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Vital signs monitoring is pivotal not only in clinical settings but also in home environments. Remote monitoring devices, systems,
and services are emerging as tracking vital signs must be performed on a daily basis. Different types of sensors can be used to
monitor breathing patterns and respiratory rate. However, the latter remains the least measured vital sign in several scenarios
due to the intrusiveness of most adopted sensors. In this paper, we propose an inexpensive, off-the-shelf, and contactless
measuring system for respiration signals taking as region of interest the pit of the neck. The system analyses video recorded by a
single RGB camera and extracts the respiratory pattern from intensity variations of reflected light at the level of the collar bones
and above the sternum. Breath-by-breath respiratory rate is then estimated from the processed breathing pattern. In addition,
the effect of image resolution on monitoring breathing patterns and respiratory rate has been investigated. The proposed system
was tested on twelve healthy volunteers (males and females) during quiet breathing at different sensor resolution (i.e., HD 720,
PAL, WVGA, VGA, SVGA, and NTSC). Signals collected with the proposed system have been compared against a reference
signal in both the frequency domain and time domain. By using the HD 720 resolution, frequency domain analysis showed
perfect agreement between average breathing frequency values gathered by the proposed measuring system and reference
instrument. An average mean absolute error (MAE) of 0.55 breaths/min was assessed in breath-by-breath monitoring in the
time domain, while Bland-Altman showed a bias of −0.03± 1.78 breaths/min. Even in the case of lower camera resolution
setting (i.e., NTSC), the system demonstrated good performances (MAE of 1.53 breaths/min, bias of −0.06± 2.08 breaths/min)
for contactless monitoring of both breathing pattern and breath-by-breath respiratory rate over time.

1. Introduction

Accurate measurement and monitoring of physiological
parameters, such as body temperature, heart rate, respiratory
patterns, and, above all, the respiration rate, play a crucial
role in a wide range of applications in healthcare and sport
activities [1, 2].

Temporal changes of physiological parameters can indi-
cate relevant variations of the physiological status of the
subject. Among the wide range of parameters which can
be measured in clinical settings, the respiratory rate is the
most crucial vital sign to detect early changes in the health

status of critically ill patients. For instance, respiratory rate
is typically collected at regular interval by operators (i.e.,
every 8–10 hours) in the clinical setting, while it is often
neglected in home-monitored people (i.e., telemonitoring
and telerehabilitation). However, the respiratory rate has
been demonstrated to be a significant and sensitive clinical
predictor for serious adverse events; its value increases dur-
ing exacerbation of COPD [3], it can be used to determine
hospitalization, and it offers the opportunity for early inter-
vention. Moreover, the respiratory rate has been found to
be a more discriminatory parameter between stable and
unstable patients than heart rate [1, 4].
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Conventional techniques for measuring respiration
parameters require sensors in contact with the subject.
Measuring techniques based on the monitoring of several
parameters sampled from inspiratory and/or expiratory flow
(e.g., temperature, RH, CO2, and flow) are widely used. [4].
Sensors may also be attached directly on the torso or inte-
grated in clothes fibers to collect respiratory-related chest
or abdominal movements [5]. Such monitoring systems
may cause undesirable skin irritation and discomfort, espe-
cially when long-termmonitoring is required or during sleep.
Moreover, it has been shown that such kind of contact-based
measurement techniques may influence the underlying phys-
iological parameters being measured [6]. Therefore, contact-
less monitoring systems are welcomed to surpass issues
related to placing sensors on patients.

For this reason, solutions—even commercial ones—
based on the analysis of the sound recorded surrounding
the person and on the monitoring of temperature map
changes adopted to thermal cameras and depth map changes
due to breathing have been designed and tested. However,
they suffer from high cost, needs of specialized people, and
sometimes of low signal-to-noise ratio. Optical motion cap-
ture systems have gained greater interest in the field of respi-
ratory monitoring in both research and clinical scenarios
[12]. Other approaches resort on markers as color cues to
track breathing motion [7]. Recent advancements in video
technology and machine vision software have allowed RGB
cameras to become exciting solutions as they provide low-
cost and easy-to-use noncontact approaches for measuring
and monitoring physiological signals.

Different types of cameras have been used to measure
physiological parameters, including heart rate and respira-
tory rate, either by adopting specific sensor camera technol-
ogy, principle of work, or signals processing procedures. Two
main methods have been used, based on remote photo-
plethysmography and body motion estimation.

Several attempts have been proposed to extract respira-
tory features from video frames recording breathing-related
movements of thorax [8–10], thoracoabdominal area [8, 11],
face area [12]–[14], and area at the edge of the shoulder
[15]. Even though some studies consider region of interest
(ROI) which include the neck region [14], none specifically
considers the pit of the neck that is a large, visible dip in
between the neck and the two collarbones that may be easily
identifiable from the video.

Different approaches have been also used to postprocess
the pixel data to extract signal related to the respiration from
such videos by the subtraction of two continuous images
[8, 11], analysis of pixel intensity changes based upon inde-
pendent component analysis [12, 13], analysis of average
contributions of red, green, and blue channel of the video
[14, 16, 17], and analysis of optical flow [9]. Even though
breathing patterns and respiratory rates have been faithfully
estimated using high-quality cameras [14, 16], several other
approaches that rely on off-the-shelf webcams also are able
to achieve the same level of monitoring accuracy [7, 8, 12,
13]. Even so, only few numbers of studies used notebook
built-in webcams—usually used for video chat and video
conferences—for contactless physiological monitoring [12].

Then, a large amount of studies does not declare the
details of the camera adopted and a there is a lot of variabil-
ity in terms of camera resolutions used in such studies (i.e.,
from 640× 480 [7] up to 2560× 1920 [17]). According to
sensor resolutions and the postprocessing methods adopted,
the ROI used for extracting the signal varies study by study.
Although several studies acquired video data with subjects at
different distances from the camera [8, 11], none performed
a comparative study with different camera resolutions.

Despite the large number of studies adopting video cam-
eras for respiratory monitoring purposes, there is a lack of
results about validity and accuracy of such methods in the
practice, since the majority of these studies present proof of
concepts or preliminary tests and no error metrics are
reported [8, 11, 14, 16]. On available quantitative results,
frequency-domain analysis is generally performed to extract
the frequency content of the signal collected with the video
method, to estimate the average breathing rate. However,
time-domain analysis techniques may be useful to investigate
breath-by-breath respiratory values among the time and to
analyze additional features of respiration, otherwise unfeasi-
ble with a frequency-domain analysis.

In this paper, we present a single-camera video-based
respiratory monitoring system based on the selection of the
pit of the neck area. The aim of the present study is three-
fold: (i) the development of the measuring system capable
of noncontact monitoring of respiratory pattern by using
RGB video signal acquired from a single built-in high-
definition (HD) webcam; (ii) the experimental test of this
monitoring system in extracting average and breath-by-
breath breathing rate values using both frequency-domain
and time-domain analyses; and (iii) the evaluation of the
influence of the sensor setting (i.e., resolution of the video
sensor) on the accuracy of both average and breath-by-
breath breathing rate values.

The respiratory pattern is estimated by analyzing the
intensity of reflected light at the level of the pit of the neck.
Experimental trials are presented to test the measuring sys-
tem in the real practice, that is, in the monitoring of breath-
ing pattern of twelve healthy subjects at self-paced breathing
rate. Lastly, an analysis of performances of the proposed
measuring system at different camera resolution is presented
and discussed.

2. Measuring System: CCD Sensor and Video
Processing Algorithm

The proposed measuring system is composed by a hardware
module for data recording and preprocessing and a software
for respiratory pattern extraction.

2.1. Hardware for Video Data Recording and Preprocessing. A
video recorded with a CCD camera is considered as a series of
f RGB frames, that is, polychromatic images. Each image is
split in red (R), green (G), and blue (B) channels. Each ele-
ment of the image matrix is a pixel with (x, y) coordinates
that vary along the reference coordinate system placed at
the bottom left corner of the image. Each pixel value repre-
sents a color light intensity. Zero-valued pixels correspond
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to a black color, whereas the maximum value renders white.
The numerical values of each pixel depend on the number
of bytes used to represent a given channel. When considering
commercial 8-bit/channel cameras (24-bit for RGB colors),
the maximum value is 28 (i.e., 256 colors including zero).

In this work, we used the built-in CCD RGB webcam
(iSight camera) from a laptop (MacBook Pro, Apple Inc.).
Images were recorded at 24-bit RGB with three channels,
8 bits per channel. An ad hoc interface was developed in
MATLAB to manage video recording and provide useful
event information to the subject (i.e., “hold breath,” “start
breathing,” and “data collection completed”) during the data
collection. The duration of data collection can also be
defined through the interface. Each subject was asked to per-
form a sequence of actions which properly informed to the
subject via the graphical user interface and also timed by
the experimentalist.

The video is collected at a set frame rate of 30Hz, which is
enough to discretize the breathing movements that com-
monly occur up to 60 breaths per minute, equal to 1Hz.

The proposed system needs to collect an RGB video of a
person seated in front of the camera (see Figure 1). The algo-
rithm developed for the analysis was intended to recognize
the respiratory signal from intensity value variations encoun-
tered in the recorded video. So, after video recording, users
are asked to select a pixel at the level of pit of the neck (xCL,
yCL) in the first frame of the video. The pit of the neck is
the anatomical point near the suprasternal notch (fossa jugu-
laris sternalis), also known as the jugular notch. It is a large,
visible dip in between the neck and the two collarbones that
may be easily identifiable at the superior border of the manu-
brium of the sternum, between the clavicular notches.

The script automatically delineates ROI that consists of
a rectangular region with dimensions xROI × yROI where
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Figure 1: Schematic representation of the setup used to record the video and the pressure at the level of the nose. The volunteer is seated in the
position shown in the figure at a distance between the camera and chest wall of around 1.5m. The red highlighted area on the chest is the area
recorded by the video. The area used to extract the breathing is the ROI of size xROI× yROI, which is a rectangular region determined by the
selection of pixel (xCL, yCL) at the pit of the neck. From the RGB video, all the frames composing it are split in the red, green, and blue
components to be postprocessed. Details are provided in Section 2.2.
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xROI = xCL − 1/15 ⋅ 100 ⋅ x, xCL + 1/15 ⋅ 100 ⋅ x and yROI =
yCL − 1/15 ⋅ 100 ⋅ y, yCL + 1/15 ⋅ 100 ⋅ y . Details of the ROI
selected starting from (xCL, yCL) are shown in Figure 1.

2.2. Extraction of Respiratory Pattern. To extract the respi-
ratory pattern from the video, firstly, the selected ROI is
split in the red, green, and blue channels (Figure 1). At
each frame f , the intensity components of each channel
I x, y, c, f are obtained, where c is the color channel
(i.e., red (R), green (G), and blue (B)). The intensity com-
ponents are averaged for each line y of the ROI according
to the following equation:

p y, f =
1

xROI
〠
xROI

x=1

〠
c=R,G,B

I x, y, c, f , y ∈ 1, yROI 1

Therefore, p is a function of y and f . Each p y, f is then
detrended, that is, the mean is removed from the signal
(Figure 2(a)).

To extract the respiratory pattern from the number of
trends p y, f , the standard deviation of each p y, f line is
computed. Then, the 5% of the p y, f signals with the
higher standard deviations are selected (Figure 2(b)). The
p f pattern is then obtained computing the mean value
considering the selected lines at each frame.

Figure 2(a) presents a typical trend where the variation of
the intensity signal concerning the baseline is characterized
by low amplitude and high frequencies in the absence of
chest wall movements. When the RGB camera sensor is fac-
ing the chest wall, then respiratory content can be extracted
using filtering operations. Thus, adequate cut-off frequencies
and bandwidth need to be defined. It is crucial to accurately
design the filter parameters to obtain proper performance
of the measuring system. A band-pass configuration was cho-
sen for controlling the whole bandwidth. The general config-
uration of the method requires one to fix the low cut-off
frequency f low around 0.05Hz, to avoid the slow signal vari-
ations unrelated to respiratory movements. By filtering the

signal content up to a high cut-off frequency f high equal to

2Hz, the changes generated by the respiratory movements
recorded to the CCD sensor can be adequately isolated and
relayed to the subsequent elaboration stages.

For the filter, an infinite impulse response (IIR) filter
was designed: a 3rd-order Butterworth digital filter was
employed. The transfer function is expressed in terms of b
and a coefficients as in the following equation:

Hb z = Gb

〠order
n=0

bnz
−n

〠order
n=0

anz
−n
, 2

where Gb is the filter stage gain and order is the filter order.
Hence, filtered output in the z-domain (Y z ) can be
expressed as a function of input signal (X z ) which is p f
as the following equation:

Y z =Hb z X z 3

At that point, the signal p f is normalized allowing us to
obtain p̂ f , by following the equation in (3):

p̂ f =
p f − μ p f

σ p f
, 4

where μ p f and σ p f are the mean and standard devi-
ation of signal p f , respectively.

Normalized signal p̂ f is used for extracting respira-
tory pattern and temporal information since p̂ f would
be proportional to the changes in the intensity component
and thus to the underlying respiratory signal of interest
(Figure 3).

2.3. Respiratory Rate Calculation. The breathing rate can be
extracted from p̂ f either in frequency or time domain.

In the frequency domain, the breathing rate can be iden-
tified via power spectral density (PSD) estimate. The PSD
estimation aims to assess the spectral density of a signal
from a sequence of time samples of the same signal (finite
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Figure 2: (a) Example of a trend of p y, f collected from one volunteer during ~50 seconds of breathing (~1500 frames). (b) Trend of the 5%
of the lines selected by the analysis of higher standard deviation.

4 Journal of Sensors



set of data). PSD is useful in signal detection, classification,
and tracking for detecting any periodicities in the data, by
observing peaks at the frequencies corresponding to these
periodicities [18, 19].

The main approaches for frequency analysis consist of
parametric methods (such as AR, ARMA) and nonpara-
metric methods (window methods). Here, we focus on a
nonparametric method.

Let y t be a deterministic discrete-time signal. Assuming

that ∑∞
t=−∞ y t 2 <∞, then the discrete-time Fourier trans-

form of the data sequence is

Y ω = 〠
∞

t=−∞

y t e−iωt , ω = −π, π 5

Let S ω = Y ω 2 be the energy spectral density; then
we got

〠
∞

t=−∞

y t 2 =
1

2π

π

−π

S ω dω, 6

where S ω is the distribution of energy as a function of
frequency. The power spectrum of a zero-mean stationary
stochastic process y t can be calculated as the Fourier
transform of its covariance function r k . Hence, PSD can
be defined as

Φ ω = 〠
∞

k=−∞

r k e−iωk, 7

where Φ ω represents the distribution of signal power over
frequency [18, 19].

When using this method, the most pronounced maxi-
mum frequency peaks of the spectrum identify the periodic-
ity of the signal. Each spectrum obtained with PSD describes
how the power of the p̂ f signal is distributed with fre-
quency. In other words, the power of the p̂ f signal in a
given frequency band can be calculated by integrating over
the frequency values of the band. Consequently, PSD can

be used to evaluate both (i) the variability of the pattern
among the time in all the frequency band and (ii) the average
value of the respiratory rate.

Contrary to frequency domain analysis, the time-domain
specific points on the signal must be identified. Different
approaches can be used based on the detection of maxi-
mum and minimum points, as well as on zero-crossing
point individuation. We used a method based on both these
approaches split into two steps. In the first step, the algorithm
identifies the zero-crossing points on the video signal. It
allows determining the onset of each respiratory cycle,
characterized by a positive going zero-crossing value as

i
xi ≥ 0,

xi < 0,
8

where xi is the value x of the signal for frame (or time) index i
corresponding to the onset of a respiratory cycle. In the sec-
ond step, the algorithm provides the individuation of local
minimum points on the signal and their indices between
respiratory cycle onsets determined in the first step as

∀x ∈ a, b , f x ≤ f X , 9

where a and b are the time indexes of the signal correspond-
ing to the onset of two consecutive respiratory cycles of video
signal and X is the local signal minimum of a respiratory
cycle. The duration of each ith breath (TRi) is then calculated
as the time elapsed between two consecutive minima points.
Consequently, the ith breath-by-breath breathing rate f Ri is
calculated as 60/TRi.

3. Tests and Experimental Trial

3.1. Participants and Reference Data. Our dataset consists of
recordings of 12 participants (six males, six females, mean
ages 25± 3 years old, mean height of 163 ± 8 cm, mean weight
58±9 kg). All the participants provided their informed
consent. Each participant was invited to sit on a chair in
front of the RGB camera at distance of about 1.5m (see
Figure 1). The experiments were carried out indoor and with
a stable amount of light delivered by neon lights and one
window as sources of illumination. During the experi-
ments, each video was recorded for ~170 s. Participants
were asked to keep still and seated, breathe spontaneously,
and face the webcam.

At the same time, the pressure drop (ΔP), which occurs
during exhalation/inhalation phases of respiration, was col-
lected by a differential pressure sensor [20] (i.e., Sensirion
SDP610, pressure range up to ±125Pa, Figure 4(a)). To not
obstruct the data collection with the webcam, the ΔP was
recorded at the level of the nose. The ΔP was sampled at
100Hz, and the data were sent to a remote laptop via a
USB connection and archived via MATLAB. All the steps
carried out on signals are summarized in Figure 5.

Then, we carried out a temporal standard cumulative
trapezoidal numerical integration of the ΔP signal (i.e., inte-
grated ΔP) to provide a smooth signal for further analysis
and to emphasize the maximum and minimum peaks on
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Figure 3: Example of the normalized p̂ f signal obtained after
summing the most significative p f signals of each frame.
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the signal (see Figure 4). This approach has been used in pre-
vious preliminary studies for extracting temporal respiratory
features ([20–22]) from the pressure signals.

Afterwards, such integrated ΔP has been filtered using
a bandpass Butterworth digital filter in the frequency range
0.05–2Hz and normalized following the formula in (4). This
normalized and integrated ΔP (Figure 4(b)) is the signal used
for extracting reference respiratory pattern and respiratory
rate values.

An example—obtained from one volunteer—of the ΔP
trend collected by the pressure sensor, the normalized and
integrated ΔP signal, and the p̂ f signal extracted by the
video processing algorithm is reported in Figure 4.

3.2. Respiratory Pattern and Respiratory Rate Comparisons.
Signals obtained from the measuring systems have been com-
pared to the reference signals in terms of similarity of curves
and respiratory rate values. The similarity of the frequency
content of signals and average respiratory rate values have
been investigated from the normalized PSD.

The similarity between signals has been evaluated by
overlapping the two normalized PSD, considering the one
of the reference instrument as the reference PSD. From fre-
quency dominant peak, the average respiratory rate value
can be extracted. From average values of breathing rate,
the accuracy (expressed in %) of the proposed method can
be calculated as

accuracy = 100 − 100 ⋅
f R − f̂ R

f R
, 10

where f R and f̂ R are the breathing rate measured using the
reference signal and proposed method, respectively.

Additionally, the breath-by-breath respiratory rate values
have been compared between instruments by extracting such
values with the time-domain analysis. To compare the values
gathered by the reference instrument and computed by the
video-based method, we calculate the mean absolute error
(MAE) of breaths per minute as

MAE =
1

n
⋅ 〠

n

i=1

f̂ R i − f R i , 11

where n is the number of breaths estimated for each subject

in the trial, f̂ R i is breaths per minute, and f R i is reference
breaths per minute using reference signal data. The standard
error (SE) of the mean is then calculated as

SE =
SD

n
, 12

where SD is the standard deviation of the absolute difference

between estimations and reference data ( f̂ R i − f R i ).
Additionally, the strength of associations between the

breath-by-breath values collected with the proposed method
and those collected by the reference instrument were evalu-
ated with the Spearman correlation coefficient. Then, the
slope β of the simple linear regression (y = α + βx, with
y-intercept α) computed on such values has been calculated
fixing α = 0 Then, the Bland-Altman analysis was used to
evaluate the differences between the two methods: mean of
the differences (MOD) and the limits of agreements (LOAs)
were used to determine the accuracy and the dispersions of
the breath-by-breath respiratory rate differences [23].

3.3. Influence of Sensor Size Resolution. To investigate the
influence of camera sensor resolution on the accuracy of
the proposed measuring system, we postelaborated the
videos to decrease each frame resolution. This postprocessing
was carried out in MATLAB. Bicubic interpolation was
used for interpolating data points on a two-dimensional
regular grid (sensor matrix). With this method, the output
pixel value is a weighted average of pixels in the nearest 4-
by-4 neighborhood.

We decided to investigate the performances of 6 camera
sensor resolutions (including the resolution of the original
video, HD 720) since they can be considered the most used
resolution of commercial in-built webcam as HD 720, PAL,
WVGA, VGA, NTSC, and SVGA, characterized by three
different aspect ratios (i.e., 4 : 3, 5 : 3, and 16 : 9). Attributes
such as sensor’s size and number of x and y used in the
ROI selection are reported in Table 1.

Since the ROI size is linked with the maximum size of x
and y, the ROI size (xROI × yROI) depends on the resolution
of the CCD sensor. As a consequence, the number of lines
used to compute the respiratory pattern from the video
changes with the resolution (see Table 1). The same data
analysis was carried out on signals according to Section 3.2,
by considering each postelaborated decreased-resolution sig-
nal as a separate signal. Furthermore, same indicators for the
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Figure 4: Example of trends relative to (a) pressure drop ΔP
recorded by the differential pressure sensor, (b) integrated and
normalized ΔP signal used to extract reference pattern and
respiratory rate values, and (c) p̂ f signal obtained by the video
processing algorithm using the data collected from the CCD
sensor of the camera.
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respiratory pattern and respiratory rate comparisons against
reference signal were used.

4. Results

The results obtained from the proposed measuring system
are compared to the reference ones. The analysis is carried
out on both frequency and time domains, separately.

4.1. Breathing Rate Estimation in the Frequency Domain.
In the frequency domain, we computed the normalized
PSD obtained in each trial. Average breathing rate is cal-
culated indirectly by taking the maximum peak of the

normalized PSD plot. The values for each volunteer are
reported in Table 2.

The similarities between normalized PSD obtained
with the reference signal and the p̂ f HD720 are shown in
Figure 6. Since the volunteers were called to perform
self-pace breathing, some of them present a pattern with
high variations of the respiratory rate during data collection.
In these cases, it is normal to obtain a PSD with dominant
peaks at different frequencies (see Figure 6). With the pro-
posed method we got an average accuracy on average f R
estimation of 100%.

4.2. Breathing Rate Estimation in the Time Domain. The
analysis in the time domain provides additional information
compared to the analysis in the frequency domain with nor-
malized PSD, for example, the breath-by-breath respiratory
rate values. An average MAE value of 0.55 breaths/min was
found, while the maximum value was 1.23 breaths/min.
To specify the uncertainty around the estimate of the mean
measurement, we use SE since it provides a confidence
interval. Thus, we calculated the 95% confidence interval
as 1.96× SE. The computed confidence interval was always
better than 0.45 breaths/min.

By considering all the breaths collected in the 12 trials
(n = 205), the average accuracy of the proposed method
based on the analysis of p̂ f HD720 signal is of 97% in
the breath-by-breath analysis. Linear regression analysis
demonstrated a Spearman correlation coefficient of 0.97,
with a slope β = 1 001. The Bland–Altman analysis reveals
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Figure 5: Flowchart presenting all the steps carried out to extract the respiratory pattern and then the respiratory rate from in both the
frequency domain and time domain.

Table 1: Size of ROI in function of CCD camera setting: xROI,
yROI , and the number of pixels considered for the analysis in the
ROI are reported.

CCD camera setting
Characteristics of the
proposed method

Aspect
ratio

Resolution
(sensor setting)

xROI
[px]

yROI
[px]

Number of pixels
in the ROI [px]

16 : 9

1280× 720 (HD 720) 384 216 82944

1024× 576 (PAL) 306 172 52632

854× 480 (WVGA) 256 144 36864

5 : 3 800× 480 (VGA) 240 120 28800

4 : 3
640× 480 (NTSC) 192 144 27648

800× 600 (SVGA) 240 180 43200
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Table 2: Dominant peak of the normalized PSD from the reference signal and the video signal (p̂ f HD720) and relative estimated respiratory
rate value.

Trial
1 2 3 4 5 6 7 8 9 10 11 12

Reference signal
—

p̂ f HD720

Dominant
peak PSD

(Hz)

0.27 0.23 0.12 0.22 0.24 0.22 0.25 0.20 0.21 0.17 0.31 0.39

— — — — — — — — — — — —

0.27 0.23 0.12 0.22 0.24 0.22 0.25 0.20 0.21 0.17 0.31 0.39

Estimated
fR

(breaths/min)

16.11 13.92 7.32 13.18 13.18 13.20 15.01 12.09 12.82 10.25 18.31 23.44
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Figure 6: Power spectrum density estimates for each camera sensor-resolution signal and reference instrument, for each volunteer.
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a slight overestimation of breathing rate with the proposed
method (MOD of −0.03 breaths/min) and small LOAs
amplitude (±1.78 breaths/min).

4.3. Influence of Sensor Size Resolution. Table 3 reports
the dominant peak frequency of the normalized PSD
obtained by each trial at the five different resolution
investigated (i.e., PAL, WVGA, VGA, NTSC, SVGA). A
qualitative analysis of differences between PSDs obtained
from the reference signal and the proposed technique with
five-different camera settings can be performed through
Figure 6 (in Figure 6 there are also the HD 720 camera setting
normalized PSDs).

For each subject, the normalized PSDs are very similar
regarding shape and dominant peaks using different resolu-
tions. In all cases, except trials 1 and 12, there is one domi-
nant peak which is distinctly sharper from the surrounding
peaks. In trial 1 and 12, the presence of several peaks
highlighted several changes in breathing rate during the data
collection. An example of these differences in the time
domain and frequency domain is reported in Figure 7. The
average accuracies for average respiratory rate estimation
were 98.7%, 94.9%, 94.9%, 95.6%, 98.7% for PAL, WVGA,
VGA, NTSC, SVGA, respectively.

The results obtained in the time domain are reported in
Figure 8, in terms of MAE and SE. Despite the fact that
MAE and SE tend to increase when the resolution decreases
(i.e., NTSC), the values are similar to those obtained with
higher resolutions. The maximum MAE values were not
higher than 1.45 breaths/min. Additionally, Table 4 reports
the Bland-Altman analysis results (MOD± 1.96× SD), as
well as the slopes β of the linear regression curves and the
values of the correlation coefficient.

Figure 9(a) shows Bland-Altman and linear regression
plots obtained using the original sensor resolution (HD
720), while Figure 9(b) shows the plots obtained using the
NTSC resolution (with broader LOAs and worst value of cor-
relation coefficient).

5. Discussion

Within the wide spectrum of physiological measurements
that are useful for clinical assessment, respiratory rate
plays a crucial role. Especially, in some conditions it must
be monitored continuously, for instance when patients are
in clinical setting (i.e., intensive care unit) or both needs
the monitoring of physiological data at home (i.e., tele
monitoring, tele rehabilitation).

The use of unobtrusive solutions is widespread in respira-
tory monitoring. Optical technologies can allow nonintrusive
and low-cost monitoring of respiratory patterns. Different
solutions have been proposed based upon photo-reflective
markers and frame subtraction. Although relative new
techniques based on the analysis of video collected by dig-
ital camera have been demonstrated to be promising in
the respiratory monitoring, most of them monitoring only
the average respiration rate.

In this paper, we present a single-camera video-based
respiratory monitoring system based on the selection of a
small skin area near the base of the neck. The proposed
method for extracting the respiratory pattern and the corre-
sponding respiratory rate consists of three steps: (i) trunk
wall motion data collection, (ii) ROI selection and intensity
change analysis to extract video-based respiratory signal,
and (iii) analysis in the frequency and time domain to inves-
tigate the frequency content of the signal and to extract the
breath-by-breath respiratory rate.

Since the proposed method can work with very different
built-in RGB cameras (webcams) available in most laptops,
we have investigated the influence of sensor resolution (from
HD 720 to NTSC) on the respiratory pattern and respiratory
rate values extracted from video signal. The method has been
tested on 12 participants wearing t-shirt or sweaters during
data collection in an unstructured environment. Postpro-
cessed pressure drop signal collected at the nose was used
as reference signal in this work. Computed error measure-
ments are at par with those reported in the literature [12, 13].

Results show excellent performances of the method with
the use of HD resolution (HD 720) with an accuracy of the
method equal to 100% in the estimation of average breathing
rate from the frequency-domain analysis. Additionally, PSD
spectra demonstrated the similarity of all the breathing pat-
tern collected at the different resolutions when compared to

Table 3: Breathing frequency extracted with the 5 sensor settings
and from reference with the PSD analysis.

Trial
Respiratory rate (breaths/min)
Dominant peak frequency (Hz)

Reference PAL WVGA VGA NTSC SVGA

1
16.11 16.11 16.11 16.11 16.11 16.11

0.27 0.27 0.27 0.27 0.27 0.27

2
13.92 14.28 13.18 13.18 13.92 14.28

0.23 0.24 0.22 0.22 0.23 0.24

3
7.32 7.32 7.32 7.32 7.32 7.32

0.12 0.12 0.12 0.12 0.12 0.12

4
13.18 13.18 13.18 13.18 13.18 13.18

0.22 0.22 0.22 0.22 0.22 0.22

5
14.65 14.65 14.65 14.65 14.65 14.65

0.24 0.24 0.24 0.24 0.24 0.24

6
13.18 12.45 12.45 12.45 12.45 12.45

0.22 0.21 0.21 0.21 0.21 0.21

7
15.01 15.01 15.01 15.01 15.01 15.01

0.25 0.25 0.25 0.25 0.25 0.25

8
12.09 11.72 11.72 11.72 12.09 11.72

0.20 0.20 0.20 0.20 0.20 0.20

9
12.82 12.82 12.82 12.82 12.82 12.82

0.21 0.21 0.21 0.21 0.21 0.21

10
10.25 10.99 10.99 10.99 10.99 10.99

0.17 0.18 0.18 0.18 0.18 0.18

11
18.31 18.31 25.63 25.63 25.63 18.31

0.31 0.31 0.43 0.43 0.43 0.31

12
23.44 23.44 23.44 23.44 23.44 23.44

0.39 0.39 0.39 0.39 0.39 0.39
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the reference signal frequency content. It results in a lower
value of 94.9% of accuracy in the estimate of the average
respiratory rate from spectra. Despite the excellent results
obtained in the frequency domain, further developments
may be devoted to test parametric methods to estimate the
PSD, for example, AR methods since the periodicity of the
respiratory signal [24].

In the calculation of breath-by-breath respiratory rate,
the use of HD 720 camera setting shows the better results
in terms of MAE (average value of 0.55 breaths/min) and
SE. Additionally, in this case, the method shows a bias of
−0.03± 1.78 breaths/min in the calculation of breath-by-
breath respiratory rate when compared to the reference
values. With lower resolution (NTSC), the dispersions of
the data are slightly higher (LOAs are wider, ±2.08 breaths/
min), while the MOD value is comparable. These biases are
comparable to those obtained [25] on average respiratory
rate. It is slightly worse than to those of [26] who used
spirometer as reference and pseudo-Wigner-Ville distribu-
tion time-frequency representation (with 0.7324 bpm of
resolution) for the signal analysis during standing position
(−0.02± 0.83 breaths/min).

By analyzing more than 200 breaths (from 12 volun-
teers), sensor resolution seems to influence the accuracy of
the proposed method. NTSC resolution (the ROI area is
one third of the HD 720 area) shows the worst results, with
an accuracy of 95.6% in the estimation of average breathing
rate, and a MAE error of 1.45 breaths/min. In the estimation
of breath-by-breath parameter, the correlation coefficient is
0.95 with a bias of −0.06± 2.08 breaths/min. These values
can be compared with respiratory rate bias obtained from
wearable sensors like using Doppler radar (via fast Fourier
transform) with the use of transmitter and receiver antennas
when compared to a respiration strap [27] and to the use of
radar which returns using harmonically related filters [28].
Relationship coefficients and bias assessed with the proposed
method are in line with those found with wearable systems
based on respiratory inductive plethysmographic sensors
[29] or based on optical fibers [30], which require expensive
systems and contact with the patient for more accurate mon-
itoring. So the most important findings are (i) the proposed
measuring system is able to detect small chest wall move-
ments caused by the respiration by calculating the pixel color
differences between consecutive frames in order to extract
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Figure 7: Signals obtained by the video recordings at different resolution during 80 s of data collection. In the first subplot, an irregular
breathing pattern during self-pace breathing trials, and in the second one, a regular pattern. Differences in frequency domain can be
appreciated from the normalized power spectra.
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respiratory pattern even with low resolution of cameras
(i.e., NTSC); (ii) the errors calculated by comparing the
average respiratory rate and the breath-by-breath analysis
between instruments are acceptable for using the proposed
measuring system for accurately monitoring the subject

with commercial single camera, even at lower sensor resolu-
tions, in the absence of breathing unrelated movements. Fur-
ther developments of the proposed system will be the use of
an additional technique based on the pixel flow analysis to
detect unrelated breathing movements and to reduce their
influence in the calculation of breathing pattern. Addition-
ally, we are working on the automatic detection of the chest
wall to automatically detect the ROI used for pattern cal-
culation. Further test will be carried out investigating the
performances of the proposed method in different scenarios
(i.e., clinical setting room and intensive care unit), at different
respiratory pattern (i.e., spontaneous breathing, high rate,
deep breaths, apnea, and Cheyne-Stokes), and different pos-
tures. These upgrades will be useful to test the proposed mea-
suring system for telemonitoring purposes, and in general,
for the monitoring of subjects at a distance. Since the encour-
aging performances in the breath-by-breath monitoring of
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is related to the 5 investigated sensor settings.

Table 4: Results of the Bland-Altman analysis (MOD± LOAs), the
slope (β) of the linear regression curve, and correlation coefficient.

Sensor
setting

MOD± LOAs
(breaths/min)

β
Correlation
coefficient

PAL −0.04± 1.91 1.001 0.97

WVGA −0.04± 1.76 1.001 0.97

VGA −0.04± 1.84 1.001 0.97

NTSC −0.06± 2.08 1.002 0.95

SVGA −0.06± 2.05 1.002 0.96
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respiratory rate, the present system will be profitably used in
the monitoring of subjects in both clinical and home setting
as well as spot physiological check by using a commercial
insight webcam, commonly used for video call. Other future
works include validation with ultrasound images [7] and
studying the effect of varying lighting conditions, varying dis-
tance and clothing [9].
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