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Abstract Almost all critical functions in cells rely on specific protein–protein interactions.

Understanding these is therefore crucial in the investigation of biological systems. Despite all past

efforts, we still lack a thorough understanding of the energetics of association of proteins. Here, we

introduce a new and simple approach to predict binding affinity based on functional and structural

features of the biological system, namely the network of interfacial contacts. We assess its

performance against a protein–protein binding affinity benchmark and show that both experimental

methods used for affinity measurements and conformational changes have a strong impact on

prediction accuracy. Using a subset of complexes with reliable experimental binding affinities and

combining our contacts and contact-types-based model with recent observations on the role of the

non-interacting surface in protein–protein interactions, we reach a high prediction accuracy for such

a diverse dataset outperforming all other tested methods.

DOI: 10.7554/eLife.07454.001

Introduction
Interactions between proteins play a central role in the processes happening in the cells, from DNA

replication to protein degradation (Jones and Thornton, 1996; Alberts, 1998; Nooren and

Thornton, 2003; Perkins et al., 2010). Perturbations in those interaction networks can lead to disease

(Stites, 1997; Sugiki et al., 2014). Characterizing these protein–protein interactions (PPIs) is therefore

crucial for a proper understanding of mechanisms in biological processes for disease research and for

drug development, as most common targets of drugs are proteins (such as enzymes, ion channels,

and receptors).

Exploring recognition processes at atomic level requires knowledge of the three-dimensional (3D)

structure of the associated molecular complexes. It is however the binding affinity (BA) (i.e., the

natural inclination of molecules to associate) that defines whether or not complex formation will

occur. The BA is therefore the key for understanding and predicting recognition, association and

dysfunction phenomena related to protein complexes. It has been shown that changes in BA caused

by mutations or post-translational modification errors lead to various diseases (Vidal et al., 2011).

Commonly, the affinity of an interaction is described through the equilibrium dissociation constant

Kd, or, in thermodynamic terms, the Gibbs free energy ΔG (ΔG = RT ln Kd). Measuring Kd values

experimentally is a time-consuming and expensive process. Many computational methods aimed at

predicting BA have been developed. Gaining the ability to predict BA is indeed an urgent need as it

offers great opportunities not only to control interactions and develop innovative therapeutics

(Keskin et al., 2005; Aloy and Russell, 2006; Beltrao et al., 2007; Kiel et al., 2008; Dell’Orco,

2009), but also for other applications such as protein engineering (Kortemme et al., 2004; Sharabi

et al., 2011), computational mutagenesis (Ben-Shimon and Eisenstein, 2010), and docking

(Halperin et al., 2002).

Different methods aimed at predicting BA have been proposed throughout the years, varying

greatly in terms of accuracy and computational cost. Exact methods such as free energy
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perturbation and thermodynamics integration can be very accurate, but due to their computational

costs their application is extremely limited (mostly to low throughput studies and mainly for small

drug binding or mutations). Methods based on empirical functions (empirical, force-field-based

potentials, statistical potentials, and scoring functions used in docking) are much faster (Jiang et al.,

2002; Ma et al., 2002; Zhang et al., 2005; Audie and Scarlata, 2007; Su et al., 2009; Bai et al.,

2011; Moal et al., 2011; Qin et al., 2011; Moal and Bates, 2012; Tian et al., 2012; Kastritis et al.,

2014; Luo et al., 2014). However, even if some have been very successful on small training sets

(Horton and Lewis, 1992; Audie and Scarlata, 2007), most published models still fail to

systematically predict BA (Kastritis and Bonvin, 2010) for large datasets or discriminate between

binders and non-binders (Sacquin-Mora et al., 2008; Fleishman et al., 2011). The main weaknesses

of these methods are that they usually neglect factors such as conformational changes upon

binding, allosteric regulation, and solvent and co-factor effects, which may all contribute to the

binding strength.

Binding between two proteins is mainly defined by their contact region, the interface, and it is

indeed the network of contacts between surface residues that holds complexes together, defines their

specificity and contributes to their interaction strength. The importance of such inter-residue contacts

has already been established in docking. In the Critical Assessment of Prediction of Interactions

(CAPRI) experiment (Janin et al., 2003), for instance, assessment of the accuracy of the docked

models is based on a combination of positional root mean square deviation (RMSD) criteria and

conservation of intermolecular contacts with respect to the native structure (Lensink et al., 2007). In

the context of scoring, considering the conservation of contacts at the interface across docking

models has been shown to improve the ranking of docked models (Oliva et al., 2013; Chermak et al.,

2014). The atom contact frequency in a set of predictions, a similar concept, has also been included in

the ZRANK docking pipeline (Hwang et al., 2010). Next to their use in scoring, contacts have been

introduced as a way to cluster docking solutions based on the fraction of common inter-residue

contacts among a set of decoys (Rodrigues et al., 2012).

However, in addition to properties of the interface, a recent work has also demonstrated an effect

of the non-interacting surface (NIS) on BA (Kastritis et al., 2014), a finding that has been

corroborated in a recent study by Marillet et al. (Marillet et al., 2015).

eLife digest Proteins help to copy DNA, transport nutrients and perform many other important

roles in cells. To perform these tasks, proteins often interact with other proteins and work together.

These interactions can be very complex because each protein has a three-dimensional shape that

may change when it binds to other proteins. Also, two proteins may form several connections with

each other.

It is possible to carry out experiments to calculate how likely it is that two proteins will physically

interact with each other and how strong their connections will be. However, these measurements are

time consuming and costly to do. Some researchers have developed computer models to help

predict the interactions between proteins, but these models are often incorrect because they leave

out some of the chemical or physical properties that influence the ability of proteins to interact.

With the aim of making a better model, Vangone and Bonvin examined 122 different

combinations of proteins whose abilities to interact had previously been experimentally measured.

Vangone and Bonvin found that the number of connections between each pair of proteins was

a strong predictor of how tightly the proteins connect to each other. Particular features of the

surface of the proteins—specifically, the region defined as the non-interacting surface—can also

influence how strong the interaction is.

Vangone and Bonvin used this information to develop a new model that predicts how tightly

proteins interact with each other based on the number of connections between the two proteins and

the characteristics of the non-interacting surface. The model is simple, and Vangone and Bonvin show

that it is more accurate than previous models. Defects in the interactions between proteins can lead

to many diseases in humans, so this model may be useful for the development of new drugs to treat

these conditions.

DOI: 10.7554/eLife.07454.002
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Here we show how the network of contacts at the interface of a protein–protein complex can help

in describing the BA of the interaction. Based on the number contacts at the interface, we propose an

innovative and very simple method to predict BA. To this end we used the protein–protein BA

benchmark (Kastritis et al., 2011) consisting of 144 non-redundant protein–protein complexes with

experimentally determined Kd (ΔG) and available 3D structures.

Our results show that interfacial contacts, which have so far been neglected in the rationalization

and prediction of BA, can be considered the best structural property to describe binding strength.

Based on this observation, we describe an extremely simple BA predictor that accounts for different

types of contacts and shows the best performance reported so far (to our knowledge) on such a large

and diversified dataset of complexes. Its performance is compared to other previously published

predictor methods (Moal et al., 2011). Further, we analyze the impact of the experimental method

used to characterize BA on the prediction performance.

Results and discussion
Considering the critical role of the BA in the study of protein–protein complexes and the still elusive

approaches to predict it (Kastritis and Bonvin, 2010; Fleishman et al., 2011), we demonstrate here

that the network of inter-residue contacts (ICs) between two interacting proteins is a good descriptor

for the BA. Using the structure-based BA benchmark of Kastritis et al. (2011), we correlated ICs with

experimentally determined BA data (Kd or ΔG) for protein complexes (bound forms). The diversity of

experimental methods used to measure BA in this benchmark allows us to underline their limitations

and reliability for use in BA prediction. From the original dataset of 144 complexes, we removed the

cases with ambiguity in the exact Kd values and all complexes with missing or unresolved residues (>2)

at the interface (data reported in Supplementary file 1). For the remaining 122 complexes, we

calculated the number of ICs and evaluated their correlation (expressed through the Pearson’s

correlation coefficient R) with the experimental ΔGs. We describe the influence of various properties

on the results, such as the distance cut-off defining a contact and the experimental method used for

BA measurement.

Correlation between ICs and BA
In a protein complex the interactions are usually of relatively short range. Recently, however, Kastritis

et al. (2014) revealed the unexpected contribution of NIS residues to BA. We therefore systematically

evaluated the effect of the distance on defining the inter-residues network by varying the cut-off

distance between 3 Å and 20 Å (see ‘Materials and methods’). For each distance cut-off the number of

ICs was correlated with the experimental ΔGs. The results, reported in Figure 1, show that the highest

correlation is achieved at a cut-off of 4.0 Å, (RICs = −0.50, ρ < 0.0001). This correlation decreases

slowly until 8.0 Å (RICs = −0.41, ρ < 0.0001) and drops at higher distances. We also evaluated the

ranking power of the ICs, expressed through the Spearman’s correlation coefficient S, which follows

the same trend as R with slightly higher absolute values (Figure 1).

How experimental BA methods affect the correlations
Many different experimental methods can be used to determine the ΔG of a protein–protein

complex. Each presents different characteristics so that the measured ΔG values depend on the

method used, its sensitivity and the strength of the interactions that are being measured. For the set

of 122 complexes used in this work, ten different experimental methods have been used to detect the

ΔGs: stopped-flow fluorimetry (8 cases), surface plasmon resonance (SPR) (40 cases), high

performance liquid chromatography (HPLC)/UV absorption spectroscopy (14 cases), sedimentation

(1 case), radioligand binding (competitive binding experiments) (2 cases), potentiometry (1 case),

reduction assay (1 case), isothermal titration calorimetry (ITC) (19 cases), inhibition assay (17 cases),

fluorescence spectrophotometric assays (19 cases).

We analyzed separately the BAs from the various experimental methods with enough data points

(≥8) and compared the prediction performance with the full data set. As reported in Table 1,

the correlations between ICs and experimental ΔGs increased to RICs = −0.70 (ρ = 0.03), RICs = −0.53

(ρ = 0.0003), RICs = −0.65 (ρ = 0.006) and RICs = −0.55 (ρ = 0.006) in the case of ΔGs determined by

stopped-flow fluorimetry, SPR, spectroscopic methods and ITC, respectively. For the 17 cases

measured by inhibition assays and the 19 by fluorescence spectrophotometry techniques the
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correlations were meaningless (RICs = 0.04 with ρ = 0.9 and RICs = 0.05 with ρ = 0.8, respectively).

These are indirect methods useful in calculating relative binding strengths (known as IC50s), but these

have limitations when used to calculate absolute BA values (Lazareno and Birdsall, 1993; Wilkinson,

2004; Masi et al., 2010).

Removing the cases from inhibition assays and fluorescence spectrophotometry methods, and

all others for which only a few data points were reported (potentiometry, radioligand, reduction

assay, and sedimentation), we end up with a reliable dataset of 81 structures (a ‘cleaned’ dataset) showing

an increased correlation of RICs = −0.59 (ρ < 0.0001) at the re-optimized distance threshold of 5.5 Å to

define a contact (Figure 2). All further results will therefore refer to the 5.5 Å cut-off to define ICs.

Figure 1. Correlation between number of inter-residue contacts and binding affinity (ΔGs) as a function of the

distance cut-off used to calculate the contacts. Both the Pearson’s R (dark grey bars) and the Spearman’s S (light

grey-patterned bars) correlation coefficient are reported.

DOI: 10.7554/eLife.07454.003

Table 1. Pearson’s correlations and p-values (ρ) between inter-residue contacts (ICs) and buried surface

area (BSA) and experimental binding affinities (ΔGs) for the entire dataset and subsets corresponding

to various experimental method

Class #Complexes RICs RBSA

All 122 −0.50 (ρ < 0.0001) −0.32 (ρ = 0.002)

Stopped-flow 8 −0.70 (ρ = 0.03) −0.55 (ρ = 0.08)

SPR 39 −0.53 (ρ = 0.0003) −0.44 (ρ = 0.002)

Spectroscopy 14 −0.65 (ρ = 0.006) −0.27 (ρ = 0.2)

ITC 20 −0.55 (ρ = 0.006) −0.64 (ρ = 0.001)

Inhibition assay 17 0.05 (ρ = 0.4) −0.08 (ρ = 0.4)

Fluorescence 19 0.04 (ρ = 0.4) 0.34 (ρ = 0.1)

The ICs were calculated for a 4.0 Å cut-off.

DOI: 10.7554/eLife.07454.004
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Figure 2. Plots of inter-residue contacts (ICs) vs experimentally determined binding affinities (ΔGs) of

protein–protein complexes. (A) Full dataset (122 complexes), (B) reliable experimental methods only (stopped-

flow, surface plasmon resonance, spectroscopy, isothermal titration calorimetry) (81 complexes), and (C) non-reliable

experimental methods (inhibition assay and fluorescence) (36 complexes). The trend line and corresponding Pearson

correlation coefficients and p-values (ρ) are reported in each plot; binding affinities are reported as absolute values.

DOI: 10.7554/eLife.07454.005
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Structural properties contributing to BA
In order to assess which structural property might be the best descriptor for the binding strength, we

calculated on the ‘cleaned’ dataset values for the widely used buried surface area (BSA), the NIS

characteristics (recently shown to contribute in the BA) (Kastritis et al., 2014), and our ICs. We further

classified these properties based on the amino acid type—polar/apolar—for BSA and NIS, and

contact types—polar/polar, polar/charged, polar/apolar, charged/charged, charged/apolar, apolar/

apolar—for the ICs. For the latter we also considered the hydrophobic/hydrophilic classification. For

all these, we evaluated whether this finer classification (resulting, of course, in more parameters in our

model) improves the correlations. It is clear from the results summarized in Table 2 that the

number of ICs is a better descriptor than the BSA, with RICs_total = −0.59 (ρ < 0.0001) vs RBSA_total = −0.46

(ρ < 0.0001). When distinguishing between the amino acid properties, the factors that contribute the most

to BA are the number of ICs between polar and apolar residues (R = −0.56, ρ < 0.0001) and between

hydrophilic residues (R = −0.53, ρ < 0.0001). However, none of these individual classes shows better

correlation than the total ICs and BSA. All the calculated data are provided in Supplementary file 2.

In order to assess the predictor power of the above-described structural properties, we built

different predictor models (contacts-based, BSA-based, NIS-based and combinations of these),

optimizing the following model:

Model N :  ΔGcalc =w1P1 +w2P2 + ::::+Q; (1)

where PN values are the properties used to train Model N, wN values are the weight and Q is a shift

value. To avoid the problem of over-fitting when many variables are used (>3), we applied

the Akaike’s Information Criterion (AIC)

stepwise selection method implemented in R

(R Development Core Team, 2014) in order to

identify (and consider only) the significant varia-

bles among the training ones. Each derived

model, with associated weights wN and perfor-

mance, is reported in Table 3.

Models 1 and 2 were trained on ICs_total and

BSA_total, respectively, with a better perfor-

mance of the ICs-based model (as already

reported in Table 2) (root mean square errors

[RMSEs] of 2.25 and 2.46 kcal/mol, for ICs and

BSA, respectively). Models 3 and 4 have been

trained using the ICs classified by residue type

(polarity in Model 3, hydrophobicity in Model 4).

While single amino-acid-type ICs properties do

not improve the correlations, their linear combi-

nation results in a significant improvement from R

= −0.59 (ρ < 0.0001) for Model 1 to R = −0.67

(ρ < 0.0001) for Model 3 and R = −-0.60 for

Model 4 (ρ < 0.0001). Model 5 has been trained

on the polar/apolar classification of the Horton

and Lewis BSA model, (Horton and Lewis,

1992), with a slightly improved performance

compared with Model 2 based on the total

BSA, but it is still worse than any of the

contact-based models (i.e., Model 1, Model 3,

and Model 4).

Among the models that are based on prop-

erties of the interface of the binding site, the one

based on polarity-classification of ICs (i.e., Model

3) shows the best performance. We therefore

added to it the NIS properties in order to obtain

a full description of the structural properties of

Table 2. Pearson’s correlations and p-values

between experimental binding affinities and the

inter-residue contacts (ICs), buried surface area

(BSA) and non-interacting surface (NIS) (Kastritis

et al., 2014) properties calculated on the

‘cleaned’ dataset

Property R p-value

ICs_total −0.59 <0.0001

ICs_charged/charged −0.17 =0.06

ICs_charged/polar −0.26 =0.009

ICs_charged/apolar −0.45 <0.0001

ICs_polar/polar −0.13 =0.1

ICs_polar/apolar −0.56 <0.0001

ICs_apolar/apolar −0.34 =0.001

ICs_hydrophilic/hydrophilic −0.53 <0.0001

ICs_hydrophilic/hydrophobic −0.34 =0.001

ICs_hydrophobic/hydrophilic −0.05 =0.3

BSA_total −0.46 <0.0001

BSA_polar −0.36 =0.0005

BSA_apolar −0.47 <0.0001

%NIS_polar 0.07 =0.06

%NIS_apolar −0.33 =0.001

%NIS_charged 0.28 =0.006

A fine classification of those properties based on the

polar/apolar/charged and hydrophobic/hydrophilic na-

ture of the amino acids is also reported. The property with

the highest R value is highlighted in bold. The corre-

sponding data are provided in Supplementary file 2.

DOI: 10.7554/eLife.07454.006
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the complex, resulting in Model 6. After AIC evaluation, we obtained the following linear equation:

ΔGcalc = 0:09459  ICscharged=charged + 0:10007  ICscharged_apolar − 0:19577  ICspolar=polar

+ 0:22671  ICspolar=apolar − 0:18681%NISapolar− 0:13810%NIScharged

+ 15:9433:

(2)

Fourfold cross-validation results for this model (repeated 10 times) are reported in Supplementary

file 3, showing consistency in terms of coefficient and prediction accuracy. A scatter plot of predicted

vs experimental affinities is reported in Figure 3. The most relevant contributions to BA are the

number of ICs made by charged and polar residues (ICs_charged/charged and ICs_polar/polar in Equation 2),

while the apolar residues are only counted when interacting with charged and polar ones (ICs_charged/

apolar and ICs_polar/apolar in Equation 2). This ICs/NIS-based model show the best performance of any

model developed so far, with R = −0.73 and RMSE = 1.89 kcal mol−1.

The effect of conformational changes on BA-prediction accuracy
In many assemblies, the structure of free monomers differs from their structure in the oligomeric state

(the ‘bound’ form) due to the association process. The affinity benchmark also reports the interface

RMSD (i_rmsd) between the unbound and bound structures. This is a measure of how much

Table 3. Optimization of binding affinity predictor models based on the regression model ΔGcalc =

w1P1 + w2P2 + …. + Q

Properties (PN) Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

ICs_total 0.07782 - - - - -

ICs_charged/charged - - / - - 0.09420

ICs_charged/polar - - / - - /

ICs_charged/apolar - - 0.11627 - - 0.10038

ICs_polar/polar - - −0.12655 - - −0.19522

ICs_polar/apolar - - 0.23595 - - 0.22609

ICs_apolar/apolar - - / - - /

ICs_hydrophil/hydrophil - - - 0.09055 - -

ICs_hydrophil/hydrophob - - - 0.05726 - -

ICs_hydrophob/hydrophil - - - 0.06037 - -

BSA_total - 0.00278 - - - -

BSA_polar - - - - 0.00131 -

BSA_apolar - - - - 0.00400 -

%NIS_polar - - - - - /

%NIS_apolar - - - - - −0.18786

%NIS_charged - - - - - −0.13872

Intercept (Q) 4.78839 5.66032 5.13766 4.90452 5.44809 15.9433

R −0.59 −0.46 −0.67 −0.60 −0.48 −0.73

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

RMSE (kcal mol−1) 2.25 2.46 2.08 2.22 2.45 1.89

The weights wN are reported for each properties PN used to train Model N. Properties that have not been used for

training the Model or have been evaluated as not relevant from the Akaike’s An Information Criterion (AIC)

evaluation are reported as ‘-’ and ‘/’, respectively. At the bottom of the table, the correlation coefficient and

prediction error (expressed as R and RMSE) are reported.

DOI: 10.7554/eLife.07454.007
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conformational change takes place upon association. We investigated if our model would have

a higher predictive power when classifying the complexes according to their amplitude of

conformational change upon binding. Predictions made with our combined contacts and NIS model

(Model 6, Equation 2) are much less sensitive to conformational changes than all previous models

(Figure 3 and Figure 4), with only minor differences in performance between rigid (i_rmsd ≤ 1.0 Å, R

= −0.75 and RMSE = 1.88 kcal mol−1) and flexible cases (i_rmsd > 1.0 Å, R = −0.73 and RMSE = 1.89

kcal mol−1). This indicates that, in contrast to previous predictors, the number of interface residue

contacts is a rather robust predictor that is less sensitive to conformational changes.

In order to perform a fair comparison with other previously published methods, we calculated

their performance on the complexes that are in common between our clean dataset, the one

reported byMoal et al. (2011), and the pre-calculated data on the Computational Characterisation

of Protein–Protein Interactions (CCHarPPI) web server, ending up in 79 protein–protein complexes

(Figure 4). The considered models include the ‘global surface model’ of Kastritis et al. (2014), the

BSA-based model of Horton and Lewis (1992), the top three best performing methods reported

Figure 3. Scatter plot of predicted vs experimental binding affinities. The predictions were made according to the

inter-residue contacts (ICs)/non-interacting surface (NIS)-based model (Model 6, Equation 2) for the cleaned dataset

of 81 protein–protein complexes. The correlation for all 81 complexes yields an R of −0.73 (ρ < 0.0001) with a RMSE

of 1.89 kcal mol−1. When only rigid cases (interface RMSD between superimposed free and bound components ≤1.0

Å, red triangles) are considered, the correlation increases to R = −0.75 (ρ < 0.0001) with a RMSE of 1.88 kcal mol−1,

while for flexible cases (interface RMSD >1.0 Å; yellow rhombus) R = −0.73 (ρ < 0.0001) with a RMSE of 1.88 kcal mol−1.

The x = y line is shown as reference; binding affinities are reported as absolute values.

DOI: 10.7554/eLife.07454.008
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by Moal et al. (2011) (their consensus model, DFIRE [Liu et al., 2004] and PMF[Su et al., 2009])

and the composite scoring functions reported by the CCHarPPI webserver [Moal et al., 2015a, b],

such as ZRANK [Pierce and Weng, 2007], ZRANK2 [Pierce and Weng, 2008], RosettaDock

[Chaudhury et al., 2010], PyDock [Cheng et al., 2007], FireDock [Andrusier et al., 2007], PISA

[Viswanath et al., 2013], PIE [Ravikant and Elber, 2010], and SIPPER [Pons et al., 2011]. As

shown in Figure 4, our ICs/NIS-based model (Model 6) outperforms all other methods tested. It is

also less sensitive to conformational changes. All associated data are provided in Supplementary

file 4. In addition to the composite scoring function of CCharPPI, none of the other 99

intermolecular parameters reported by CCharPPI outperformed our model, even if some show

correlations above −0.50.

Insights on the difference between ICs and BSA
The ICs introduced in this work to describe BA seem to be a ‘higher level definition’ structural

parameter than the BSA since they express not only the contact surface but also the pairwise non-

bonded interactions that the two proteins make, which is related to the packing of the interface.

Indeed, a weak complex is expected to be less tightly packed than a strong one, a difference that

should be better reflected in the ICs than in the BSA. In particular, the origin of this difference might

reside in the fact that the contribution of each residue to the BSA will greatly depend on the solvent-

accessible surface area of the residue in the free form, whereas this does not affect ICs. To illustrate

this point we checked the main differences between ICs and BSA for the complex between Fab

D3H44 and Tissue factor (PDB code: 1JPS [Faelber et al., 2001]; ΔGexp = −13.6 kcal mol−1). This

complex has a BSA of 1852 Å2 and 83 ICs at 5.5 Å, resulting in a ICs-based affinity prediction of

Figure 4. Comparison of the performance of our ICs/NIS-based model (Model 6, Equation 2) with other predictor models reported byMoal et al. (2011)

and the CCHarPPI (Moal et al., 2015a, b) webserver. The performance is expressed as Pearson’s Correlation coefficient between experimental and

predicted binding affinities. Predictions were made on the common set of 79 complexes between our cleaned dataset, the data tested by Moal et al.

(2011) and the CCHarPPI (Moal et al., 2015a, b) pre-calculated data. Correlations for the entire set and the rigid (43) and flexible (36) complexes are

reported as absolute values for easier comparison (methods marked with asterisk showed original negative correlations).

DOI: 10.7554/eLife.07454.009
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−12.8 kcal mol−1 and a BSA-based one of −10.3 kcal mol−1. The relative contribution of each interfacial

Fab residue to the total BSA and number of ICs is shown in Figure 5A—figure supplement 1A: The

contributions of the various residues to the ICs are more equally distributed than for the BSA. The

latter shows high contributions for some residues, which is closely related to their solvent-accessible

surface area (ASA) in the free form (defined here as the conformation extracted from the complex,

that is, without any conformational changes—see ‘Materials and methods’) (see Figure 5B—figure

supplement 1) and the surface representation in Figure 5. Indeed, because BSAFab = ASAFab_free

−ASAFab_complex, when a residue is at the core of the binding interface (in other words totally shielded

by Tissue factor) the ASAFab_complex will be close to 0, resulting in BSAFab ∼ASAFab_free. In contrast,

residues already almost fully buried in the free form will not contribute to the BSA, whereas they might

be able to form contacts in our ICs model.

To report an example of this, the three residues GLU_H31, TYR_H32, and TYR_H33 located at the

core of binding site (see Figure 5) contribute equally to the ICs calculation (6%), while they account for

10.5%, 5.6%, and 8.1% of the BSAFab, respectively. On the other hand, residues such as ILE_H29,

TYR_H53 and ASP_H99, which are already highly buried in the free form and therefore contribute less

than 0.1% to the BSAFab, are still making contacts, contributing between 1.2% and 2.4% in the

calculation of ICs. In general, it seems that our ICs-based model is accounting more evenly than the

BSA model for the contributions of highly solvent-accessible and buried residues, which leads to

a higher prediction accuracy.

Concluding remarks
Our new ICs/NIS-based BAmodel predicts BAs with an unprecedented accuracy (R = −0.73, ρ < 0.0001;

RMSE = 1.89 kcal mol−1), on a large, various and reliable dataset of 81 complexes. It achieves this by

making use of only two structural features: the interfacial residue–residue contacts and the contribution

of the NIS. Unsurprisingly, the higher the number of interfacial contacts, the stronger the binding

strength, which is consistent both with the previously reported evidence that interfaces tend to be

larger and more tightly packed with increasing interaction strength (Nooren and Thornton, 2003) and

with the simple BSA models introduced by Chothia and Janin (1975) and Horton and Lewis (1992).

BSA and the number of contacts at the interface are of course somewhat related, but the number of

interface contacts shows much better correlations with binding strength than the BSA.

Figure 5. Surface representation of Fab D3H44; residues at the interface are colored according to their contribution (in percentage) to (A) the buried

surface area (BSA) of Fab upon complex formation and (B) the total number of inter-residue contacts (ICs) made. Increasing graduation of pink is used for

the ranges 0–2%, 2–4%, 4–6%, and above 6% of BSA/ICs contribution. (C) Surface representation of Fab D3H44 (gray) in complex with Tissue factor (light

blue), PDB code: 1JPS (Faelber et al., 2001). Fab D3H44 is represented in all panels with the same orientation. Values of residues BSA/ICs contribution

are reported in Supplementary file 5. The following figure supplement is available for Figure 5.

DOI: 10.7554/eLife.07454.010

The following figure supplement is available for figure 5:

Figure supplement 1. Comparison between BSA and ICs relative contribution.

DOI: 10.7554/eLife.07454.011
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In summary, our study demonstrated that interface contacts, decomposed into their polar/apolar/

charged characteristics, and combined with contributions of the NIS based on the recent work of

Kastritis et al. (2014) (in particular the percentage of apolar and charged surface), lead to the best

BA predictor for protein–protein complexes reported to date. Importantly, these are less sensitive to

conformational changes occurring upon binding, which are one of the challenging aspects to deal with

for both structure and affinity prediction.

Materials and methods

Dataset
In order to evaluate the relationship between the contacts at the interface and the experimental BA in

protein–protein complexes, we used the bound structures from the structure-based protein–protein

BA benchmark of Kastritis et al. (2011). It contains 144 non-redundant protein–protein complexes

with known 3D structures (of both the unbound and bound components) and associated experimental

ΔG values.

From this dataset we removed: (i) three cases (PDB codes: 1NSN, 1UUG, and 1IQD) for which the

ΔG has not a unique value (reported as > −14 kcal/mol, > −18 kcal/mol, and > −15 kcal/mol,

respectively), and (ii) all the complexes that show gaps or unresolved fragments at the binding

interface (considering a gap to be a missing segment longer than two residues). 19 cases were

discarded in total (for details see Supplementary file 1). This resulted in a dataset of 122 complexes,

covering diverse types of biological functions including antibody/antigen (A or AB with bound

antibody, 10 cases), enzyme/inhibitors (EI, 34 cases), enzyme/substrate (ES, 9 cases), enzyme/

regulatory subunit (ER, 7 cases), G-protein containing (OG, 15 cases), membrane receptors (OR, 7

cases), miscellaneous (OX, 26 cases), and non-cognate complexes (NC, 9 cases). The dataset includes

both weak and strong complexes in terms of interaction strength, with ΔG values ranging between

−4.3 and −18.6 kcal/mol.

The published benchmark also reports for each entry the interface C-alpha RMSD (i_rmsd) between

unbound and bound form, which provides an estimate of the amplitude of the conformational changes

that take place upon binding. Our clean dataset has i_rmsd ranging between 0.17 Å and 4.90 Å.

The interacting area, expressed in terms of BSA upon complex formation, ranges from 808 Å2 to

3370 Å2.

Contacts, BSA and NIS calculation
We calculated the number of interface residue pair-wise contacts (ICs) for each complex using the

COCOMAPS web tool (Vangone et al., 2011). Two residues are considered in contact if a pair of (any)

atoms belonging to two residues is closer than a defined cut-off distance. To systematically evaluate

the impact of the cut-off distance on the correlation between ICs and BA, we varied the cut-off

between 3 Å and 20 Å in steps of 0.5 Å in the range 5–8 Å and 1.0 Å from 8 Å and above.

The BSA upon complex formation was calculated using NACCESS (Hubbard and Thornton, 1993) as:

BSA=
�

ASAprotein1+ASAprotein2

�

−ASAcomplex; (3)

where ASAprotein1 and ASAprotein2 are the solvent-accessible surface areas calculated from the free

components (i.e., the separated bound conformation of the proteins—note that this is different from

the unbound form of the protein) using a 1.4 Å radius sphere.

The NIS properties (i.e., percentage of polar, apolar and charged residues on the NIS) were

calculated as described in Kastritis et al. (2014).

Residues were classified based on their physico-chemical properties as follow:

c polar: C, H, N, Q, S, T, Y, W
c apolar: A, F, G, I, V, M, P
c charged: E, D, K, R.

The hydrophobic nature of the residues was defined according to the Kyte–Doolittle

hydrophobicity index (Kyte and Doolittle, 1982).

The scripts for calculation of ICs (polar/apolar/charged divided) and NIS are available at: http://

bonvinlab.org/software.
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Correlations, prediction power and cross-validation
To assess the linear dependence between two variables (i.e., the experimental BA and the structural

properties tested, such as ICs), the Pearson product-momentum correlation coefficients (R) were

calculated. The ranking power of ICs with BA was also calculated as reported by the Spearman’s

correlation parameter S.

We trained different models (Equation 1) using linear regression in R (R Development Core Team,

2014); to avoid problem of over-fitting when many variables were used (>3) we applied the AIC

stepwise selection approach (backward and forward) in order to identify the significant terms and

calculate weights only for them.

Cross-validation on the final model was performed by partitioning the dataset into four

complementary subsets, training on the 75% of the data (training set) and validating on the other

25% (prediction set). Such fourfold cross-validation was repeated 10 times.

Comparison with other methods
We compared our method with other BA predictors, potentials and composite scoring functions.

Their performance is reported as correlation (R) between the predicted BA (or potential) and the

experimental BAs. The comparison was made for 79 protein–protein complexes that are in common

between our cleaned dataset of 81 structures and the 137 complexes reported by Moal et al.

(2011).

Predicted BAs for the ‘global surface model’ developed by Kastritis et al. (2014) have been

calculated through the program provided by the authors; the Horton & Lewis BSA-based model

(1992) (Horton and Lewis, 1992) was re-trained on our clean dataset (reported as Model 5); data

for the consensus model reported by Moal et al. (2011), DFIRE (Liu et al., 2004), and PMF

(Su et al., 2009) are provided in (Moal et al., 2011); data of the composite scoring ZRANK (Pierce

and Weng, 2007), ZRANK2 (Pierce and Weng, 2008), RosettaDock (Chaudhury et al., 2010),

PyDock (Cheng et al., 2007), FireDock (the total energy, the antibody–antigen energy and the

enzyme-inhibitor energy) (Andrusier et al., 2007), PISA (Viswanath et al., 2013), PIE (Ravikant

and Elber, 2010), and SIPPER (Pons et al., 2011) were obtained as pre-calculated data from the

CCHarPPI webserver (Moal et al., 2015a, b). Apart from the composite scoring function,

CCHarPPI reports 99 additional intermolecular parameters, such as potential functions, energy

functions, and various descriptors. The performance of each of them has been compared with our

model.
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