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Contactless Fluid Manipulation in 
Air: Droplet Coalescence and Active 
Mixing by Acoustic Levitation
Ayumu Watanabe1, Koji Hasegawa2 & Yutaka Abe3

Acoustic manipulation by an ultrasonic phased array provides an entirely new approach to processes 

such as coalescence, mixing, separation, and evaporation occurring in the generation of new materials, 

physical property measurement, the biomedical industry, etc. However, to date, ultrasonic phased 

arrays have not been fully investigated for applications in fluid manipulation. This paper provides 
contactless coalescence and mixing techniques for droplets in air by controlling the acoustic potential 

by using an ultrasonic phased array. We focused on mode oscillation to propose an efficient mixing 
technique for liquid without contact. A comparison of mixing performance between cases with mode 

oscillation and without mode oscillation showed that the flow induced by mode oscillation promotes 
droplet mixing. Our paper demonstrates the feasibility of contactless coalescence and mixing as a first 
step in fluid manipulation with a phased array.

Levitation technologies have recently been examined for utilization in container-less processing1–4. Because of 
its usefulness as a tool for contactless manipulation of �uids, acoustic levitation has been explored in the �elds of 
materials science, analytical chemistry, and biomedicine5–10. Several approaches have been investigated for the 
contactless handling of matter in air. Foresti et al.11 enabled the transport and coalescence of acoustically levitated 
droplets by controlling the vibration velocity amplitude of each emitting element arrayed in a row. Ochiai et al.12 
developed an acoustic manipulation device by using focused ultrasound transmitted from an ultrasonic phased 
array and enabled three-dimensional transport of solid particles by controlling the phases of transducers. Marzo 
et al.13 proposed a technique for freely forming arbitrary sound �elds by incorporating the appropriate phase 
di�erences into an ultrasonic phased array. Nonlinear and dynamic behavior (e.g., internal and external �ow of 
levitated droplets14–18, interfacial deformation and atomization19–22) arise in droplet manipulation by acoustic 
levitation. Acoustic streaming23 is known to be caused by a result of some acoustic energy being converted to 
a driving force for moving �uid. In a strong sound �eld in which nonlinear phenomena are observed, a droplet 
transforms from a sphere into an ellipsoid and is atomized24.

Although an ultrasonic phased array enables high precision and free generation of sound �elds, most studies 
use solid particles, which are easy to handle, and an ultrasonic phased array is not applied for droplet manipula-
tion. Our objective was to provide an entirely new approach for contactless �uid manipulation in air to support 
processes such as coalescence, mixing, separation, and evaporation. In this paper, we present a fundamental tech-
nology for levitation, coalescence and active mixing of droplets by using an ultrasonic phased array.

Results
Acoustic levitation by ultrasonic phased array. �e acoustic manipulator is based on an ultrasonic 
phased array for high precision and free generation of a sound �eld. �is device is composed of compact trans-
ducers arranged in a rectangular shape. By controlling the phase of the signal applied to each transducer, the 
sound waves transmitted from the transducers are focused to one point in space. �e re�ector faces the phased 
array, and the focal point of the sound generated is formed on the reflector surface. Focused ultrasound is 
re�ected, and a localized standing wave is generated around the focal point.

A sound �eld was analyzed by the distributed point source method (DPSM)25,26. Details of the DPSM are 
described in supplementary information. Figure 1a shows the calculation results for the case in which a single 
focal point was formed at the intersection of the central axis of the phased array and the re�ector surface. A 
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high-pressure region was generated in a narrow area near the focal point, and the droplet was expected to be 
trapped in a limited area near the focal point. A snapshot of the droplets formed near the focal point is shown 
in Fig. 1b. Ultimately, levitation of the droplets in the localized standing wave was demonstrated. �e sound 
pressure distribution measured by a microphone and that calculated by the DPSM are compared in Fig. 1c. �ese 
pressures are normalized by the maximum pressure. Here, λ is the sound wavelength of 8.5 mm. For the central 
axis (x = y = 0), the tendency of the sound pressure to decrease with distance from the focal point was demon-
strated by both the experimental and calculation results. For the case of a pressure antinode (z = λ/4, y = 0), a 
distribution similar to the shape of a sinc function was indicated by both the experimental and calculation results. 
�e distribution is theoretically derived based on the sound �eld generated by a rectangular phased array on the 
focal plane, which follows a sinc function27. �is tendency was indicated by the experimental results and was 
reproduced by the calculation results. �erefore, the sound �eld generated by the phased array system can be 
reproduced by DPSM calculations.

Contactless coalescence of acoustically levitated droplets by using an ultrasonic phased array.  
�e contactless coalescence requires the generation of two focal points. Focal points were generated arti�cially 
by rapidly switching two focal points. A previous study reported that two particles were successfully levitated by 
switching two focal points at 500 Hz28. We therefore selected the switching frequency to be 500 Hz.

To determine the levitation points based on the acoustic radiation force acting on levitated matter, the acoustic 
potential was calculated. �e Gor’kov potential29 was de�ned as a �eld, the gradient of which gives the acoustic 
radiation force acting on a small sphere in a sound �eld:
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where R is the radius of a small sphere, ρG is the density of air, c is the speed of sound, and prms and vrms are the root 
mean square value of the sound pressure and particle velocity, respectively. To determine the acoustic potential, 
the sound pressure and particle velocity were calculated using the DPSM. Figure 2a shows the calculation results 
for an acoustic potential. When the spacing between the le� and right focal points L was 12 mm (Fig. 2a-1), 
localized standing waves were generated at each focal point. As the distance between the focal points was reduced 
(Fig. 2a-2–a-4), the two standing waves formed one large standing wave. For a more detailed study, the acous-
tic potential at the levitation height (z = 3λ/4) was calculated, as shown in Fig. 2b. At L = 12 mm (Fig. 2b–1), a 

Figure 1. Acoustic levitation by an ultrasonic phased array. (a) Calculation result of acoustic �eld generated by 
focused ultrasound. (b) Snapshot of acoustically levitated droplets in localized standing wave. (c) Comparison 
of sound pressure between experiment and calculation (DPSM). �e error bars in the experimental plot 
represent standard deviations.
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distinct acoustic potential well was generated at each focal point. At L = 10 mm (Fig. 2b–2), although the potential 
distribution shi�ed to that of a single well, two potential wells still existed at each focal point. �is result is consist-
ent with the experimental result shown in Fig. 2c-1, c-2. At L = 8 mm (Fig. 2b-3), the potential shape transitioned 
from a two shape to a single large one. �is result suggests that each droplet experienced a driving force toward 
the center. �is result is consistent with the experimental result shown Fig. 2c-3,c-4. Figure 2d and Supplementary 
video S1 shows the behavior observed when L was switched from 10 mm to 8 mm. �is result demonstrates the 
feasibility of contactless coalescence of acoustically levitated droplets using an ultrasonic phased array.

Contactless mixing with resonant oscillation. Active mixing techniques in air are e�ective for bio-
medical applications. Our work provides a contactless mixing technique with interface oscillation. Shen et al.30 
reported that the oscillation mode of acoustically levitated droplets was induced by amplitude modulation of 
ultrasonic waves. �e same method was used in this study. To apply oscillation to droplets without contact, the 
voltage applied to the transducers was modulated by 0 to 1 square wave. �e modulation frequency can be tuned 
in 1 Hz increments. �e typical oscillation behavior is shown in Fig. 3a; the �gure shows bottom-view images. 
�e test �uid was 2 cSt silicone oil. Modes were determined by the number of protrusions and then classi�ed into 
the 4th to 7th mode. �e oscillation frequency of droplets coincided within ±1% to half of the frequency of the 

Figure 2. Contactless transport and coalescence by controlling the acoustic potential. (a) Calculation results of 
an acoustic potential obtained by DPSM (a-1, L = 12 mm; a-2, L = 10 mm; a-3, L = 8 mm; a-4, L = 6 mm).  
(b) Calculation results of an acoustic potential at a pressure node (z = 3λ/4) (b-1, L = 12 mm; b-2, L = 10 mm; 
b-3, L = 8 mm; b-4, L = 6 mm). (c) Snapshots of levitation behavior when a pair of focal points is generated (c-1, 
L = 12 mm; c-2, L = 10 mm; c-3, L = 8 mm; c-4, L = 6 mm). (d) Snapshot of contactless coalescence of water 
droplets.
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modulation. �erefore, it is considered that the oscillation mechanism was parametric resonance, as described by 
Shen et al.30. To control the oscillation mode, the conditions under which the mode appears were investigated and 
summarized in Fig. 3b by measuring the relationship between the resonant frequency and the droplet diameter. 
�e solid curve is described by replacing the diameter of the Rayleigh equation31 with the major diameter:
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where σL is surface tension, ρL is the density of a droplet, a is the major diameter, and n is the oscillation mode. 
�e theoretical value yielded by eq. (2) is re�ected in the experimental results. �erefore, the Rayleigh equation, 
assuming a spherical droplet, can be extended to an acoustically levitated droplet by adopting the major diameter 
as the diameter. �is �nding agrees well with Shen’s result30 and shows that an oscillation mode is governed by 
the Rayleigh equation.

Di�erences in mixing behavior between the case with a mode and the case without a mode were investigated 
by laser-induced �uorescence (LIF). A 50 wt% glycerin aqueous solution was used for the observation of mixing 
behavior. Because the �uctuations of a viscous droplet a�er collision can be suppressed as much as possible, it is 
expected that the observation of mixing behavior is clear. �e measurement procedure is shown in Fig. 4a. A drop-
let containing a �uorescent dye and a droplet without the dye coalesced and were levitated for 5 seconds to remove 
the disturbance caused by coalescence. �e droplets were irradiated from one side with a Nd:YAG sheet laser, and 
�uorescence emission was observed via a high-speed video camera from the bottom. �e major diameter a�er 
coalescence was adjusted to approximately 3.9 mm. According to the Rayleigh eq. (2), modes are not induced at an 
oscillation frequency of 500 Hz at this diameter, but the 6th mode is induced at an oscillation frequency of 450 Hz. 
�erefore, we compare the cases with oscillation frequencies 450 Hz and 500 Hz a�er coalescence for 10 seconds.

Figure 4b shows the observation results pertaining to mixing behavior. In the case without a mode, the 
luminance distribution became uniform 60 seconds after coalescence (Supplementary video S2). On the 
other hand, in the case with the 6th mode, the luminance become uniform within 10 seconds a�er the mode 
appeared (Supplementary video S3). �e mixed state was evaluated by the mixing parameter η32. Based on the LIF 
results, the average µ and the standard deviation σ of the luminance in the N pixels mixed region were calculated. 
One standard deviation indicates the di�erence from the fully mixed state. �e mixing parameter η is de�ned by 
using the normalized standard deviation:
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�e mixing parameter begins from η = 1 and approaches η = 0 as mixing progresses. �e measurement result of 
the time trace of η is shown in Fig. 4c. �e image obtained when a droplet collided was used for t = 0, and the image 
obtained a�er 10 minutes—which con�rmed that mixing was completed by observation—was used for t = ∞. In 
the case without an oscillation mode, η converged to zero a�er approximately 60 seconds. On the other hand, η 
converged to zero a�er 15 seconds, that is, within 10 seconds a�er the mode appeared in the case with the 6th mode. 
�ese results show that mixing of droplets can be promoted without contact by using an oscillation mode.

Figure 3. Induction of an oscillation mode by modulation of sound. (a) Typical 4th to 7th mode behavior 
of acoustically levitated droplet. (b) Condition under which oscillation mode appears. �e symbols are the 
experimental data for the 2nd to 8th mode. Solid curves are the calculation results obtained using Eq. (2).
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A characteristic mixing pattern is shown in Fig. 4d. In the case without a mode (Fig. 4d-1), the mixing pattern 
showed a swirling characteristic at the center of the droplet. In the case with an oscillation mode (Fig. 4d-2), a 
vortex-like pattern was formed at the antinode of the oscillation. To investigate why the mixing behavior varied, 
the internal �ow structures of droplets were compared by particle image velocimetry (PIV). A 50 wt% glycerin 
aqueous solution was used as the test �uid. �e droplets were irradiated from one side by a Nd:YAG sheet laser, 
and the �uorescence emission of the particles was observed via a high-speed video camera from the bottom. 
Figure 4e-1 shows the PIV result for the case without oscillation. Rotational �ow around one axis occurred inside 
the droplet. �is is the same �ow structure found in acoustically levitated glycerol droplets15. Figure 4e-2 shows 
the PIV result for the case with the 6th mode. To clearly observe the �ow induced by interface oscillation, the rota-
tional component of the droplet was removed based on the rotational speed measured by tracking the antinode of 
the oscillation. �e white arrow in Fig. 4e B indicates the position of the oscillation antinode and the movement 
direction of the interface. Near the oscillation antinode, �ow occurred toward the same direction of the interface 
displacement. It was clari�ed that �ow di�erent from that in the non-oscillation state was induced by interface 
oscillation.

Figure 4. Active mixing of an acoustically levitated droplet by an oscillation mode. (a) Experimental procedure 
for observing mixing behavior. (b) Comparison of mixing performance between the case without a mode and 
the case with a mode. (c) Comparison of transition of mixing parameter. (d) Comparison of mixing pattern 
between (d-1) the case without an oscillation mode and (d-2) the case with an oscillation mode. (e) Comparison 
of �ow structure between (e-1) the case without an oscillation mode and (e-2) the case with a 6th-mode 
oscillation.
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Discussion
A pair of droplets was successfully levitated by generating two acoustic potential wells by controlling the phase 
of sound. Based on potential estimation (Fig. 2b), it was clari�ed that the potential shape changed from a two 
shape to a single large shape by decreasing the gap between the two focal points, and the levitated droplets then 
moved toward the center and eventually coalesced. It is considered that the conditions under which the droplets 
coalesce can be predicted by the Gor’kov potential. In this report, although the phase di�erence at the arbitrary 
point where sound is focused (the value was calculated based on the geometrical arrangement and speed of 
sound) was used, by applying the optimal acoustic trap proposed by Marzo et al.13, further innovations such as 
three-dimensional manipulation, giving droplets an angular momentum, and adjustment of the retention force 
and driving force are expected.

A�er coalescence, the droplets could be mixed by the oscillation mode. Based on the visualization results 
pertaining to mixing behavior (Fig. 4), the �uorescence dye inside the droplet was homogenized within 10 sec-
onds a�er the oscillation mode appeared and in approximately 60 seconds without an oscillation mode. Here, 
we compared the order of di�usion mixing and convection mixing. �e di�usion coe�cient33 was roughly D ∼ 
10−4 mm2/s, and the characteristic distance between the droplets was l ∼ 100 mm; thus, the characteristic time 
of di�usion was tθ ∼ l2/D ∼ 104 seconds. Consequently, regardless of the oscillation mode, convection is more 

Figure 5. Schematic diagram of experimental apparatus. (a) �e experimental system for observing droplet 
behavior. (b) �e experimental PIV and LIF system. (c) Modulation of the voltage applied to the transducers. V 
is the voltage, Vo is the voltage amplitude, and Tm is the modulation period.

Sample ρL (kg/m3) µL (10−3 Pa · s) σL (mN/m)

Water 998 1.00 72.7

2 cSt Silicone oil (Shin-Etsu Chemical Co., KF-96) 873 1.75 18.3

50 wt% Glycerin aqueous solution 1125 6.03 70.0

Table 1. Properties of test �uids35.
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dominant than di�usion. For the case without an oscillation mode, it is considered that the inertia of coalescence 
and acoustic streaming inside the droplets promoted mixing. On the other hand, for the case with an oscillation 
mode, mixing behavior changed drastically by inducing the oscillation mode. Observation results showed that 
when an oscillation mode appeared, near the antinode of an oscillating droplet, stretching and folding of the 
interface by the action of a �ow34 was observed, and it progressed toward the inside of the droplet. It is considered 
that the formation of vortices via stretching and folding induced by oscillation promotes mixing.

�ese results o�er the potential of creating a platform for contactless �uid manipulation technologies and 
fundamental �uid science, including not only applied approaches to engineering but also database creation with 
respect to droplet dynamics. Future studies should address the control over the size of injected droplets and the 
handling of microscale droplets for biomedical, lab-on-a-drop, and other applications. �ese �elds also require 
expansion of the technology toward handling processes, including separation and phase change.

Methods
Experimental setup. Acoustic levitation is achieved by a standing wave at the focal point of sound. By 
transmitting sound waves with a controlled phase, the focal point of sound is generated at an arbitrary position. 
By re�ecting the focused ultrasound using a re�ector, a localized standing wave can be generated near the focal 
point.

We used a 7 × 7 square transducer array consisting of 49 small ultrasonic transducers. �e diameter of trans-
ducer was 10 mm, the frequency was 40 kHz. Phase control of the sound transmitted from each transducer is 
required to generate an ultrasonic focal point. We realized this control using a �eld programmable gate array 
(FPGA) (Altera Co., Cyclone-IV DE0-Nano). �e experimental apparatus is shown in Fig. 5. Both the focal length 
and distance from the transducer to the re�ector were 45 mm. �e ambient temperature and relative humid-
ity were kept at 20 ± 3 °C and 40 ± 3%, respectively. Typical sound pressure levels were tuned between 155 and 
159 dB for ensuring stable levitation of the droplet. �e sound pressure was measured a probe microphone (Bryel 
& Kjaer, Type 4138, Diameter: 1/8 inch) for the quantitative evaluation of the sound �eld. �e microphone was 
�xed on the traverse device, which could move along the x, y, and z directions. �e behavior of levitated droplets 
was observed by back-light illumination from the side and coaxial declination from the bottom via a high-speed 
video camera (Photron Co., Ltd. FASTCAM-Mini UX100) (Fig. 5a). �e state inside the droplet was observed 
with a Nd:YAG sheet laser with a wavelength of 532 nm (Japan Laser Co., DPGL-5W-L) irradiated from the side 
of the droplets (Fig. 5b). Fluorescent particles (EBM Co., FLUOSTAR®) were used for the observation of internal 
�ow, and a �uorescent dye (Kanto Kagaku Co., Rhodamine 6G) was used to observe the mixing behavior. To 
remove scattered light, a long-pass �lter (Kenko Tokina Co., YA3) was used. Figure 5c shows the signal waveform 
applied to the transducers when applying oscillation to droplets. �e voltage applied to the transducers was mod-
ulated from 0 to 1 square wave. Table 1 lists the test �uids and their physical properties. �ree �uids of varying 
density, surface tension and viscosity were selected.

Statistical analysis. �e error of the droplet diameter could be a maximum of <5% because the levitated 
droplets were observed with a spatial resolution of 10 ± 5 µm/pix. Sound pressure was measured 3 times, and the 
error was a maximum of <7%.
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