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Abstract—Contactless fingerprint recognition systems are be-
ing researched in order to reduce intrinsic limitations of tra-
ditional biometric acquisition technologies, encompassing the
release of latent fingerprints on the sensor platen, non-linear
spatial distortions in the captured samples, and relevant image
differences with respect to the moisture level and pressure of the
fingertip on the sensor surface.

Fingerprint images captured by single cameras, however, can
be affected by perspective distortions and deformations due to
incorrect alignments of the finger with respect to the camera
optical axis. These non-idealities can modify the ridge pattern and
reduce the visibility of the fingerprint details, thus decreasing the
recognition accuracy. Some systems in the literature overcome
this problem by computing three-dimensional models of the
finger. Unfortunately, such approaches are usually based on
complex and expensive acquisition setups, which limit their
portability in consumer devices like mobile phones and tablets.

In this paper, we present a novel approach able to recover
perspective deformations and improper fingertip alignments in
single camera systems. The approach estimates the orientation
difference between two contactless fingerprint acquisitions by
using neural networks, and permits to register the considered
samples by applying the estimated rotation angle to a synthetic
three-dimensional model of the finger surface. The generalization
capability of neural networks offers a significant advantage
by allowing processing a robust estimation of the orientation
difference with a very limited need of computational resources
with respect to traditional techniques. Experimental results show
that the approach is feasible and can effectively enhance the
recognition accuracy of single-camera biometric systems. On the
evaluated dataset of 800 contactless images, the proposed method
permitted to decrease the equal error rate of the used biometric
system from 3.04% to 2.20%.

I. INTRODUCTION

Fingerprint recognition systems usually adopt acquisition

procedures that require the contact of the finger with a sensor.

Contact-based acquisition techniques, however, can produce

samples affected by non-linear spatial distortions and low

contrast regions due to improper pressures of the finger on

the sensor platen. Moreover, these technologies suffer from

an important security lack since every biometric acquisition

releases a latent fingerprint on the sensor surface.

In order to avoid these problems and to improve the usability

and user acceptance of fingerprint-based biometric systems,

Fig. 1. Possible rotations of the finger with respect to the camera optical
axis in contactless recognition systems.

contactless recognition techniques based on CCD cameras

are researched. These techniques can also permit to increase

the possible applicative contexts of fingerprint biometrics. For

example, contactless biometric systems can be adopted in mo-

bile devices with integrated CCD cameras without introducing

additional hardware costs. Moreover, they are more robust to

dust and dirt with respect to contact-based technologies.

One of the most important non-idealities of the fingerprint

samples acquired by contactless recognition systems consists

in the presence of perspective distortions due to rotations of the

finger with respect to the camera optical axis (Fig. 1), which

are particularly relevant in fingerprint images captured without

using finger placement guides [1]. Perspective distortions can

drastically reduce the accuracy of the matching algorithms

since most of them require samples with a constant resolution.

The majority of the fingerprint matching techniques, in fact,

is based on the evaluation of the metric distances between

minutia points [2,3].

In many applicative contexts, like consumer devices, it is not

possible to adopt complex and expensive acquisition systems.

Contactless fingerprint recognition systems based on single
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CCD cameras therefore result more suitable. Examples of this

kind of biometric systems are described in [4,5,7–10]. Most

of the existing technologies, however, are not able to obtain

accuracy levels comparable to contact-based systems since

they do not use feature extraction and matching techniques

specifically designed to overcome the typical non-idealities of

contactless samples.

In this paper, we propose an approach for perspective

deformation and roll rotation registration in contactless fin-

gerprint recognition systems based on a single CCD camera.

In particular, the method is designed to work in uncontrolled

applications, like recognition systems integrated in mobile

devices. The contribution of the paper is threefold: we propose

a specific set of features for the estimation of the roll angle

of the finger, we present a deformation recovery strategy

based on synthetic three-dimensional models of the finger,

and we describe the results obtained by applying the proposed

approach in a complete biometric system.

Fig. 2 shows the schema of the biometric recognition

process based on the proposed approach for the perspective

and rotation effects reduction. In the enrollment phase, the

system estimates and stores perspective features of the sample,

and then it computes a fixed number of minutiae templates

related to fingerprint images obtained by simulating acquisi-

tions performed with different roll angles. In the verification

phase, the system first estimates a set of perspective features

from the fresh sample. These characteristics are related to

the silhouettes of the compared finger images and to char-

acteristics estimated using Gabor filters. Then, a feature set is

computed from the perspective characteristics of the compared

acquisitions, and the roll angle difference between the two

fingerprint images is estimated by using neural networks.

Finally, the matching score is computed by comparing the

minutiae template obtained from the fresh sample and the

stored template associated to the estimated angle. In a similar

manner, the proposed approach can be applied in identification

systems.

The results of the proposed approach are evaluated on

biometric samples captured with a great variability of roll an-

gles. The accuracy increase obtained by a complete biometric

system based on the proposed approach is then analyzed.

The paper is structured as follows. Section II briefly de-

scribes the state of the art related to contactless fingerprint

recognition systems. The proposed biometric recognition ap-

proach is then presented in Section III. The obtained results

and a comparison with a well-known recognition technique in

the literature are discussed in Section IV. Finally, Section V

proposes conclusions and final remarks.

II. RELATED WORKS

Contactless fingerprint recognition technologies can be di-

vided into systems based on three-dimensional models, and

systems based on two-dimensional samples. The systems

appertaining to the first class permit to obtain good quality fin-

gerprint samples, overcoming problems related to perspective

distortions and finger rotations. These technologies, however,

(a)

(b)

Fig. 2. Biometric recognition process based on the proposed approach for
the perspective and rotation effects reduction: (a) enrollment; (b) verification.
It is also possible to use the proposed approach in identification systems.

can be adopted in a limited set of applicative scenarios since

they require complex and expensive acquisition methods, such

as multiple view techniques [1,11–14] and structured light

setups [15–17].

Contactless fingerprint recognition systems based on two-

dimensional samples usually adopt less expensive acquisition

techniques, and can therefore be applied in a wider range of

scenarios, like consumer devices. The biometric recognition

process performed by contactless systems based on two-

dimensional samples can usually be divided into the sequent

steps: acquisition; computation of a contact-equivalent finger-

print image; feature extraction and matching.

The simplest acquisition technique adopted by two-

dimensional systems consists in the use of a low-cost CCD

camera in uncontrolled light conditions. A biometric system

that captures fingerprint images using a webcam in natural

light conditions is presented in [4], and studies on the use of

mobile phone cameras are described in [5,18].

The images captured in uncontrolled light conditions, how-

ever, present poor contrast between ridges and valleys. For

this reason, most of the contactless recognition systems in the

literature use illumination techniques to improve the visibility

of the ridge pattern, like a point light source [8–10] or ring

illuminators [19]. In the literature, there are also studies on

the light wavelengths that permit to enhance the visibility

of the ridge pattern [11,20]. These studies report that long

wavelength rays, like white and infrared light tend to penetrate

the skin, and to be absorbed by the epidermis. Differently, a

blue light with a wavelength of 500 nm permits to obtain better

quality images. For this reason, some contactless fingerprint

acquisition systems use illumination techniques based on blue

led lamps [15,21]. The work presented in [20] compares

illumination setups based on different light wavelengths, light

positions, polarizations, and diffusion techniques. Other ac-

quisition systems adopt transmission-based illumination tech-



niques, like the system described in [22], which uses a red

light source placed on the fingerprint side to focus the light

transmitted through the finger onto a CCD.

The fingerprint images obtained by single views, however,

can present a non-uniform resolution and out of focus regions

caused by the mapping of the finger shape into a two-

dimensional image. In order to overcome this problem, some

systems compute the mosaicking of multiple views [23] or use

ring-shaped mirrors [15].

Usually, the samples captured by contactless sensors cannot

be directly elaborated by recognition methods designed for

contact-based fingerprint images. In [18], the performances

obtained by a commercial fingerprint recognition software

on contactless images are evaluated. The paper reports that

sufficient results have been obtained only on the best quality

images. In order to perform biometric recognitions based

on well-known methods in the literature, the computation of

contact-equivalent images is usually performed. This step can

be divided into two tasks: image enhancement, and resolution

normalization. In the literature, there are different image

enhancement techniques. The method described in [4] first

performs a preprocessing task based on the Lucy-Richardson

algorithm and on the deconvolution of the input image by a

Wiener filter. Then, a background subtraction algorithm and a

cutoff filter tuned according to the mean ridge frequency are

applied. Differently, the image enhancement method proposed

in [8–10] adopts a contextual filtering technique based on the

STFT analysis [24]. Similarly to the technique presented in

[25], the method described in [7] applies Gabor filters tuned

according to the local ridge frequency and orientation, but

it computes the ridge orientation map by using an iterative

regression algorithm designed to be more robust to the noise

present in contactless fingerprint images.

The resolution normalization is then applied in order to

obtain contact-equivalent fingerprint images that can be used

by matching techniques based on minutia features. Some

contactless recognition systems that require the placement of

the finger at a fixed position obtain this result by evaluating

the information related to the focal length and the distance

between the finger and the camera [11,19]. Systems that do

not impose this constraint can only perform an approximated

normalization, like the method presented in [4], which is based

on the evaluation of the finger silhouette.

Most of the biometric technologies based on contactless

fingerprint images perform the recognition task by using

methods based on minutia features since they usually permit

to obtain more accuracy with respect to algorithms based

on global features. These systems usually adopt matching

algorithms designed for contact-based images [4,5,7–11,23].

These algorithms however, require fingerprint images with

known resolution and acquired with controlled rotations. In

order to perform the recognition in scenarios that do not

impose constraints on the finger placement, some systems

use matching methods based on adimensional features. The

matching technique proposed in [26] is based on a feature

set similar to the Fingercode [27]. This method uses the

principal component analysis (PCA) to search the most distinc-

tive features and support vector machines (SVM) to perform

the template comparison. The technique described in [28]

compares local features centered in the minutia points by using

neural classifiers.

In this paper, we present an approach designed to reduce

problems related to finger rotations and perspective distortions

in contactless fingerprint images. In order to obtain accurate

biometric recognitions, the approach is designed to be inte-

grated with state of the art minutia-based techniques.

III. THE PROPOSED APPROACH

The proposed approach permits to reduce problems related

to finger rotations and perspective distortions in contactless

fingerprint samples captured by a single CCD camera. It uses

neural networks and specifically designed features to estimate

the roll angle difference between biometric acquisitions. The

estimated angle permits to compute a recovered fingerprint

image by rotating a synthetic three-dimensional model of the

finger surface.

In the enrollment phase, the biometric recognition system

based on the proposed approach stores nθ rotated templates

in the biometric database. Every template consists in minutiae

features extracted using the software MINDTCT [29] of the

National Institute of Standards and Technology (NIST). Ad-

ditional data describing perspective deformations of the finger

silhouette and ridge pattern are also stored in order to be used

in the verification phase for searching the best template to be

compared with the fresh acquisition. These data consist in an

array of 18 real numbers extracted from the finger silhouette

and the ridge pattern.

In the verification phase, the set of features describing the

perspective deformation of the fresh sample are estimated.

These features and the ones stored in the compared identity

representation are used to estimate a feature set describing

the angular difference between the considered fingerprint

acquisitions. Neural networks are then adopted to numerically

estimate this angle. The obtained value is finally used to select

the best rotated minutiae template to be compared with the

fresh fingerprint sample.

The biometric recognition process based on the proposed

approach is shown in Fig. 2, and can be divided into the

sequent steps:

1) contactless acquisition;

2) image preprocessing;

3) simulation of finger rotations;

4) feature extraction;

5) rotation estimation with neural networks;

6) template computation;

7) matching.

A. Contactless acquisition

Fingerprint images are captured contactless by a single CCD

camera placed at a distance of more than 20 cm from the

finger.



The acquisition setup does not use finger placement guides,

but requires that the finger is placed on a surface with a fixed

distance to the camera in order to control the lens focus.

Using this hardware configuration, the finger can therefore be

placed with uncontrolled yaw orientations. In future works,

the reference surface used for the finger placement should

be removed by adopting techniques for the estimation of the

best quality frames in frame sequences representing a finger

moving toward the camera [30].

The hardware setup also uses a uniform blue light in order

to enhance the visibility of the ridge pattern.

B. Image preprocessing

This step aims to compute a contact-equivalent image from

the captured contactless fingerprint sample. The preprocessing

step can be divided into two tasks: image enhancement, and

resolution normalization.

1) Image enhancement: first, the region of interest (ROI)

is estimated by using the Otsu’s method [31] and refined by

using a morphological filling operator.

The enhancement of the ridge visibility is then performed.

First, the background image IB is estimated by applying a

morphological opening operation with a mask s to the image I .

Then, the background is removed, obtaining the image IR. In

order to increase the visibility of the ridge pattern, we perform

a nonlinear equalization as IL(x, y) = log (IR(x, y)). A noise

reduction is then performed by applying a 8-order Butterworth

low pass filter [31] with frequency ff and size df × df . The

values of ff and df have been empirically estimated on the

used dataset.

Finally, the enhancement and binarization of the ridge

pattern is performed by using the ridge following technique

implemented by the NIST MINDTCT software [29]. This

algorithm directly computes the binary image of the ridge

pattern IB by evaluating the shape of every ridge of the image

IL.

2) Resolution normalization: the proposed resolution nor-

malization technique assumes that the contactless fingerprint

images are captured at a constant distance ∆H from the

camera.

This method first estimates the resolution of the captured

image by evaluating the size of the plain P captured at a

distance ∆H from the camera, and then it normalizes the

contactless image to a resolution of 500 ppi.

Considering the plain P , rx inch along the horizontal direc-

tion of this plain correspond to ix pixel along the horizontal

diction of the captured images. The normalization factor is

then estimated as:

nf = ix/ (rx · PPI) , (1)

where PPI is equal to 500. The value of nf is computed offline

by measuring the characteristics of the acquisition setup.

The normalized ridge pattern IN and the normalized ROI

image RN are then computed.

Finally, the images IN and RN are cropped along the y
axis in order to remove the regions that do not describe the

(a)

(b) (c)

Fig. 3. Image preprocessing: (a) contactless fingerprint image I; (b) ridge
pattern image IN ; (c) ROI image RN .

last phalanx. Starting from of the maximum y coordinate of

the ROI, the height of the images IN and RN is reduced to

hc pixel, where hc is a value empirically estimated on the

considered dataset.

An example of contactless fingerprint image I , the corre-

sponding ridge pattern image IN , and the ROI image RN are

shown in Fig. 3. It is possible to observe that the obtained im-

age IN presents a non-uniform resolution due to the irregular

three-dimensional shape of the finger.

C. Simulation of finger rotations

The proposed technique for the simulation of finger rota-

tions uses a synthetic three-dimensional finger model obtained

from the ROI image RN , and then it computes a rigid

transformation in the three-dimensional space.

The synthetic three-dimensional model of the finger consists

in a depth map Z computed proportionally to the finger

silhouette. The curvature of the finger is considered as a third

order polynomial with height proportional to the width of

every column of RN .

First, the polynomial p approximating the finger curvature

is defined as the third order polynomial passing by the x and y
coordinates (xmin, 0), (xm−xm· cW , cH), (xm+xm·cW , cH),
(xmax, 0). Where xmin is the minimum x coordinate of RN ,

xmax is the maximum x coordinate of RN , xm = (xmax +
xmin)/2, cW and cH are parameters empirically estimated on

the considered dataset.

A vector C representing the finger curvature is obtained by

fitting the polynomial p in the interval from xmin to xmax.

Every column i of Z is then defined as:

Z(i) = RN (i)× C × (Xmin(i)−Xmax(i)), (2)

where Xmin and Xmax are vectors representing the minimum

and maximum x coordinates of the ROI image RN at every
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Fig. 4. Simulation of finger rotations: (a) synthetic three-dimensional model
of the finger shape; (b) rotated fingerprint model; (c) resulting image.

column i. An example of obtained depth map is shown in

Fig. 4 a.

Subsequently, the image of the ridge pattern IN is super-

imposed on the matrix Z .

The coordinates of the depth map Z are then rotated by an

angle θ as:

Zθ = Z

∣

∣

∣

∣

∣

∣

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

∣

∣

∣

∣

∣

∣

, (3)

where θ is the clockwise angle from the x axis.

The rotated image Iθ is obtained by applying a resampling

with a constant step equal to 1 to the image IN in the new x
and y coordinates of Zθ . This task considers the image IN as

a gray scale image, and it is based on a bilinear interpolation.

An example of rotated fingerprint three-dimensional model

is shown in Fig. 4 b, and the corresponding rotated image Iθ
is shown in Fig. 4 c.

D. Feature extraction

A set of perspective features P is extracted for each sample

during the enrollment and verification phases. The set P is

composed by the finger silhouette asimmetry δ and the matrix

G representing the ridge pattern characteristics extracted by

applying Gabor filters with different orientations to the image

IN .

1) Finger silhouette characteristics: in order to detect the

fingertip orientation with particular reference to the roll angle,

experiments showed that it is possible to measure the horizon-

tal asymmetry of the final part of the finger. For roll angles

close to zero, the shape of the finger silhouette tends to be

mostly symmetrical and, on the contrary, a rotated fingerprint

shows relevant differences in the left and right parts of the

silhouette.

The silhouette asymmetry can be processed more robustly

after a rotation compensation of the pan angle. With this aim,

we process a rotation of the ROI of the fingertip (the binary

mask RN ) by applying a bilinear interpolation rot() along its

centroid and minimizing the horizontal asymmetry:

{

∆(φ, y) = Redge(rot(RN , φ), y)− Ledge(rot(RN , φ), y)

φ̂ = argminφ(
∑b

y=a |∆(φ, y)|)
(4)

where ∆(y) represents the size differences for each y coor-

dinate between the right Redge(y) and left Ledge(y) edges of

the rotated ROI mask RN ; a and b represent the minimum and

maximum rows of the the ROI mask; φ̂ is the optimal angle

minimizing the displacement of the finger silhouette.

Once the ROI image has been rotated, the remaining hor-

izontal asymmetric contribution is processed in the first part

of the silhouette as:

δ =

c
∑

y=a

∣

∣

∣
∆(φ̂, y)

∣

∣

∣
(5)

where c = ⌊κb⌋, with c > a, which is a floored integer

representing a row in the middle of the rotated ROI images.

Proper values of the parameter κ are the ones allowing the

processing of the horizontal asymmetric contribution only in

the first third of the fingertip.

2) Ridge pattern characteristics: in contactless fingerprint

images, perspective deformations can be detected by using

global fingerprint characteristics (Level 1 analysis [2]). For this

reason, a set of characteristics are computed by using Gabor

filters with different orientations ψ. This set is composed by

nG = 32 values. Starting from the image IN , two images Gψ
are computed by applying two Gabor filters with orientations

(0◦, 90◦). Each image Gψ is then divided into 4×4 rectangular

regions with the same size, and the absolute average distance

(AAD) of the intensity is computed for each region. In the

spatial domain, a symmetric Gabor filter can be described as:

G(x, y; f, ψ) = exp

{

−
1

2

[

x
′
2

σ2′

x′

+
y

′
2

σ2′

y′

]}

cos 2πfx′,

x′ = x sinψ + y cosψ, (6)

y′ = x cosψ − y sinψ,

where f is the frequency of the sinusoidal plane wave along

the direction ψ from the x-axis, and σ
′

x and σ
′

y are the space

constants of the Gaussian envelope along the x
′

and y
′

axes,

respectively.

The obtained AAD values are stored in a 4× 4× 2 matrix

G representing the results obtained by applying Gabor filters

with orientations 0◦ and 90◦ in spatial order.

E. Rotation estimation with neural networks

This step estimates a discrete value representing the roll

angle difference ∆theta between two biometric acquisitions A
and B by evaluating the perspective feature sets PA and PB .

First, a feature set F is computed as:

F = df (PA, PB), (7)



where df () represents the used data fusion technique. The

value of ∆theta is finally estimated as:

∆theta = NN(F ), (8)

where NN represents a trained neural network.

1) Feature set computation: for each fingerprint image I ,

the previously extracted feature set P consists in the value δ
and the (4 × 4× 2) matrix G.

Considering two sets PA and PB , a 18 elements feature

vector F is computed.

First, a 16 elements matrix Gd describing the difference

between A and B along the y axis is computed. For each

column i of GA, the values Gd(i, j) are obtained as

Gd(i, [1, 2]) = interp(GA(i)−GB(i)), (9)

where interp() is a first order polynomial approximation.

The final feature vector is then obtained as

F = [δA, δB, Gd(1), . . . Gd(16)]. (10)

2) Rotation difference estimation: The estimation of the

roll angle difference between contactless fingerprint images is

difficult to be performed in single camera systems. The fingers

of different individuals, in fact, present a great variability

is size and shape. Moreover, contactless images can present

noise, shadows, and reflections.

In this context, the approaches based on computational

intelligence techniques offer a relevant advantage in term of

adaptability. The generalization capability of neural networks

allows performing a robust estimation of the roll angle differ-

ence between two contactless acquisitions with a very limited

need of computational resources with respect to traditional

estimation techniques. This estimation then permits to register

the roll angle of the compared two-dimensional samples by

applying the proposed technique.

The proposed approach estimates the roll angle difference

as a discrete value. For this reason, we consider the rotation

estimation of the roll angle difference between contactless

fingerprint acquisitions as a classification problem in which

every class represents a discrete angle.

F. Template computation

Minutiae templates are computed with the software NIST

MINDTCT [29]. The minutiae on the borders of the ROI are

then removed because they are generated by false ridge-ends

caused by the edges of the finger silhouette.

G. Matching

In the enrollment phase, a set of nθ minuatiae templates E is

computed from nθ images obtained by applying the proposed

technique for the simulation of finger rotations with different

angles θ.

In the verification phase, the fresh minutiae template TA is

compared only with the template EB(∆θ), where the ∆θ is

the roll angle difference between the acquisitions A and B
obtained by applying the proposed method for the rotation

difference estimation. The matching score is obtained by

applying the software NIST BOZORTH3 [29].

Fig. 5. Schema of the used acquisition setup. During experiments, the roll
angle of the finger is produced by rotating the camera of an angle α along
the x axis.

IV. EXPERIMENTAL RESULTS

The setup used to capture the contactless fingerprint images

is composed by a Sony XCD-SX90CR CCD color camera and

a blue led with a light diffuser. The distance from the CCD

to the surface used for the finger placement is ∆H = 215 mm

and the light source is placed at a distance of ∆L = 130 mm.

The setup configuration is shown Fig. 5. The captured samples

consist in color images with a size of 1280× 960 pixel.

Since it is difficult to place the finger with controlled roll

rotations with respect to the camera, we simulated samples

acquired with known roll angles by capturing fingerprint

images with different values of the angle α between the camera

and its support.

• DB A: 400 contactless fingerprint images captured from

50 fingers with a camera angle α = −10◦. Every finger

has been acquired 8 times.

• DB B: 400 contactless fingerprint images captured from

50 fingers with a camera angle α = +10◦. Every finger

has been acquired 8 times.

• DB C: 800 contactless fingerprint images appertaining

to DB A and DB B. The dataset contains images repre-

senting the same fingers captured at different viewpoints.

For each finger, there are 16 samples (8 samples apper-

taining to DB A and 8 samples appertaining DB B). In

order to avoid possible angular differences introduced by

the finger placement during the acquisition process, the

images of DB A were captured at the same time instant

of the ones appertaining to DB B by using two cameras

synchronized with a trigger mechanism.

The parameters used by the enhancement algorithm are

ff = 0.2 and df = 20; the parameter hc defining the

maximum considered height of fingerprint images is equal

to 394 pixel (corresponding to 20 mm at a resolution of

500 ppi); the parameters adopted for the computation of the

three-dimensional models used to simulate rotated fingerprint

images are CH = 40 and CW = 2/5.



The performed tests regard the proposed method for the

simulation of finger rotations, the classification accuracy of

the proposed approach, and the performance of a complete

biometric system based on the proposed approach.

A. Simulation of the finger rotation

We evaluated the effectiveness of the proposed method for

the simulation of the finger rotation by recovering fingerprint

images captured at different angles.

The performances of a reference identity comparison tech-

nique (Algorithm 1) have been compared with the results

of the proposed method (Algorithm 2). For each evaluated

algorithm, the performed test consists in 800 genuine identity

comparisons. The used images appertain to DB C.

The evaluated identity comparison algorithms and used

testing procedures are detailed.

• Algorithm 1 (no simulated rotations): the identity com-

parisons are directly performed after the image prepro-

cessing step by using the NIST BOZORTH3 matcher.

The algorithm evaluation has been performed by consid-

ering the possible genuine identity comparisons between

fingerprint images captured at the same time instant from

different viewpoints. For each sample i of DB C that

also appertains to DB A, we performed two identity

comparisons:

M(i, 1) = Match(DB A(i),DB B(i)),
M(i, 2) = Match(DB B(i),DB A(i)).

(11)

• Algorithm 2 (1 simulated rotation): for each identity

comparison, one of the samples is recovered by applying

the proposed method for the simulation of the finger rota-

tion with a value θ equal to the previously known angular

difference between the acquisitions. The matching scores

are then computed in the same manner of Algorithm 1.

The testing procedure is similar to the one used for

the evaluation of the Algorithm 1. For each sample i
appertaining to DB A, we performed two identity com-

parisons:

M(i, 1) = Match(Rot(DB A(i),∆θ),DB B(i)),
M(i, 2) = Match(Rot(DB B(i),−∆θ),DB A(i)),

(12)

where Rot(I, θ) represents the proposed method for the

simulation of the finger rotation, and ∆θ = |2α|.

The performed tests showed that the matching algorithm

based on the proposed method for the simulation of the finger

rotation (Algorithm 2) permitted to obtain a mean matching

score increasing of 16.7% with respect to the Algorithm 1.

The obtained results are shown in Fig. 6 and prove that the

proposed method can increase the matching score between

genuine individuals by effectively reducing problems related

to different roll angles of contactless fingerprint samples. It is

also possible to observe that the matching scores are increased

in all the regions of the boxplot.

The effects of the application of the rotation method on the

overall behavior of the contactless biometric system will be

described in Subsection IV-C.
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Fig. 6. Boxplot of the matching scores between genuine samples captured
by a difference of 20◦ . The matching scores has been computed directly
(Algorithm 1) and by applying the proposed method for the simulation of the
finger rotation (Algorithm 2).

B. Neural estimation of the roll angle difference

The roll angle estimation is considered as a classification

problem that estimates a discrete value representing the dif-

ference between the roll angles of two fingerprint images.

In order to evaluate the classification accuracy of the pro-

posed technique, we computed a feature set related to the

identity comparisons between the genuine samples of DB C.

The feature set is composed by 12000 elements. For each

couple of images, a rough measurement of the roll angle

difference is known a priori (by the geometry of the setup).

Considering the possible roll angle differences between the

images appertaining to DB C, we performed a three class

classification of the computed feature set. For each possible

genuine matching between the samples i and j of DB C, the

roll angle difference is classified as:

∆θ(i, j) =































+20◦, if (DB C(i) ∩ DB A)

and (DB C(j) ∩ DB B)

−20◦, if (DB C(i) ∩ DB B)

and (DB C(j) ∩ DB A)

0◦, otherwise

. (13)

The estimation of the difference between the roll angles

of two fingerprint images is performed by using classifiers

based on feedforward neural networks. The topology of the

neural networks has been designed as follows: we used a linear

node as output layer for the neural networks and we tested

different numbers of nodes in the hidden layer. The nodes

of the hidden layer are tan-sigmoidal. The method used for

training the neural networks is the backpropagation algorithm.

In order to estimate the generalization capability of the trained

neural networks, we used the two-fold validation strategy,

dividing the feature dataset in a training set composed by 6000

randomly selected samples and a validation set composed by

the remaining 6000 elements.

In our experiments, we tested different classification

paradigms in order to better study the complexity of the

learning problem embedded in the dataset. In particular, we

tested the performances of the following classifier families:



TABLE I
RESULTS OF DIFFERENT CLASSIFIERS ON THE FEATURE DATASET.

Classifier Total classification error

Linear 12.17%
Quadratic 10.03%

kNN-3 3.58%
FNN-40 1.65%

Notes: FNN-40 = Feedforward Neural Network with one hidden layer composed by 40

nodes; kNN = k Nearest Neighbor, where k stands for the number of first neighbors.

TABLE II
CONFUSION MATRIX OBTAINED BY THE BEST TRAINED CLASSIFIER

Predicted
Actual -20◦ 0◦ +20◦

-20◦ 26.12% 0.55% 0.00%
0◦ 0.29% 45.99% 0.38%

+20◦ 0.00% 0.43% 26.24%

• Linear Classifier;

• Quadratic Classifier;

• k-Nearest Neighbor classifiers with odd values of the

parameter k (1, 3, 5);

• Feedforward neural networks with different numbers of

neurons in the hidden layer (1, 3, 5, 10, 15, 20, 25, 30,

35, 40, 45, 50).

Table I reports the best results obtained by the evaluated

families of classifiers. It is possible to observe that neural

networks with a hidden layer composed by 40 nodes obtained

the best accuracy on the considered dataset, with a total

classification error equal to 1.65%.

The confusion matrix obtained by the best trained neural

network is shown in Table II. This table shows that the most

frequent errors consist in falsely estimated rotation differences

of 0◦.This kind of error does not decrease the accuracy of bio-

metric systems based on the proposed approach with respect

to techniques that do not perform rotation normalizations.

C. Effects on the performances of the biometric system

In order to test the effects of the proposed approach on the

overall behavior of the contactless system, we compared the

sequent processing configurations on DB C.

• Method A (no simulated rotations): application of the

NIST BOZORTH3 matcher on the minutiae extracted

from the enhanced images (e.g., Fig. 3 d) without the

proposed neural-based rotation compensation (baseline).

• Method B (3 simulated rotations): same as Method A, but

the minutia features extracted from the input sample are

compared with 3 stored templates rotated by roll angles

θ = [−20, 0,+20]. The highest score obtained by the

NIST BOZORTH3 is considered as the matching score.

• Method C (7 simulated rotations): same as

Method B, but the considered roll angles are

θ = [−30,−20,−10, 0,+10,+20,+30].
• Method D (angular difference estimation via neural clas-

sifier): only one identity comparison is performed. The

neural classifier estimates the angular difference between

the biometric acquisitions, which is then used to select
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Fig. 7. DET curves obtained by the compared biometric recognition methods:
Method A (no rotations), Method B (3 rotations), Method C (7 rotations),
Method D (1 rotation via Neural Classifier).

TABLE III
EER OBTAINED BY THE COMPARED METHODS

Method EER

Method A 3.04%
Method B 2.20%
Method C 2.03%
Method D 2.20%

the rotated stored template to be compared with the fresh

data. The matching score is obtained by applying the

NIST BOZORTH3 algorithm.

We performed a total of 12000 genuine comparisons and

627200 impostor comparisons. The obtained detection error

tradeoff (DET) curves are shown in Fig. 7 and the equal error

rates (EER) of the evaluated systems are reported in Table

III. Notably, the proposed method (Method D) produced a

lower error with respect to the baseline technique (Method

A) in all the range of the DET curve. In particular, the EER

of the proposed method is about 1% lower than the classical

reference method.

It is worth noting that the increase of computation com-

plexity in the matching phase of the biometric system is very

minimal. For example, the time needed for the computation

of the input vector of the neural network is about 1/5 of the

computation of the BOZORTH3 matcher.

Interestingly, the solely application of the proposed method

for the simulation of finger rotations described in eqs. 2-3

(applied without processing the neural angle estimation) allows

for a similar increment of the matcher performance, but with

a larger computational complexity. For example, in order to

obtain a similar accuracy on the same image dataset, at least

three computations of the BOZORTH3 matcher are required

(Method B), giving a computational time about 3 times higher

with respect to the complete proposed approach (Method D).



V. CONCLUSION

In contactless fingerprint systems, especially for un-pinned

and unconstrained setups, the presence of incorrect alignments

and excessive rotations of the finger can drastically reduce the

recognition accuracy of the biometric system. In this paper,

we presented a novel neural approach capable to effectively

cope with this problem, allowing for perspective deformation

and roll angle registration in single camera systems.

The approach estimates the roll angle difference between

two samples by using neural networks and specifically de-

signed features. The estimated angle is used to perform the roll

registration between two templates by applying the proposed

method for the roll recovery, which is based on the computa-

tion of synthetic three-dimensional models of the finger shape.

The generalization capability of neural networks offers a real

advantage by allowing processing a robust estimation of the

finger orientation with a very limited need of computational

resources with respect to traditional estimation techniques.

The presented approach is based on very general working

hypotheses and it can be considered as applicable to different

experimental contactless setups. Experimental results show

that the proposed approach can effectively enhance the overall

recognition accuracy of contactless fingerprint recognition

systems based on single cameras. On the used dataset of

800 contactless images, the proposed approach permitted to

decrease the equal error rate from 3.04% to 2.20%.

In future works, we should evaluate the performance of

the proposed approach on datasets of contactless fingerprint

images captured with a greater variability in the roll angle.
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