertisements. A total of 96 participants were enrolled into the HealthBed study and
scheduled for an overnight sleep registration at the Sleep Medicine Centre Kempenhaeghe,
Heeze, The Netherlands. Of these, 51 participants were recorded with the camera-based
remote PPG setup. Due to technical problems in the measurement setup software during
the recordings, the system failed to record the whole night of five participants, and the
data of these participants are excluded from further analysis. The remaining participants
(n = 46) had an average age of 35.3 years (±14.5 years), 34 females and 12 males.

In addition to the measurement setup, a reference PSG was acquired with a Grael 4K
PSG amplifier (Compumedics Limited, Victoria, Australia). PSG sensors were set up
according to the AASM guidelines and sleep stages were visually scored in 30-s epochs by
an experienced sleep technician, all according to the AASM manual for scoring of sleep
and associated events (Version 2.2, July 2015) [22]. The manually scored sleep stages were
used as a reference to evaluate the performance of the sleep staging algorithm.
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2.2. Measurement Setup

The camera-based remote PPG setup comprised cameras and dedicated infrared
illumination mounted on a bar located above the head of the participant (Figure 1). This
viewpoint was selected because of skin visibility, from which the cardiac pulse signal can
be extracted. To suppress influences of distortions (e.g., motion and noise) on the pulse
detection, three horizontally spaced, identical monochrome CCD cameras (AVT Manta G-
283B, Allied Vision GmbH, Stadtroda, Germany) with zoom lenses (M6Z1212-3S, Computar,
Tokyo, Japan) were equipped with different optical band-pass filters to obtain spectral
selectivity in near-infrared. The centre wavelengths of these filters were 760, 800 and 890 nm,
wavelengths that are almost invisible to the human eye. The zoom factor of the lenses was
selected to cover the full width of the bed, to alleviate limitations on sleeping position. Two
identical custom-developed illumination units were placed on both sides of the cameras.
These units consist of LEDs with three wavelengths matching the filters of the cameras. An
optical diffuser was placed in front of the LEDs to improve the spectral homogeneity of the
illumination area. The impact of lightning on each participant’s experience was evaluated
after the nocturnal recording by means of a questionnaire (Appendix A).

Figure 1. Measurement setup. Three cameras positioned between two illumination units were placed
above the bed to continuously capture the patient’s face during the overnight recording.

The cameras were simultaneously triggered by the video acquisition system. Frames
were stored uncompressed at a resolution of 968 × 728 pixels and transferred via ethernet.
To limit needed data storage and ensure a stable frame rate, frame rate was set to 15 Hz.
Synchronization of the video and PSG data was achieved by generating a synchronization
signal by the video acquisition system and sampling this signal simultaneously with the
PSG amplifier during PSG acquisition.

2.3. Camera-Based Remote PPG, Pulse Extraction and Inter-Pulse Interval Detection

The HRV-based sleep staging algorithm requires an accurate estimation of the time
distance between consecutive heart beats (inter-pulse intervals, IPI, from the remote PPG
setup). To enable accurate pulse-to-pulse duration estimations from the remote PPG
setup, we used a previously developed processing framework to extract the pulse signal
from the raw video data [23]. This framework considers different lying positions and
possible occlusions and was validated in a laboratory setting on a limited dataset. In short,
the framework started with pre-processing the raw video by dividing the frames into
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subregions using a box-shaped interpolation kernel. Traces were generated by temporal
concatenation of the intensity values for each subregion and for all three wavelengths.
Next, all traces were bandpass filtered (0.6–3 Hz, corresponding to a heart rate between 36
and 180 beats per minute), and pulse signals were extracted using a robust pulse extraction
method [24]. By similarity mapping and using the pulse signal as a feature, a distinction
was made between living and non-living pixels. All pulses from the detected living pixels
were combined to reconstruct a single pulse signal. Next, the pulse signal (15 Hz) was
resampled at 240 Hz using a cubic spline interpolation method and rescaled in amplitude
between 0 and 1. Finally, systolic peaks were detected using an automatic multiscale-based
peak detection method that does not need any additional user input prior to analysis [25].
No form of post-processing or pruning of the detected peaks was performed. The time
between two consecutive peaks (i.e., IPI) was calculated and only inter-pulse intervals with
a maximum of 1.5 s (corresponding to a heart rate of 40 beats/min) and a minimum of 0.3 s
(200 beats/min) were assumed to be valid; all others were excluded.

2.4. Sleep Stage Classifier

A previously developed machine learning algorithm for automatic sleep staging was
used to classify sleep stages [6,26]. The classifier, trained with 132 HRV features extracted
from ECG interbeat-interval data, consists of 1 dense layer, 3 bidirectional LSTM layers,
2 dense layers and an output with softmax for four classes: wake, N1/N2, N3, and REM.
As in previous work [6], the classifier was pre-trained with 584 recordings (of 195 healthy
sleepers and 97 sleep disordered patients) of the SIESTA dataset [27], using as training
ground-truth PSG consensus scorings of three experienced sleep technicians. None of the
recordings acquired in the present study were used to tune or in any way optimize the sleep
staging algorithm or the input HRV features. The sleep stage classifier was used, without
modifications, to classify sleep stages based on the same input HRV features extracted
from the IPI signal obtained with the remote PPG setup. For each participant, a simplified
four-class hypnogram was obtained for the “lights off” period of the recording.

2.5. Sleep Staging Performance

To evaluate the sleep staging algorithm, the hypnogram obtained with the remote
PPG setup was compared against the manually scored sleep stages based on PSG. Since the
classifier outputs a simplified hypnogram, the labels of the manually scored sleep stages
N1 and N2 were combined in a single “N1/N2” class, while the remaining classes (wake,
N3, and REM) were used without changes. Cohen’s kappa coefficient of agreement (or κ)
and accuracy were used to describe epoch-per-epoch agreement between the predictions
obtained with each setup, and the manually scored hypnogram from the gold standard
PSG. The classifier was further evaluated in a three-class classification task, by merging
the N1/N2 and N3 labels of the prediction and ground-truth reference in a single non-
REM (NREM) class. In addition, the classification performance for each sleep stage was
determined, by considering each class separately against the merged remaining classes; in
this case, in addition to κ and accuracy, also sensitivity, specificity, and PPV were calculated.

2.6. ECG Benchmark-Sleep Staging and Pulse Detection Performance

For benchmarking purposes, the same classifier was also used to classify sleep stages
based on the inter beat intervals (IBIs) derived from the ECG Lead II channel included in
the PSG recording of each participant. The ECG signal, recorded at 512 Hz, was first high-
pass filtered to remove baseline wander using a linear phase filter using a Kaiser window
of 1.016 s, a cut-off frequency of 0.8 Hz and a side-lobe attenuation of 30 dB [28]. QRS
complexes were detected using a Hamilton–Tompkins QRS detector and further localized
with a post-processing algorithm [29]. The time distance between consecutive R-peaks was
used to calculate the resulting IBI time series.

The performance indicators of the sleep staging classifier based on ECG with respect
to manually scored sleep stages were compared to the performance indicators using remote
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PPG. A Wilcoxon signed rank test was used to detect significant differences (at a p-value of
0.05) between both.

The detected heart beats from the ECG signal, and derived IBI time series were used as
a ground truth to evaluate the pulse detection performance of the remote PPG setup. Each
detected pulse was matched with beats detected in the ECG signal in the corresponding
PSG recording. A match was defined when a pulse was found within a range of 250 ms
of a single QRS complex, in which case the pulse was marked as true positive (TP). If a
pulse could not be matched to any QRS complex, it was marked as false positive (FP).
If multiple pulses were matched to one QRS complex, one pulse was considered as TP
and the remaining as FP. All QRS complexes that were not matched with any pulses are
considered false negatives (FN). The coverage of the inter-pulse time series of the remote
PPG setup was calculated as the sum of all IPIs related to duration of the PSG measurement.
The pulse detection performance was evaluated by calculating the sensitivity and positive
predictive value (PPV). The bias (i.e., mean time difference between all matched pulses
and their corresponding ECG beats) and trigger jitter (i.e., the standard deviation of these
differences) were calculated as well as the percentage of pulses within 50 ms and 100 ms
of the closest QRS complex, as in [30,31], for the correctly detected pulses according to
the criteria used to calculate coverage and sensitivity, and after correcting for the average
localization error (bias) of each participant. Finally, parameters describing the resemblance
between the IPI and IBI time series, such as root mean square error (RMSE) and Pearson’s
correlation coefficient (ρ), were calculated.

Furthermore, we evaluated whether pulse detection performance explains the dif-
ferences in sleep staging performance of both setups (i.e., remote PPG vs. ECG). The
difference in performance between both setups was obtained, per participant, by calcu-
lating the difference in κ obtained with the remote PPG setup (κremotePPG) and with ECG
(κECG) i.e., κECG – κremotePPG. Spearman’s correlation coefficients were used to evaluate
possible relations between the difference in sleep stage classification performance and pulse
detection performance metrics. Since the test was repeated 9 times (once per metric), a
Bonferroni correction for repeated tests was used. For that reason, we used as a threshold
for significance a p-value of 0.006 or below.

3. Results
3.1. Questionnaire Results on Experienced Obtrusiveness

None of the participants reported any substantial influence of the camera-based remote
PPG measurement setup (i.e., light source and/or camera’s) on their sleep beyond the effect
of the conventional PSG setup (see Table A1 in Appendix A), for more detailed results on
the questionnaire).

3.2. Sleep Stage Classifier and Performance

Figure 2 illustrates an example of a hypnogram predicted using the remote PPG
setup as well as the reference hypnogram based on PSG manual scoring. This example
corresponds to the hypnogram with the highest κremotePPG for the predicted sleep stages
(4 classes) using the remote PPG setup compared to manual scoring. Figure 3 illustrates
another example, this one for the hypnogram for which the remote PPG setup had the
κremotePPG closest to the average performance.

Table 1 shows the sleep staging performance of the classifier, the agreement between
the manual scored PSG stages (i.e., reference) and the predicted sleep stages based on
the remote PPG setup. The highest performance is obtained for REM detection, with an
average κremotePPG of 0.61. Confusion matrices for all predictions of the remote PPG setup
against the reference are shown in Appendix B.
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Figure 2. Hypnogram for the highest performance of remote PPG setup. Hypnograms for one
example recording of a participant for which the predictions of the remote PPG setup compared
to PSG manual scoring has the highest κremotePPG value (accuracy 82%, κ = 0.71); (top) hypnogram
predictions using remote PPG; (bottom) reference hypnogram based on PSG manual scoring. The
coloured bar in between illustrate the correspondence with the reference hypnogram, with green
indicating that the prediction of each setup matches the reference, and grey indicating a mismatch for
that epoch.
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Figure 3. Hypnogram for an average performance of remote PPG setup. Hypnograms for one
example recording of a participant for which the predictions of the remote PPG setup compared
to PSG manual scoring has κremotePPG closest to the average performance (accuracy 67%, κ = 0.46);
(top) Hypnogram predictions using remote PPG; (bottom) reference hypnogram based on PSG
manual scoring.
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Table 1. Classification performance using remote PPG compared with the reference, i.e., manual
scoring. Mean (SD) per class.

κremotePPG (−) Accuracy (%) Sensitivity (%) Specificity (%) PPV (%)

2 classes a

Wake 0.42 (0.21) 89.7 (7.6) 44.7 (21.7) 95.4 (7.2) 59.2 (23.1)
N1/N2 0.43 (0.15) 71.5 (7.4) 80.8 (9.3) 62.3 (10.6) 68.1 (10.1)

N3 0.48 (0.15) 86.4 (4.6) 43.7 (18.1) 98.1 (2.2) 85.5 (17.4)
REM 0.61 (0.16) 88.2 (5.1) 76.8 (16.0) 90.8 (5.7) 64.0 (17.6)

3 classes b 0.58 (0.14) 81.0 (7.5)
4 classes c 0.49 (0.13) 67.9 (8.7)
a 2 classes, one versus the rest, where the single class was considered as the ‘positive’ class and
the others are together the negative class. b 3 classes: Wake, N1/N2/N3 (Non-REM), and REM.
c 4 classes Wake, N1/N2, N3, and REM.

3.3. ECG Benchmark-Sleep Staging and Pulse Detection Performance

The originally ECG trained classification algorithm showed overall higher perfor-
mance compared to the performance of the remote PPG setup. Only the specificity of
classifying Wake and N3 (two-class binary tasks) were not significantly different compared
to the performance of the remote PPG setup. However, for these classes, the sensitivity
using ECG was substantially and significantly higher than with the remote PPG setup.
Figures 4 and 5 illustrate examples of two recordings where these sensitivity differences
are visible. Respectively, the figures frequently show misclassification by the remote PPG
setup of sleep stages that were manually scored as Wake and N3, and which were generally
classified correctly using ECG. A full overview of the performance of classifier based using
ECG data are presented in Appendix C.
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Figure 4. Hypnogram with a higher wake classification sensitivity with ECG than with Remote
PPG. Hypnograms for one example recording of a participant where ECG achieved a higher wake
classification sensitivity than with remote PPG; (top) Hypnogram predictions using remote PPG, ac-
curacy 55%, κremotePPG = 0.34 vs. reference PSG; (middle) reference hypnogram based on PSG manual
scoring; (bottom) hypnogram predictions using ECG, accuracy 75% κECG = 0.65 vs. reference PSG.
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Figure 5. Hypnogram with a higher N3 classification sensitivity with ECG than with Remote PPG.
Hypnograms for one example recording of a participant where ECG achieved a higher N3 classifica-
tion sensitivity than with remote PPG; (top) Hypnogram predictions using remote PPG, accuracy 58%,
κremotePPG = 0.39 vs. reference PSG; (middle) reference hypnogram based on PSG manual scoring;
(bottom) hypnogram predictions using ECG, accuracy 80% κECG = 0.71 vs. reference PSG.

Table 2 indicates the pulse detection performance of the remote PPG setup in compar-
ison with ECG. The coverage of IPI time series of the remote PPG setup was on average
83.1%, a minimum of 63.3% and a maximum of 91.5%. The pulse detection algorithm
achieved a relatively high mean sensitivity of 83.1% ± 6.9, and PPV of 96.6% ± 3.9 com-
pared to ECG. Even in participants where the coverage and sensitivity is low, the localiza-
tion is very accurate, with a minimum and average of 86.2% and 94%, respectively, of the
correctly detected pulses found within 100 ms of the corresponding QRS complex.

Table 2. Pulse detection performance of the remote PPG setup, in comparison with ECG.

Parameter (Unit) Mean SD Min. Max. Correlation with
κECG − κremotePPG

Coverage (%) 83.1 6.9 63.3 92.4 ρ = −0.32, p = 0.028

Pulse detection
Sensitivity (%) 84.3 7.3 61.9 94.2 ρ = −0.45, p = 0.002

PPV (%) 96.6 3.9 82.5 99.6 ρ = −0.21, p = 0.156

Pulse timing
Bias (ms) 35.4 26.7 −20.0 108.7 ρ = 0.24, p = 0.113

Trigger jitter (ms) 54.9 8.8 37.7 75.0 ρ = 0.33, p = 0.025
Pulses within 50 ms of QRS (%) 68.3 7.4 49.3 84.2 ρ = −0.25, p = 0.092

Pulses within 100 ms of QRS (%) 94.0 3.6 86.2 99.0 ρ = −0.32, p = 0.029

Pulse interval
RMSE (ms) 70.6 23.6 36.2 156.4 ρ = 0.30, p = 0.040

ρ (−) 0.75 0.13 0.40 0.94 ρ = −0.52, p < 0.001

The difference in sleep stage classification performance (κECG – κremotePPG) per partici-
pant was significantly correlated with the sensitivity of pulse detection within the same
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participant (ρ = −0.45, p = 0.002), and with the correlation between IPIs (with remote
PPG) and IBIs (with ECG) (ρ = −0.52, p < 0.001). In both cases, a lower pulse detection
performance was related to a larger difference between the classification performance of
both setups on a per participant level, with the classification using ECG outperforming the
remote PPG setup.

4. Discussion

We evaluated a contactless system for the automated classification of sleep stages
in a group of 46 healthy participants, based on the measurement of instantaneous pulse
rate using a camera-based remote PPG setup. HRV based sleep stages were compared
with manual scored sleep stages based on the gold-standard video PSG and showed a
good performance on automated sleep stages classification with an average κ = 0.58 and
an accuracy of 81% on 3-class sleep staging and an average κ = 0.49 and an accuracy
of 68% on 4-class sleep staging. This unique system enables, under near darkness, a
contactless assessment of sleep stages, offering a major advantage over current practice
(i.e., polysomnography) as well as wearable solutions, which are frequently experienced as
obtrusive and influencing normal sleeping behaviour. None of the participants reported
any substantial influence of the camera-based remote PPG setup on their sleep.

To put the performance of our method in some context, we compared our results
with previously published work on wearable and nearable devices for sleep staging as
summarized by Imtiaz et al. [7]. It should be noted that performance estimates in this
overview are not directly comparable, as studies applied a variety of other sensors and
validated in different cohorts. It does show, however, that both accuracy and κ of our
remote PPG setup are in range with performance metrics reported in other studies [7].
For 3-class sleep staging with multiple sensing modalities (including ECG, EEG, PPG,
actigraphy), Imtiaz et al. [7] reported an average κ = 0.50 (range: 0.27–0.74) and an average
accuracy of 76% (range: 70–85%), which is a lower performance compared to our results.
For similar 4-class classification strategies (Wake-N1/2-N3-REM), Imtiaz et al. reported an
average κ = 0.54 (range: 0.36–0.72) and an average accuracy of 72% (range: 57–90%) which
is slightly better compared to our results.

The proposed camera-based remote PPG setup can measure pulse rate variability
in a reliable, contactless, and unobtrusive manner, which in turn can be used to obtain
a relatively accurate representation of sleep and sleep stages. This may be particularly
important for patient populations who do not tolerate the traditional wired systems or even
wearable solutions, such as sleep disordered patients, children, or patients with intellectual
disabilities. Furthermore, this setup could also be used for patient monitoring in settings
with a high patient throughput, such as the general ward of a hospital, in which physical
contact between the monitoring technology and the patients should be limited to reduce the
chances of cross-contamination and spreading of diseases. Future studies should validate
the camera-based remote PPG setup in these different populations and settings.

The sleep staging algorithm used to classify sleep stages from the remote PPG setup
was previously trained on ECG recordings. To validate the performance and for benchmark-
ing purposes, the algorithm was used to classify sleep stages using corresponding ECG data
as well. The performance of the classifier based on the ECG input (κ = 0.65, accuracy: 77.4%,
see Appendix C) is at the expected level for healthy participants. The same classification
algorithm was tested before on HRV and body movement data of sleep disordered patients
where it showed a comparable performance (κ = 0.60, accuracy: 75.9%) [6]. As might be
expected, using a different cardiac sensing modality (remote PPG) than the one used to train
the sleep staging algorithm (ECG) led to a decrease in performance. Previous work showed
a similar phenomenon, in that case using an ECG trained algorithm on PPG data [32].
However, when the algorithm was adapted to the characteristics of a different sensor [33]
or even completely retrained on device specific data (e.g., PPG data), the classification
performance of the algorithm increased to levels similar to the ECG baseline [9]. It can
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be expected that using similar strategies on larger datasets of camera-based remote PPG
measurements would lead to a similar increase in the performance of the algorithm.

As a rule of thumb, supported by the results of Imtiaz et al. [7] and Selvaraju et al. [13],
the further away from the body sensing is performed, the more difficult it seems to correctly
detect the precise temporal location of heart beats and consequently to correctly classify
sleep stages based on heart rate variability. Comparing both setups, the largest performance
differences were found while classifying Wake and N3. Although both setups exhibit a
lower N3 sensitivity when compared with other sleep stages, this seems worse when using
the remote PPG setup. A possible explanation for this might be the lower initial sample
frequency of the remote PPG setup (i.e., 15 Hz). This may introduce errors when estimating
HRV metrics that are known to require higher temporal resolution needed, for example, to
express the higher frequency characteristics of parasympathetic nervous system tone in
IBI series, in turn needed to correctly distinguish between light (N1/N2) and deep sleep
(N3). In future work, a higher temporal resolution should be preferred for a more accurate
estimation of the inter-pulse times. On the other hand, the misclassification of Wake might
be related to the fact that the remote PPG setup always generates a plausible pulse signal,
even in cases when the signal-to-noise ratio is very low because of the participant moving
during wakefulness periods, or when an insufficient amount of skin is visible. In these
cases, this may result in the attempt to classify unreliable inter-pulse variations, resulting in
incorrect sleep stage predictions. A possible, but not yet implemented solution, might be to
use a signal quality indicator. Using the camera input, this detector should be able to detect
the presence of enough skin area, followed by the detection of large body movements which
can serve as a surrogate measure of actigraphy and facilitate the detection of Wake [23].

A limitation of remote PPG monitoring pertains to a fundamental aspect of the moni-
toring principle itself. The setup needs enough visible skin (high enough signal-to-noise
ratio) to be able to estimate a pulse signal. A possible solution would be to use optical
zooming, to increase the number of skin pixels and therefore the signal-to-noise ratio.
However, while sleeping, people unintentionally roll over or pull the blanket over their
body, thus covering part of their skin. A multi camera setup or an automated camera
aiming setup might be necessary to keep enough visible skin pixels after zooming.

5. Conclusions

HRV-based sleep staging by a non-contact remote PPG setup holds potential and
deserves further research. In future studies, the representation of sleep and sleep stages
assessed using remote PPG setup could be combined with other parameters that can be
obtained with camera-based techniques, such as limb movements, or body movements
caused by respiration. In addition, the remote PPG setup could be combined with other
contactless monitoring techniques, for example other camera- or radar-based techniques to
assess and estimate heart rate, respiration, body movements, and even blood oxygen satu-
ration levels (i.e., SpO2) [7,13,16,22,34] during sleep. This would not only allow the direct
comparison of different techniques, but likely would increase sleep staging performance of
sleep staging and add resilience by redundance. Eventually, combining such techniques
may allow a fully contactless and unobtrusive assessment and classification of sleep, as
well as sleep-related disorders such as sleep apnea.
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Abbreviations

The following abbreviations are used in this manuscript:
AASM American Academy of Sleep Medicine
ECG Electrocardiogram / Electrocardiography
FN False Negative
FP False Positive
HRV Heart Rate Variability
IBI Inter Beat Interval
IPI Inter Pulse Interval
N1/2/3 Sleep stages 1, 2 and 3 with No Rapid Eye Movements
PPG Photoplethysmography
PPV Positive Predictive Value
PSG Polysomnography
QRS QRS-complex, the combination of three of the graphical deflections

seen on a typical ECG
REM Sleep stage with Rapid Eye Movement
RMSE Root Mean Square Error
TP True Positive
κ Cohen’s kappa coefficient of agreement
κECG Agreement between the predicted sleep stages using the ECG setup

and the reference
κremotePPG Agreement between the predicted sleep stages using the remote PPG

setup and the reference
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Appendix A. Questionnaire Results

The morning after each polysomnography recording, participants were asked to
answer the following three questions, on a five-point Likert scale (1—Very much; 2—A lot;
3—A little bit; 4—Hardly; 5—Not at all):

1. Did the presence of the remote PPG measurement setup influence your consideration
to participate in this study?

2. Did the presence of the camera influence your sleep?
3. Did the presence of the additional light-source, of the remote PPG setup, influence

your sleep?

As a result, a total of 43 out of 46 participants completed the questionnaire. Table A1
shows the answers, summarized per question.

Table A1. Results of the questionnaire on the perceived obtrusiveness of the remote PPG setup, totals
per answer option.

1: Very Much 2: A Lot 3: A Little Bit 4: Hardly 5: Not at All

Question 1 - - 3 7 33
Question 2 - - 6 10 27
Question 3 - 1 1 8 33

Appendix B. Confusion Matrices Remote PPG Setup

Figure A1 illustrates the confusion matrices with aggregated performance results for
the remote PPG setup compared to reference PSG manual scoring for a grand total of
44,541 epochs, from 46 participants.

# W R N1/N2 N3 Total

W 2464 988 1808 18 5278

R 381 5884 1469 1 7735

N1/N2 1230 2402 18038 679 22349

N3 144 57 5129 3849 9179

Total 4219 9331 26444 4547 44541

% W R N1/N2 N3 Total

W 47 19 34 0 100

R 5 76 19 0 100

N1/N2 5 11 81 3 100

N3 1 1 56 42 100

Total 58 107 190 45 400

% W R N1/N2 N3 Total

W 58 10 7 0 75

R 9 63 6 0 78

N1/N2 29 26 68 15 138

N3 4 1 19 85 109

Total 100 100 100 100 400

Remote PPG Remote PPG Remote PPG

R
ef

er
en

ce

a) Number of epochs b) Sensitivity c) PPV

Figure A1. Confusion matrices for remote PPG versus reference PSG. (a) number of epochs, with a
total of 30,235 (68%) correctly classified (diagonal, in green); (b) sensitivity, relative to ground truth
class; (c) PPV, Positive predictive value, relative to predicted class.

Appendix C. ECG Performance

Table A2 shows the sleep staging performance of the classifier, the agreement between
the manual scored PSG stages (i.e., reference) and the predicted sleep stages based on
ECG analysis. Furthermore, Figure A2 illustrates the confusion matrices with aggregated
performance results for the remote PPG setup compared to reference PSG manual scoring
for a grand total of 44,541 epochs, from 46 participants.
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a) Number of epochs b) Sensitivity c) PPV

# W R N1/N2 N3 Total

W 4112 171 976 19 5278

R 134 6451 1149 1 7735

N1/N2 1376 1653 18778 542 22349

N3 34 57 4073 5015 9179

Total 5656 8332 24976 5577 44541

% W R N1/N2 N3 Total

W 78 3 19 0 100

R 2 83 15 0 100

N1/N2 6 7 84 3 100

N3 0 1 44 55 100

Total 86 94 162 58 400

% W R N1/N2 N3 Total

W 73 2 4 0 79

R 2 77 5 0 84

N1/N2 24 20 75 10 129

N3 1 1 16 90 108

Total 100 100 100 100 400

R
ef

er
en

ce

ECG ECG ECG

Figure A2. Confusion matrices for ECG versus reference PSG. (a) number of epochs, with a total of
34,356 (77%) correctly classified (diagonal, in green); (b) sensitivity, relative to ground truth class;
(c) PPV, positive predictive value, relative to predicted class.

Table A2. Classification performance using ECG compared with the reference, i.e., manual scoring.
Mean (SD) per class.

κECG(−) Accuracy (%) Sensitivity (%) Specificity (%) PPV (%)

2 classes a

Wake 0.70 (0.13) 93.9 (2.7) 79.3 (16.2) 95.9 (3.4) 72.9 (17.1)
N1/N2 0.56 (0.12) 78.4 (6.1) 83.7 (7.0) 72.8 (9.3) 74.8 (8.8)

N3 0.61 (0.15) 89.6 (4.2) 56.0 (18.1) 98.5 (1.9) 89.7 (14.9)
REM 0.73 (0.10) 93.1 (4.0) 84.0 (12.8) 95.1 (3.1) 77.4 (12.0)

3 classes b 0.74 (0.10) 87.6 (4.3)
4 classes c 0.65 (0.10) 77.5 (6.5)
a 2 classes, one versus the rest, where the single class was considered as the ‘positive’ class and
the others are together the negative class. b 3 classes: Wake, N1/N2/N3 (Non-REM), and REM.
c 4 classes Wake, N1/N2, N3, and REM.
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