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ABSTRACT

Financial contagion is described as a wealth effect in a continuous-time model with

two risky assets and three types of traders. Noise traders trade randomly in one

market. Long-term investors provide liquidity using a linear rule based on funda-

mentals. Convergence traders with logarithmic utility trade optimally in both mar-

kets. Asset price dynamics are endogenously determined ~numerically! as functions

of endogenous wealth and exogenous noise. When convergence traders lose money,

they liquidate positions in both markets. This creates contagion, in that returns

become more volatile and more correlated. Contagion reduces benefits from port-

folio diversification and raises issues for risk management.

DURING THE FINANCIAL PANIC ASSOCIATED with the default of the Russian govern-

ment in August 1998 and the subsequent collapse of the hedge fund Long Term

Capital Management, numerous hedge funds, banks, and securities firms tried

simultaneously to reduce exposures to a variety of financial instruments, such

as Russian bonds, Brazilian stocks, U.S. mortgages, spreads between on-the-

run and off-the-run government securities, and spreads between swaps and U.S.

Treasuries. Although the fundamental values of these positions would appear

to have little correlation, during this financial crisis, the asset prices in these

markets exhibited the following common empirical pattern:

1. Financial intermediaries suffered losses as prices moved against their

positions;

2. Market depth and liquidity decreased simultaneously in several markets;

3. The volatility of prices increased simultaneously in several markets;

and,

4. Correlation of price changes of seemingly independent positions of fi-

nancial intermediaries increased.

Instead of using the term “panic” to describe the crisis, market commen-

tators blamed the market behavior on increased “risk aversion” on the part

of traders who follow “short-term” trading strategies. The commentators de-
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scribed “contagion” as the rapid spread from one market to another of de-

clining prices, declining liquidity, increased volatility, and increased correlation

associated with the financial intermediaries’ own effect on the markets in

which they trade.

The purpose of this paper is to explain contagion with a theoretical model

in which increased risk aversion is based on a wealth effect of financial

intermediaries. Financial intermediaries are modeled as a group of perfectly

competitive convergence traders who speculate that the transitory effect of

noise trading on asset prices will induce temporary deviations of prices from

their long-term mean. Convergence traders trade in markets for two risky

assets. When convergence traders suffer trading losses, they have a reduced

capacity for bearing risks. This motivates them to liquidate positions in both

markets, resulting in reduced market liquidity, increased price volatility in

both markets, and increased correlation. Through this mechanism, the wealth

effect leads to contagion. This mechanism is consistent with the report pub-

lished by Bank for International Settlements ~BIS; 1999! and empirical stud-

ies of Kaminsky and Reinhart ~2000!.
This paper describes a continuous-time model in which convergence trad-

ers follow short-term ~but rational! trading strategies. Two risky assets have

constant fundamental risk measured in units of the numeraire good ~con-

sumption!. Three types of investors, noise traders, long-term value-based

investors, and short-term convergence traders, exchange these two risky as-

sets for a safe asset. Noise traders trade one of the risky assets randomly,

but their position in this risky asset exhibits mean reversion. Long-term

investors are prudent but not fully rational. They follow a robust long-term

investment strategy holding both risky assets proportionally to the spread

between the asset prices and their fundamental values. This spread repre-

sents the present value of trading profits to long-term investors in a worst-

case scenario in which they have no opportunities to take profits early but

instead hold these assets forever, collecting all the future cash f lows. Con-

vergence traders aggressively exploit short-term opportunities by taking the

other side of noise trading. They are rational in the sense that they correctly

take into account the effect of all market participants on price dynamics in

both markets. Convergence traders are assumed to be perfect competitors

with logarithmic utility. Logarithmic utility implies a trading strategy in

which both the expected trading profits and the percentage variance of the

portfolio equal the short-term ~instantaneous! squared Sharpe ratio in the

market. Logarithmic utility also implies a risk management strategy that

prevents wealth from dropping to zero through dynamic portfolio rebalancing.

Xiong ~2001! develops a continuous-time equilibrium model of convergence

trading with one risky asset. Xiong shows that the convergence traders’ wealth

effect can act as an amplification mechanism that increases price volatility

and may cause convergence trading to be price destabilizing in extreme cir-

cumstances. This paper shows that in an otherwise similar framework with

two risky assets, the volatility amplification generates empirical patterns

which characterize contagion. In both Xiong ~2001! and this paper, it is as-
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sumed that there is no capital inf low to the convergence-trading industry

through entry of new convergence traders or capital inf lows to existing con-

vergence traders. This assumption is consistent with Shleifer and Vishny’s

~1997! argument that asymmetric information and moral hazard can cause

agency problems for professional traders, therefore resulting in imperfect

capital f lows to the convergence-trading industry.

In equilibrium, the asset price dynamics and convergence traders’ wealth

dynamics are simultaneously determined. This introduces endogenous risks

into our model in the sense that means and variances of asset returns are

endogenous functions of two state variables: the wealth of convergence trad-

ers and the positions of noise traders. There are three sources of risks: in-

novations in fundamentals in each of the two markets and innovations in

noise-trading supply in one market. With only two risky assets, markets are

incomplete. In equilibrium, the trading strategy of a representative conver-

gence trader solves a fixed-point problem. This fixed-point problem is equiv-

alent to a system of two second-order partial differential equations. A numerical

solution of the equilibrium ~using a projection technique! makes it possible

to quantify, for particular parameter choices, the patterns of volatility, li-

quidity, correlation, and convergence-traders’ wealth associated with contagion.

Severe “contagion” happens when noise trading deviates significantly from

its mean and convergence traders’ wealth is at some intermediate level. In

this situation, convergence traders take large positions, and these positions

need to be reduced in response to shocks that reduce wealth. The position

rebalancing of convergence traders leads to increased volatility in both mar-

kets, increased price correlation across the two markets, and reduced mar-

ket liquidity.

To understand the mechanism in convergence trading, it is useful to de-

scribe the response to innovations in fundamentals separately from innova-

tions in noise trading. Fundamental shocks ~in either market! cause a wealth

effect. In response to unfavorable fundamental innovations which reduce

wealth, convergence traders liquidate positions in a manner that tends to

magnify volatility and create correlation in the returns between the two

assets. In response to innovations in noise trading that increase the posi-

tions of noise traders, two forces are at work. In addition to the wealth

effect, which motivates the convergence traders to reduce positions due to

reduced wealth, they have an opposite incentive ~substitution effect! to add

to positions because these positions become more profitable as noise-trading

innovations push prices further out of line. Usually, the wealth effect is smaller

than the substitution effect and convergence traders respond to noise-

trading shocks by taking the other side in a manner that reduces volatility

and adds to liquidity. In certain extreme cases, however, when convergence

traders have unusually large positions, the wealth effect dominates the sub-

stitution effect and convergence traders respond to noise-trading shocks by

liquidating positions. This exacerbates price volatility and consumes some of

the liquidity provided by long-term investors. It happens exactly when con-

tagion is most severe.
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In our model, the risks facing an individual convergence trader are en-

dogenously determined by the trading of all market participants. The model

implies that it is important for a risk management system to take into ac-

count the additional risks such as contagion and volatility amplification cre-

ated by the wealth effect of convergence traders. This view is also expressed

by Morris and Shin ~2000!, who study the potential coordination failure of

market participants. The existence of these endogenous risks presents a chal-

lenge to risk-management systems based on applying statistical tools to his-

torical returns. The weaknesses of these statistical models have been discussed

by Danielsson ~2000!. Our economic model, based on assumptions about the

liquidity provided by long-term investors and the behavior of convergence

traders, suggests risk managers measure risks after considering the capi-

talization and positions of other traders.

There is a growing literature in economics and finance studying conta-

gion. Dornbusch, Park, and Claessens ~2000! provide a lengthy review. Schi-

nasi and Smith ~1999! suggest that the combination of leverage and value-

at-risk portfolio management rules can induce contagion, but they do not

provide an equilibrium model of the wealth effect. Gromb and Vayanos ~2000!
study an equilibrium model of arbitrage trading with margin constraints,

and they show a similar contagion effect to our model. The wealth effect

studied in this paper is related to the papers on portfolio insurance by Gross-

man and Zhou ~1996! and Basak ~1995!. Since these models are set up in

complete markets with only market risks, they are not suitable for explain-

ing contagion, the transmission of idiosyncratic risk from one small market

niche to another, for example, from Russian bond markets to U.S. mortgage-

backed securities markets.

An alternative approach to our paper studies financial contagion as infor-

mation transmission. The idea here is that the fundamental risks are cor-

related across assets. Thus, when one asset declines in price because of noise

trading, rational traders reduce the prices of all assets if they cannot dis-

tinguish declines based on fundamentals from declines based on noise trad-

ing. King and Wadhwani ~1990! use this approach to explain the uniformity

of price declines in world stock markets during the 1987 crash. Calvo ~1999!
and Yuan ~1999! study the behavior of uninformed investors when informed

traders can be margin constrained. Since uninformed rational investors can-

not distinguish between selling based on liquidity shocks and shocks to fun-

damentals, they suggest that it is possible for contagion to result from confused

uninformed investors. Their studies are complementary to ours, since the

wealth effect in our model operates even when asset fundamentals are un-

correlated across markets.

Fleming, Kirby, and Ostdiek ~1998! find empirical evidence that cross-

market hedging is associated with transmission of volatility across bond and

stock markets. Kodres and Pritsker ~1998! develop a theoretical model of

financial contagion based on cross-market hedging with asymmetric infor-

mation. Calvo and Mendoza ~2000! suggest that information cost and rela-

tive performance compensation can induce rational herding behavior of

investors, thus resulting in contagion. Contagion can also be modeled as

1404 The Journal of Finance



self-fulfilling sunspot equilibrium as in Masson ~1998! and its references.

Rochet and Tirole ~1996! study the propagation of financial distress through

interbank lending. Lagunoff and Schreft ~1998! and Allen and Gale ~2000!
study the fragility of financial markets through a chain reaction of banks or

financial intermediaries to withdraw from illiquid investments. Caballero

and Krishnamurthy ~2000! show that the weakening of a country’s inter-

national collateral can induce the fire sale of emerging-market assets due to

imperfect international credit markets. Goldstein and Pauzner ~2000! study

contagion also as a wealth effect of investors with decreasing absolute risk

aversion, but in a framework of self-fulfilling banking crisis.

On the empirical side, the implications of our model are consistent with

the following empirical regularities identified in the literature: ~1! Not all

asset-price volatility is explained by fundamentals; ~2! conditional correla-

tions between asset returns are not constant; and, ~3! variations in condi-

tional correlations are not explained by fundamentals. The empirical literature

includes the following: Campbell and Kyle ~1993! show that the excess vol-

atility literature is consistent with the idea that noise trading increases price

volatility. Shiller ~1989! and Pindyck and Rotemberg ~1990, 1993! find evi-

dence of excess correlation in asset price comovements. Longin and Solnik

~1995! find that conditional correlations of world stock markets are not con-

stant. Hamao, Masulis, and Ng ~1990! and Lin, Engle, and Ito ~1994! find

evidence of volatility spillover in international stock markets. Karolyi and

Stultz ~1996! and Connolly and Wang ~1998! find that macroeconomic an-

nouncements and other public information do not affect comovements of Jap-

anese and American stock markets. King, Sentana, and Wadhwani ~1994!
find that observable economic variables explain only a small fraction of in-

ternational stock market comovements. Balyeat and Muthuswamy ~1999!
find a U-shaped relationship between correlations of stock returns and the

level of market movement. Forbes and Rigobon ~1999! discuss the economet-

ric issues of heteroskedasticity and endogeneity related to the contagion tests.

Bae, Karolyi, and Stultz ~2000! use a new statistical method to measure

contagion. Ang and Chen ~2000!, Connolly and Wang ~2000!, and Longin and

Solnik ~2001! find correlation to be large in market downturns.

The paper proceeds as follows. Section I introduces the structure of the

model. Section II derives the equilibrium as a fixed-point problem. Sec-

tion III illustrates the equilibrium using a numerical example and discusses

the implications of the model. Section IV discusses the implications for risk

management. Section V concludes the paper.

The Model

The model is set up in a continuous-time framework with two risky assets

and a riskless asset. There are three types of traders: noise traders, conver-

gence traders and long-term value-based investors. The two risky assets have

independent fundamental processes. One of the assets is subject to stochas-

tic and mean-reverting supply caused by noise traders. The other asset has

a fixed supply. Convergence traders are fully rational with logarithmic util-
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ity and an infinite trading horizon. They trade in both assets and exploit the

short-term opportunity created by noise traders. Long-term investors hold

the assets based on the spread between the prices and the fundamentals.

Long-term investors are not fully rational in the sense that they ignore the

short-term opportunity caused by noise traders, but their strategy is very

robust to the risks of model misspecification. The trading of long-term in-

vestors provides convergence traders an exit strategy during crises.

A. Asset Fundamentals

We assume that traders in the financial markets exchange a safe asset

with constant interest rate r for two risky assets, which we call asset A and

asset B. In the context of convergence trading, each of these two risky assets

can be thought of as a spread position between other assets. To model how

fundamental uncertainty about future cash f lows is revealed to the markets,

we assume that the cash f lows of these two assets are observable, mean-

reverting stochastic processes DA and DB with constant instantaneous vol-

atilities sA and sB, constant rates of mean reversion lA and lB, and known

long-term means ODA and ODB. Thus, the cash-f low processes can be written

dDA
� �lA~DA

� ODA !dt � sAdz A, ~1!

dDB
� �lB~DB

� ODB !dt � sAdz B. ~2!

We assume for simplicity that the two cash-f low processes are independent.

The fundamental values PF
A and PF

B of the two risky assets ~not to be con-

fused with the market prices P A and P B described later! are defined as their

expected payoffs to a risk neutral investor discounted at the risk-free rate of

interest ~using variations of Gordon’s growth formula!:

PF
A

�

ODA

r
�

DA
� ODA

r � lA
, ~3!

PF
B

�

ODB

r
�

DB
� ODB

r � lB
. ~4!

The risk-neutral returns processes dQF
A and dQF

B corresponding to the fun-

damental values ~not to be confused with the actual returns processes dQA

and dQB discussed later! are given by the hypothetical mark-to-market prof-

its of a fully levered one-share portfolio, which collects the dividend and

pays the risk-free rate of interest:

dQF
A

� dPF
A

� ~DA
� rPF

A!dt, ~5!

dQF
B

� dPF
B

� ~DB
� rPF

B!dt. ~6!
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Using the cash-f low processes and the fundamental processes above, it is

straightforward to show that the risk neutral mark-to-market profits on as-

set A and B follow Brownian motions with constant volatility, which we de-

fine as sF
A and sF

B:

dQF
A

�

sA

r � lA
dz A

� sF
A dz A, ~7!

dQF
B

�

sB

r � lB
dz B

� sF
B dz B. ~8!

The equilibrium discussed below depends on the fundamental cash-f low pro-

cess only through the parameters sF
A and sF

B. In other words, the specific

rates of mean reversion and the long-term means of cash f lows do not affect

the equilibrium except through their effect on sF
A and sF

B. Furthermore, the

risky assets can be scaled arbitrarily ~as in a stock split! to give any level of

fundamental volatility, without changing the equilibrium. Thus, in what fol-

lows, we assume without loss of generality that fundamental volatility is the

same for both assets and is defined by sF � sF
A

� sF
B.

The fact that sF is constant implies that fundamental volatility is con-

stant when measured in dollars per share. Without loss of generality, we can

think of convergence trading positions as spread positions. The constant vol-

atility assumption better describes the fundamental risks of typical spread

positions. These positions have distinct long and short legs. Therefore, they

do not have natural up and down directions that justify the log-normal pro-

cess associated with the concept of constant percentage volatility.

B. Market Clearing Conditions

The equilibrium prices for the two risky assets ~as opposed to the funda-

mental value discussed above! arise from trading by the three different types

of market participants: long-term investors, convergence traders, and noise trad-

ers. Noise traders are assumed to trade only in market A. This assumption is

made to reduce the number of state variables needed to characterize the equi-

librium. Following Campbell and Kyle ~1993! and Wang ~1993!, we assume the

supply of noise traders to follow an exogenous mean-reverting process

du � �lu~u� Nu!dt � sudzu , ~9!

with Nu as the long-term mean, lu as the mean-reversion parameter, and su as

the innovation standard deviation. This process is also assumed to be inde-

pendent from the fundamental cash-f low processes DA and DB. Asset B has

a fixed supply of NuB. We denote long-term investors’ demand as XL
A and XL

B ,

and convergence traders’ demand as X A and X B. The market clearing con-

ditions ~which hold at every point in time! can be written as

XL
A

� X A
� u, ~10!

XL
B

� X B
� NuB. ~11!
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C. Long-term Investors

Long-term investors are assumed to have the following demand curve for

the two risky assets:

XL
A

�

1

kA
~PF

A
� P A !, ~12!

XL
B

�

1

kB
~PF

B
� P B !, ~13!

where kA
� 0 and kB

� 0 denote the slopes of the downward-sloping demand

curves. These demand curves are proportional to the spreads between the

fundamental values and the actual prices. Graham ~1973! calls this spread

a safety margin. It represents the net present value of profits to long-term

investors when they hold the assets forever and collect all the future cash

f low. This is a worst-case scenario, which happens if the safety margin does

not change over time. If we assume long-term investors have exponential

utility and assume ~incorrectly! that the safety margin is constant over time,

they would use this ~suboptimal! strategy. The slope of the demand curve is

then given by

kA
� fsF

2 , ~14!

where f is the long-term investors’ absolute risk aversion and sF
2 is the

variance of fundamental shocks.

If we think of the same long-term investors as participating in both mar-

kets, then the demand in one market does not depend on prices in the other

because the fundamentals of the two markets are uncorrelated. Therefore,

under this assumption, we should assume kA
� kB because the fundamental

volatility in the two markets is identical. However, if long-term investors are

segmented in a similar manner to Merton ~1987!, with one population of

long-term investors trading in market A and another in market B, the pa-

rameters kA and kB can have different values.

According to these demand curves, long-term investors always provide li-

quidity to the market. When the price falls below the fundamental value in

either market, long-term investors will buy the asset. When the price falls

further below the fundamental value, long-term investors will buy more.

The slopes of the demand curves kA and kB measure the liquidity provided

by long-term investors. Larger kA or kB mean steeper demand curves, and

thus represent less liquidity from long-term investors. Notice that long-term

investors have no wealth effects. Implicitly, they are assumed to have deep

pockets ~consistent with exponential utility!. As shown later, the liquidity

provided by long-term investors provides an exit strategy for convergence

traders during crises.
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While this long-term strategy is profitable, it is not optimal. Because the

inventory of noise traders u changes randomly in a mean-reverting man-

ner, a short-term strategy can improve the portfolio performance of long-

term investors. A short-term strategy implies trading more aggressively

against noise trading than the long-term strategy. This creates an oppor-

tunity for convergence traders to prosper in the market by using a short-

term strategy.

The rationale behind the long-term strategy is its robustness. Graham

~1973! noticed a long time ago that a short-term strategy that improves

upon the long-term strategy for a given noise-trading process can be subject

to large model specification risks. Therefore, he advocates a long-term strat-

egy to exploit long-term opportunities ~measured by the safety margins! in

the market. This view is consistent with recent studies on the aversion to

model uncertainty by Epstein and Wang ~1994! and Hansen, Sargent, and

Tallarini ~1999!. Since the focus of our model is on the effect of convergence

traders, we simplify matters by assuming the simplistic trading rule of long-

term investors.

D. Convergence Traders

Convergence traders behave optimally in response to a given noise-trading

process. Intuitively, this means that they make profits not only by purchas-

ing risky assets when they are priced below fundamentals, but they also

make short-term profits by taking the other side of transitory noise trading.

Due to the aggressive nature of convergence trading, convergence traders

are subject to large wealth f luctuation with the leverage they may be in-

duced to use. This makes their wealth effect an important variable in de-

termining their asset demand. In order to capture the dependence of their

demand on both short-term opportunity and wealth, convergence traders are

assumed to be a continuum of perfect competitors who maximize an addi-

tively separable logarithmic utility function with an infinite time horizon

and a time-preference parameter r:

J~t! � max Et�
0

`

e�rs ln~Ct�s!ds. ~15!

With logarithmic utility, convergence traders have decreasing absolute risk

aversion. As their wealth gets close to zero, convergence traders become in-

finitely risk averse. To prevent their wealth from becoming negative, con-

vergence traders will use the liquidity provided by long-term investors to

liquidate their risky positions as their wealth decreases. Note that without

long-term investors, there can be no equilibrium with only convergence trad-

ers and noise traders, because wealth cannot be guaranteed to stay positive

for convergence traders when fundamentals have a normal distribution.

Since logarithmic utility gives convergence traders an incentive to keep

their wealth from falling below zero, there are no bankruptcy risks, and

creditors are always willing to lend money to them at the risk-free rate r.
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The trading opportunities to convergence traders are the excess return

processes:

dQA
� dP A

� ~DA
� rP A !dt, ~16!

dQB
� dP B

� ~DB
� rP B !dt, ~17!

with P A and P B denoting the prices of the risky assets ~not the fundamental

values PF
A and PF

B!. The processes dQA and dQB represent the cash f low to

a fully levered portfolio long one share of the risky asset A or B. The con-

vergence traders’ budget constraint is

dW � X AdQA
� X BdQB

� ~rW � C!dt, ~18!

where W denotes their wealth, C denotes their consumption, and X denotes

their demand for the risky asset in shares. Consumption C can also be in-

terpreted as a dividend paid to investors in the convergence traders’ funds.

The convergence traders’ demand X A, X B, and consumption C are derived

from their utility optimization problem.

II. The Equilibrium

This paper studies a symmetric and perfectly competitive equilibrium. In

this equilibrium, each individual convergence trader is a price-taker, and

given everyone else’s trading strategy, each individual convergence trader

will optimally choose the same strategy. This equilibrium condition implies

that a representative convergence trader ’s trading strategy solves a fixed-

point problem.

There are three sources of uncertainty, the fundamental shock in asset A

~dz A !, the fundamental shock in asset B ~dz B !, and the noise-trading shock

in asset A ~dzu!. Since there are only two risky assets, markets are incom-

plete. There are also two state variables: the level of noise trading u and the

aggregate wealth of convergence traders W. Due to logarithmic utility, the

total wealth of all convergence traders can be aggregated together to repre-

sent their aggregate risk-bearing capacity. Unlike models with constant ab-

solute risk aversion, the exact number of convergence traders is not important

for the equilibrium.

The fundamental variables DA and DB are not state variables. Due to the

normal distribution assumption for the cash-f low processes, the fundamen-

tal risks are constant for these two assets and the dividends only measure

the levels of fundamental values. Since long-term investors trade on long-

term opportunities ~safety margins! measured by the difference between the

prices and fundamentals, while convergence traders trade on short-term op-

portunity measured by the Sharpe ratios ~as shown later by the model!,
variables DA and DB have no effects on the trading strategies of either

long-term investors or convergence traders. Therefore, they have no effect

for the equilibrium.
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The equilibrium can be characterized by three functions: convergence trad-

ers’ demand functions for the two risky assets X A~u,W ! and X B~u,W !, and

convergence traders’ consumption function C~u,W !. These three functions

solve the convergence traders’ utility optimization problem. At the same time,

they always satisfy the market clearing conditions.

Given convergence traders’ demand functions X A and X B, the price func-

tions of the risky assets can be derived by plugging the long-term investors’

demand functions into the market clearing conditions:

P A
� PF

A
� kA~u� X A~u,W !!, ~19!

P B
� PF

B
� kB~ NuB

� X B~u,W !!. ~20!

These equations reveal the key feature of our model that convergence trad-

ers’ wealth dynamics inf luence the price dynamics of both risky assets, and

can potentially cause correlation between the two asset prices although they

are fundamentally uncorrelated. Actually, the wealth dynamics and asset

price dynamics need to be determined simultaneously in the equilibrium.

The equilibrium can be set up in three steps. In the first step, the two

excess return processes are derived given convergence traders’ demand and

consumption functions. In the second step, convergence traders’ optimal in-

vestment and consumption policies are derived given the excess return pro-

cesses. Finally, the equilibrium is shown to solve a fixed-point problem that

is a system of two nonlinear second-order partial differential equations. These

equations can be solved numerically.

A. Excess Return Processes

Given the convergence traders’ demand and consumption functions, we

can use Ito’s lemma to express the excess return processes dQA and dQB

~equations ~16! and ~17!! in terms of a drift term and innovation terms as-

sociated with the three sources of uncertainty dz A, dz B, and dzu. Let mA

denote the drift and sA
A , sB

A , su
A denote the loadings on the innovations in

the markets. The drift and loadings on innovations are functions of the two

state variables W and u. Using analogous notation for asset B, we have

dQA
� mA~u,W !dt � sA

A~u,W !dz A
� sB

A~u,W !dz B
� su

A~u,W !dzu , ~21!

dQB
� mB~u,W !dt � sA

B~u,W !dz A
� sB

B~u,W !dz B
� su

B~u,W !dzu . ~22!

We can think of several of these innovation coefficients as representing con-

tagion. In equation ~21!, sB
A measure the effect of an innovation in the funda-

mentals of asset B on returns to asset A, that is, it captures fundamental

contagion going from market B to market A. In equation ~22!, sA
B and su

B mea-

sure the effects of innovations in fundamentals in market A and noise trading

in market A on returns in market B, that is, these terms capture fundamental
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contagion and noise-trading contagion going from market A to market B. There

is no noise-trading contagion going from market B to market A because there

is assumed to be no noise trading in market B.

The wealth effect shows up through the simultaneous relationship be-

tween convergence traders’ wealth process W and the excess return pro-

cesses dQA and dQB. On the one hand, shocks to the two return processes

change the aggregate wealth of convergence traders through their budget

constraint ~equation ~18!! when they are taking positions on these two as-

sets. One the other hand, the changes of convergence traders’ wealth cause

f luctuations in their risk-bearing capacity, and thus induce them to rebal-

ance their portfolio. Their portfolio rebalancing can change the prices of the

two assets through the market clearing conditions ~equations ~19! and ~20!!.
In equilibrium, any shock to any one of these assets feeds back to itself

through the convergence traders’ wealth, potentially amplifying the shock.

The shock will also be transmitted to the other asset through the same wealth

channel, thus resulting in a contagion effect. In this way, the wealth effect

can act as both an amplification mechanism and a contagion mechanism.

In the expressions for drifts mA, mB and innovation sensitivities sA
A , sB

A ,

su
A , sA

B , sB
B , and su

B , it is shown in Appendix A that the wealth effect appears

as a factor A~u,W ! defined by

A �

1

1 � kAX AXW
A

� kBX BXW
B

. ~23!

The subscripts u or W denote the derivatives of a function with respect to

noise trading u or wealth W, that is, XW
A is the derivative of the demand for

asset A with respect to wealth. The factor A has an intuitive interpreta-

tion, which is explained as follows: Let dW ' denote a hypothetical change

in convergence traders’ wealth that would occur in response to an exog-

enous shock ~e.g., dzD
A , dzD

B , or dzu
Z! if convergence traders did not update

their positions in response to the changes in wealth. Let dW denote the

actual change in wealth that would occur when convergence traders do

update their positions in response to the exogenous shocks. As a result of

the initial shock, convergence traders rebalance their portfolio by reducing

their positions in both assets A and B by XW
A dW and XW

B dW, respectively.

To induce long-term investors to pick up the positions liquidated by con-

vergence traders, the prices of both assets need to drop by kAXW
A dW and

kBXW
B dW. When the prices fall, the convergence traders’ wealth will fur-

ther drop by X A{kAXW
A dW � X B{kBXW

B dW. Therefore, an initial wealth

drop of dW ' can cause a total wealth drop of

dW � dW '
� ~kAX AXW

A
� kBX BXW

B !dW. ~24!

This equation gives

dW � A{dW ', ~25!
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which suggests that factor A measures the magnitude of amplification caused

by the wealth effect. As shown later, this amplification factor A~u,W ! is al-

ways larger than 1.

It is shown in Appendix A that the coefficients of the dz terms in equations

~21! and ~22! for dQA and dQB are given by

sA
A

� sF ~1 � kBX BXW
B !A~u,W !, ~26!

sB
A

� sF kAX BXW
A A~u,W !, ~27!

su
A

� �kAsu @~1 � Xu
A!~1 � kBX BXW

B !� kBXW
A X BXu

B#A~u,W !, ~28!

sA
B

� sF kBX AXW
B A~u,W !, ~29!

sB
B

� sF ~1 � kAX AXW
A !A~u,W !, ~30!

su
B

� kBsu @Xu
B~1 � kAX AXW

A !� kAX AXW
B ~1 � Xu

A!#A~u,W !. ~31!

Each of these terms can be explained in an intuitive way. Let us illustrate

with the first term. By using the definition of A~u,W ! in equation ~23!, the

term sA
A in equation ~26! can be rewritten as

sA
A

� sF @1 � kAX AXW
A A~u,W !# . ~32!

When a fundamental shock dz A hits market A, it causes an initial price change

of sF dz A and an initial wealth shock of X A{sF dz A. Through the wealth am-

plification mechanism discussed above, the wealth shock will be amplified by

A, resulting in a total wealth shock of X A{sF dz A{A. Convergence traders re-

balance their positions in asset A by XW
A{X A{sF dz A{A. In order to clear the

market, the price of asset A needs to change further by kA{XW
A{X A{sF dz A{A to

attract long-term investors to take the other side of a rebalancing trade by con-

vergence traders. In this way, an initial fundamental shock of dz A can cause

a total price change of sF dz A @1 � kAX AXW
A A~u,W !# to asset A as indicated by

equation ~32!. Similar intuitive explanations can be obtained for other vola-

tility terms listed above in equations ~27! through ~31!.
The drift values mA~u,W ! and mB~u,W ! are complicated expressions involv-

ing X A, X B, and derivatives to second order ~see Appendix A!. Appendix A also

gives expressions for the aggregate wealth of the convergence traders W.

B. Optimal Strategy for Convergence Traders

Given the trading opportunities to a convergence trader defined by dQA

and dQB, the value function J can be written as a function of wealth W i and

the two state variables W and u:

J~W i,u,W ! � max
$X iA

, X iB
,C i %

Et�
0

`

e�rs ln~Ct�s
i ! ds. ~33!
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Notice that W i measures the individual convergence trader ’s wealth, while

W represents the aggregate wealth of all of convergence traders. By solving

a Bellman equation, Appendix B shows the optimal consumption and port-

folio rules to be

X i A

�

W i

1 � f2 � mA

~sA !2
� f

mB

sAsB �, ~34!

X i B

�

W i

1 � f2 � mB

~sB !2
� f

mA

sAsB �, ~35!

C i
� r W i. ~36!

In the formula above, mA and mB are the instantaneous risk premia of the

two assets, sA and sB are the instantaneous volatility, and f is the instan-

taneous return correlation between the two assets. All these variables are

functions of the two state variables u and W endogenously determined by the

equilibrium.

Consumption is a constant fraction of the wealth equal to the impatience

level r. The consumption strategy can be interpreted as a constant dividend

rate. The trading strategy is also proportional to the convergence trader’s

wealth, because logarithmic utility implies that the convergence trader ’s risk

bearing capacity is proportional to wealth. This trading strategy prevents

wealth from falling to zero through dynamic portfolio rebalancing. When-

ever wealth drops, the convergence trader needs to liquidate some risky po-

sitions across the portfolio if the trading opportunities are unchanged. As

wealth falls close to zero, the convergence trader becomes infinitely risk

averse and takes almost zero positions. The existence of long-term investors

in the market is crucial to the implementation of this strategy, because the

liquidity from long-term investors provides an exit opportunity for the con-

vergence traders when they need to get out of their positions.

The optimal trading strategy is short-term in the sense that it only de-

pends upon the instantaneous risk premium and variance of the return pro-

cesses. This contrasts with the long-term strategy used by long-term investors.

This trading strategy is also myopic, that is, there is no hedging demand

~against changes in the future investment opportunity set!, as discussed in

Merton ~1971! and Breeden ~1979!. This is a well-known property of loga-

rithmic utility, and it makes the model more tractable.

According to this optimal strategy, an individual convergence trader main-

tains an instantaneously mean-variance efficient portfolio involving the two

risky assets. As shown in Appendix B, the expected trading profits in per-

centage terms and the instantaneous percentage variance of the convergence

trader ’s portfolio is equal to the squared Sharpe ratio of the instantaneously

mean-variance efficient portfolio. These features highlight the importance

of Sharpe ratio for convergence traders. Also, we see the advantage of using
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logarithmic utility. Logarithmic utility implies an intuitive trading strategy

in terms of Sharpe ratios, similar to the way in which Sharpe ratios are

actually used in markets.

C. Fixed-point Problem

In equilibrium, the portfolio and consumption rules X A~u,W !, X B~u,W !,
and C~u,W ! should solve the log-utility optimization problem and satisfy the

market clearing conditions at the same time. Since optimal consumption and

portfolio rules of an individual convergence trader are proportional to wealth,

we can aggregate the rules of all convergence traders together by replacing

the individual wealth variable W i with aggregate wealth W. Let us denote

these aggregate optimal rules by X *A~u,W !, X *B~u,W !, and C *~u,W !. Notice

that X *A, X *B, and C * are functions of conjectured strategies X A, X B, and C,

respectively, as derived explicitly in Appendix B. It is evident that this def-

inition of equilibrium is equivalent to a fixed-point problem:

X *A~u,W ! � X A~u,W !, ~37!

X *B~u,W ! � X B~u,W !, ~38!

C *~u,W ! � C~u,W !. ~39!

These fixed-point conditions represent that given the portfolio and consump-

tion rules of all other convergence traders, a representative convergence trader

will optimally choose the same rules. Thus, assuming a transversality con-

dition holds, the calculation of equilibrium for the economy boils down to

solving a fixed-point problem.

To make the equilibrium interesting, it is assumed that convergence trad-

ers’ time preference r ~also their consumption rate! is higher than the risk-

free rate ~ r � r!. If r � r, convergence traders gradually accumulate their

wealth from investing in the risk-free asset, and eventually they will have

infinite wealth in a stationary equilibrium. Infinite wealth of convergence

traders will cause the risky assets to be priced in a risk-neutral manner.

This is not an interesting case for us to study. The assumption of r � r

insures that there is only limited wealth for convergence traders in a sta-

tionary equilibrium. Thus, interesting implications can be derived from the

dynamics of convergence traders’ wealth process.

No theoretical existence or uniqueness results are available at this point.

It is conjectured that the existence of an equilibrium with a stationary dis-

tribution of wealth is guaranteed by the assumption that long-term inves-

tors have a fixed, downward sloping demand curve for the risky asset. Without

long-term investors, convergence traders may not be able to liquidate their

positions in crises, resulting in no equilibrium. This paper uses a numerical

method to find an equilibrium, that is, an approximate solution to the fixed-

point problem, and discusses the implications for volatility and comove-

ments of asset prices caused by convergence traders’ wealth changes.
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To solve the fixed-point problem, it is necessary to solve a set of two second-

order partial differential equations with two state variables ~W and u!. Al-

though the solution for the optimal consumption rule is trivial ~C~W,u! �

rW !, the equilibrium portfolio rules X A and X B need to solve two partial

differential equations ~shown in Appendix C!. These equations are highly

nonlinear and entangled together in such a way that it is hopeless to solve

them analytically. Notice that this entanglement captures exactly the con-

tagion modeled in this paper. We solve these equations using a numerical

method.

While a numerical solution of the partial differential equations is neces-

sary, the partial differential equations do satisfy easily described boundary

conditions for W � 0 and W � `. When wealth is zero, convergence traders

do not trade, so we have the boundary condition

X A~u,0! � 0, ~40!

X B~u,0! � 0. ~41!

On this bound, prices are given by P A
� PF

A
� kAu and P B

� PF
B

� kB
NuB. The

innovation on per-share returns for asset A is sF dz A
� kAsudzu, and the

innovation on per-share returns for asset B is sF dz B. The volatility of per-

share returns on asset A is !sF
2

� ~kAsu!
2, and volatility of per share re-

turns on asset B is sF .

When wealth approaches infinity, risk premiums are driven toward zero,

that is, assets are priced in a risk-neutral manner. This drives long-term

investors out of the market, so that convergence traders absorb all of the

asset supplies. This implies the following conditions:

X A~u,`! � u, ~42!

X B~u,`! � NuB. ~43!

Prices are equal to the fundamental values P A
� PF

A , P B
� PF

B , where PF
A and

PF
B are given in equations ~3! and ~4!. The innovation of per-share returns for

asset A is sF dz A, and the innovation of per-share returns for asset B is

sF dz B. The volatility of per-share returns for both assets A and B is sF .

III. A Numerical Illustration of the Equilibrium

We solve the equilibrium numerically using a projection method. The basic

idea is to approximate the equilibrium demand functions of convergence trad-

ers by rational functions using Chebyshev polynomials. Appendix D dis-

cusses the details of this numerical method. For different sets of parameter
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values, the calculated equilibria have similar qualitative properties. To il-

lustrate the equilibrium, we choose the following values of the 10 param-

eters needed to describe the model:

sF � 0.268, Nu� 0.5, lu� 0.5, su� 0.2, NuB
� 0.5,

kA
� 1.0, kB

� 4.0, fF � 0.0, r � 6.00%, r� 8.00%.

~44!

These 10 parameter choices describe 10 features of the model. The first seven

features describe facts about the equilibrium when convergence traders have

zero wealth:

1. Price changes in market A are uncorrelated with price changes in

market B.

2. The Sharpe ratio available in market B is 0.448 ~r BkB
NuB
0sF , from

Appendix A!.
3. The average Sharpe ratio in market A is 0.090 ~from Appendix A!.
4. The standard deviation of the Sharpe ratio in market A is 0.335 ~from

Appendix A!.

5. Noise traders make price volatility in market A ~!sF
2

� ~kAsu!
2

�

0.334! 25 percent higher than it would be if there is no noise trading.

6. The half-life of noise trading is 1.39 years ~ln~2!0lu!.
7. The liquidity provided by long-term traders to market A is four times

the liquidity provided to market B ~through parameters kA and kB ! in

the following sense: for long-term investors to increase their demands

of assets A and B by same amount, the price of asset B has to drop

four times as much as the price decrease of asset A.

The remaining three features scale units in terms of which quantities are

measured:

8. The assumption sF � 0.268 scales the share units for both assets.

9. The assumption r � 6 percent scales the rate at which the present

value is calculated.

10. Convergence traders’ wealth decreases at a rate of 2 percent ~ r � r!
per year, if they do not trade.

We describe the equilibrium with graphs depicting various relationships

as functions of the two state variables, wealth W and noise trading u. Notice

that both state variables have been transformed into the region @�1,�1# .
The domain of these graphs is a square in the transformed W, u plane cen-

tered at the origin. These graphs fit into a rectangular box with this square

as base. All the graphs are rotated so that the intersection of the graphs

with vertical faces of the box indicate the behavior of the variable at extreme

values of the state variables as follows:
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Southeast face: Convergence traders have zero wealth.

Northwest face: Convergence traders have infinite wealth.

Northeast face: Noise traders have a four-standard-deviation short position.

Southwest face: Noise traders have a four-standard-deviation long position.

A. Demand Functions and Sharpe Ratios

Panels A and B of Figure 1 show the demand functions of convergence

traders for the two risky assets. The intersection of both graphs and the

southeast face are horizontal lines at zero, ref lecting the boundary condition

that convergence traders have a zero aggregate position for both assets when

they have no wealth. In Panel A, the northwest face contains a 45 degree

line, while in Panel B the northwest face contains a horizontal line at NuB.

Both indicate the boundary conditions that convergence traders absorb all

the noise in market A and total supply in market B when they have infinite

wealth.

Panels C and D of Figure 1 show the Sharpe ratios of assets A and B. Both

Sharpe ratios are zero when wealth is infinite. When wealth is zero, Panel

C shows that as the position of noise traders varies from long to short, the

Sharpe ratio on asset A varies ~linearly! over positive and negative values,

indicating both long and short positions can be profitable trading opportu-

nities by taking the opposite side of noise trading. Panel D shows that when

wealth is zero, the Sharp ratio in market B is a positive constant ~because

supply is positive! that does not vary with noise trading in market A. Note,

however, that for intermediate levels of wealth, the Sharpe ratio in market

B is higher when noise trading in market A is not close to its mean. This is

due to increased correlation between assets A and B when convergence trad-

ers have significant positions in both assets. Increased correlation between

A and B discourages convergence traders from holding asset B when they

have large positions in asset A. Therefore, a larger risk premium must be

offered in market B to attract convergence traders.

B. Wealth Dynamics and Stationary Distribution

Panel A of Figure 2 shows the Sharpe ratio of the portfolio of convergence

traders. As discussed earlier, log-utility maximizers choose a myopic instan-

taneously mean-variance-efficient portfolio, and the squared Sharpe ratio

from this portfolio determines both the expected trading profits in percent-

age terms and the instantaneous variance of the convergence traders’ port-

folio. From the graph, the Sharpe ratio is zero when convergence traders

have infinite wealth, indicating zero expected trading profits and also zero

risk for their portfolio. When convergence traders have zero wealth, the

Sharpe ratio is large, especially when the noise trading gets far away from

its long-term mean. This indicates very profitable trading opportunities for

convergence traders. At the same time convergence traders face large risks

in their portfolio when they exploit these opportunities. Even though the
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Sharpe ratio of asset A varies from positive to negative, the portfolio Sharpe

ratio is always positive because convergence traders can take a short posi-

tion in response to a negative Sharpe ratio.

For a given level of noise trading, the portfolio Sharpe ratio gradually

decreases as convergence traders’ wealth goes up from zero to infinity. This

is the sense in which convergence trading makes markets efficient. The

increase of risk bearing capacities among convergence traders reduces the

Figure 1. Demand functions and Sharpe ratios. The two independent variables are con-

vergence traders’ aggregate wealth and noise trading. Aggregate wealth has been transformed

monotonically using ~W � 1!0~W � 1! from ~0,`! into ~�1,1!. As the transformed wealth ranges

from �1 to 1, the aggregate wealth ranges from zero to infinity. Noise trading ranges from four

standard deviations below its mean to four standard deviations above its mean. Panels A and B

are the equilibrium demands by convergence traders for assets A and B, respectively. Panels C

and D are the equilibrium Sharpe ratios for assets A and B, respectively.
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equilibrium risk premium. This property of the Sharpe ratio results in a

mean-reverting dynamics for the convergence traders’ wealth process. On

the one hand, when convergence traders’ wealth is low, the trading is so

profitable that their wealth is expected to go up. On the other hand, as their

Figure 2. Sharpe ratio of convergence traders’ portfolio, stationary distribution, wealth

amplification factor and correlation. The two independent variables are convergence trad-

ers’ aggregate wealth and noise trading. Aggregate wealth has been transformed monotonically

using ~W � 1!0~W � 1! from ~0,`! into ~�1,1!. As the transformed wealth ranges from �1 to 1,

the aggregate wealth ranges from zero to infinity. Noise trading ranges from four standard

deviations below its mean to four standard deviations above its mean. Panel A is the squared

Sharpe ratio of the convergence traders’ aggregate portfolio. Panel B is the stationary distri-

bution density of the two state variables, estimated by simulating 20,000 years of equilibrium

trading. Panel C is the amplification factor associated with the convergence traders’ wealth

effect. Panel D is the correlation between price changes of assets A and B.
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wealth becomes large, increased risk-bearing capacity will drive down the

risk premium ~or the portfolio Sharpe ratio!, and they cannot make enough

money from trading to make up for their consumption, so their wealth is

expected to go down. As a result, the wealth process follows mean-reverting

dynamics.

Since both of the two state variables ~noise trading and convergence trad-

ers’ wealth! follow mean-reverting processes, the equilibrium is stationary.

The stationary distribution of the state variables is approximated through a

simulation of 20,000 years of weekly data ~using an Euler approximation!
the results of which are shown in Panel B of Figure 2. This graph verifies

that noise trading concentrates within two standard deviations around its

long-run mean, and convergence traders’ wealth is mostly between zero and

some intermediate level.

C. Wealth Amplification Factor

Panel C of Figure 2 shows the wealth amplification factor A ~equation

~23!!, which measures the magnitude of the wealth effect discussed earlier.

The amplification factor equals one when convergence traders have either

zero or infinite wealth. For intermediate values of wealth, the amplification

factor is always larger than one, indicating that any shocks to convergence

traders’ wealth will be amplified by their portfolio rebalancing.

Also, notice that the wealth amplification become very large when the

noise trading u is very far away from its mean and convergence traders have

some intermediate level of wealth. The reason is that two conditions are

necessary for the wealth effect to be large. First, the trading opportunity

should be great, so that convergence traders will be induced to take large

levered positions relative to their wealth and therefore make their portfolio

highly sensitive to shocks in the market. Second, the positions of conver-

gence traders should be large so that their position rebalancing caused by

exogenous shocks can generate large price impact. Combining these two con-

ditions, the amplification effect is large when noise trading is large and

convergence traders’ wealth is in some intermediate level.

D. Volatility and Contagion

Due to the nature of the wealth amplification effect, any shocks to either

market A or B will be amplified by the portfolio rebalancing of convergence

traders. When the wealth amplification factor is relatively high, the volatil-

ity of price changes in both markets is relatively high, and the correlation

between the two markets is relatively far away from zero.

Figure 3 shows the volatility of price changes in asset A and its three

components corresponding to the three types of shock in the model. Figure 4

shows the volatility of price changes in asset B and its three components. All

these volatility terms have been normalized by the volatility of fundamental

shocks sF .
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Panel A of Figure 3 delivers interesting intuitions about the mechanism of

convergence trading. When wealth is infinite, the volatility is a constant

equal to the volatility of fundamental shocks sF . The noise-trading shocks

have no impact on price volatility because they are perfectly absorbed by

convergence traders. When wealth is zero, the volatility is a constant equal

Figure 3. Volatility of asset A and its three components. The two independent variables

are convergence traders’ aggregate wealth and noise trading. Aggregate wealth has been trans-

formed monotonically using ~W � 1!0~W � 1! from ~0,`! into ~�1,1!. As the transformed wealth

ranges from �1 to 1, the aggregate wealth ranges from zero to infinity. Noise trading ranges

from four standard deviations below its mean to four standard deviations above its mean.

Panel A is the volatility of the price of asset A, measured as the standard deviation of price

changes. Panel B is the component of volatility due to innovations in the fundamental value

of asset A. Panel C is the component of volatility due to innovations in the fundamental value

of asset B. Panel D is the component of volatility due to innovations in noise trading. The

magnitudes of these volatility variables have been normalized by the parameter sF .
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to !sF
2

� k2su
2, which is higher than the volatility of the fundamental shocks

because noise-trading shocks are only imperfectly buffered by long-term in-

vestors. These constant levels can be used as benchmarks to evaluate the

effect of convergence traders on the price volatility of asset A. In the middle

“valley”, where noise trading is close to its mean ~u � 0.5!, the volatility

Figure 4. Volatility of asset B and its three components. The two independent variables

are convergence traders’ aggregate wealth and noise trading. Aggregate wealth has been trans-

formed monotonically using ~W � 1!0~W � 1! from ~0,`! into ~�1,1!. As the transformed wealth

ranges from �1 to 1, the aggregate wealth ranges from zero to infinity. Noise trading ranges

from four standard deviations below its mean to four standard deviations above its mean.

Panel A is the volatility of the price of asset B, measured as the standard deviation of price

changes. Panel B is the component of volatility due to innovations in the fundamental value

of asset A. Panel C is the component of volatility due to innovations in the fundamental

value of asset B. Panel C is the component of volatility due to innovations in noise trading. The

magnitudes of these volatility variables have been normalized by the parameter sF .
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declines monotonically from the higher benchmark to the lower benchmark

as wealth increases from zero to infinity. This represents a substitution ef-

fect in convergence trading. As noise trading gets bigger, the price gets fur-

ther out of line, and convergence traders are induced to take larger positions.

As a result, their trading reduces price volatility and provides liquidity into

the market. When noise trading is far away from its mean, the wealth effect

can become dominant. In this situation, convergence traders are already

taking large levered positions against noise trading, further movements of

noise trading away from its mean can cause convergence traders to lose so

much on their current positions that they liquidate positions even though

the positions are expected to be more profitable. When this happens, con-

vergence traders become price destabilizing in the sense they are induced by

the wealth effect to trade in exactly the same direction as noise traders. This

interaction between the wealth effect and the substitution effect is exactly

revealed in Panel D of Figure 3, which shows that the impact of noise-

trading shocks on the price volatility of asset A is greatest when noise trad-

ers take large positions and convergence traders have an intermediate level

of wealth. A more detailed discussion about this interaction between the

wealth effect and substitution effect is provided by Xiong ~2001!.
Panel A of Figure 4 shows the volatility of price changes per share in

asset B, normalized by the volatility of fundamental shocks sF . The vola-

tility is equal to sF on the two boundaries when wealth is either zero or

infinity. In between, the volatility of asset B is always larger than sF ,

since there is no noise trading in asset B and fundamental shocks are

always amplified by the wealth effect. Panel B of Figure 3 and Panel C of

Figure 4 show the volatility of assets A and B caused by their own funda-

mental shocks. Their shapes are very similar to the wealth amplification

factor.

Panel C of Figure 3 and Panels B and D of Figure 4 show the effect of

volatility transmission ~contagion effect! from one market to the other. Panel

C of Figure 3 shows the normalized magnitude of sB
A , the instantaneous

volatility of price changes in asset A resulting from an exogenous funda-

mental shock dz B in market B. Panel B of Figure 4 shows the normalized

magnitude of sA
B , the instantaneous volatility of price changes in asset B

resulting from an exogenous fundamental shock dz A in market A. Panel D

of Figure 4 shows the normalized magnitude of su
B , the instantaneous vol-

atility of price changes in asset B resulting from an exogenous noise-

trading shock dzu in market A. The magnitude of all of the contagion

factors is economically significant. For intermediate levels of wealth ~where

the effects are greatest!, as noise trading varies from �4 to 4 standard

deviations from its mean, the contagion factors vary, relative to the vola-

tility of fundamental shocks sF , approximately as follows:

1. sB
A varies from �0.20 to 0.20.

2. sA
B varies from 0.80 to 1.20.

3. su
B varies from 0.08 to 0.18.
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Also notice that the magnitude of sB
A is smaller than the magnitude of sA

B.

The reason for this is that the Sharpe ratio of asset B is smaller in absolute

value than that of asset A. Thus, convergence traders take large positions

for asset A, resulting in larger risk exposure to shocks to asset A. Therefore,

shocks in market A can cause larger wealth f luctuations to convergence trad-

ers’ portfolio, which are transmitted to the price of asset B in larger mag-

nitude than the shocks in market B are transmitted to the price of asset A.

Panel D of Figure 2 shows the correlation between the price changes of the

two assets. Since the fundamentals and noise trading in the two markets are

independently distributed, nonzero correlation is associated with contagion.

When wealth is zero or infinity, correlation is zero. At intermediate values of

wealth, correlation can be significantly different from zero. Correlation is pos-

itive when convergence traders are long in both markets, and negative when

convergence traders are short in market A and long in market B. The magni-

tude of the correlation becomes large when noise trading in the market gets

far away from its mean and convergence traders’ wealth is at some intermedi-

ate level. These regions are exactly where the wealth amplification effect is

large. As noise trading varies from �4 to 4 standard deviations away from its

mean, correlation at intermediate levels of wealth ranges from �0.6 to � 0.8.

These graphs suggest “crisis” situations when noise trading is far away

from its mean and convergence traders’ wealth is at some intermediate level.

In these situations, the wealth effect can induce convergence traders to liq-

uidate large amounts of positions across their whole portfolio in response to

unfavorable shocks, resulting in large price volatility and greatly reduced

liquidity in all markets, and large correlation between different markets.

These graphs also confirm some of the stylized facts associated with asset

price volatility and correlation between asset prices. First, asset price vola-

tility is always larger than fundamental volatility. The additional volatility

comes from both noise trading and the wealth amplification effect. Second,

the correlation between asset prices is larger than the correlation between

asset fundamentals. This occurs because the wealth dynamics of conver-

gence traders introduce an additional common factor among asset prices.

Third, asset price volatility and the correlation between asset prices are

both time varying. The stochastic volatility and correlation result from the

nonlinear dynamics of the convergence traders’ wealth process.

IV. Implications for Risk Management

Our model has important implications for risk management. The key in-

sight is that in equilibrium, the risks are endogenously determined by the

trading of all market participants, and it may be dangerous to treat risks as

exogenous in risk management. More specifically, the following cautions can

be drawn from our model. First, risk managers should recognize the wealth

effect of convergence traders who use a short-term trading strategy. Second,

risk managers should appreciate the importance of market liquidity pro-

vided by long-term investors in periods of crisis. Third, risk managers should
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realize that correlation between assets tends to deviate from historical val-

ues and rise during crises in such a way that portfolio losses occur in all

positions simultaneously. Failure to recognize these factors in risk manage-

ment can result in underestimation of volatility and correlation between as-

set prices, especially when the wealth amplification effect is severe.

The importance of these factors has been illustrated by the financial crisis

of hedge fund Long Term Capital Management ~LTCM! during 1998. As re-

called by one of LTCM’s partners ~Lewis, 1999, p. 31!: “It was as if there was

someone out there with our exact portfolio, only it was three times as large as

ours, and they were liquidating all at once.” This suggests a severe copycat prob-

lem during this period. Due to the success of LTCM before the crisis, its con-

vergence trading strategies were popular among other hedge funds and

proprietary trading desks at many investment banks. When LTCM ran into

trouble and needed to liquidate some of their positions, other convergence trad-

ers with similar positions were simultaneously trying to dump their positions.

When all of these convergence traders were trying to get out of their positions

through the only exit, the liquidity provided by long-term investors, the door

did not appear to be as wide as it once was. Furthermore, the liquidation of

convergence traders’ positions was not limited to only one asset, it was spread

out among all assets in convergence traders’ portfolios due to increased risk

aversion. This caused the correlation between asset returns to be much higher

than in usual periods, resulting in the failure of diversification to reduce risks

as much as models based on historical returns may suggest. The report by the

BIS ~1999! provides a documentation of volatility and correlation across a wide

range of financial markets for periods around the crisis of LTCM in 1998.

Our model suggests risk managers take into account the endogenous risks

caused by the trading of other market participants. Since these market-

created risks, such as contagion and volatility amplification by the conver-

gence traders’ wealth effect, are only evident in extreme scenarios, studying

historical data of asset returns and volatility tends to overlook or underesti-

mate these risks, unless extremely long series of data are used. Even if very

long series of data are available, the potential changes in the structure of

the market can make it hopeless to determine these extreme risks from

historical data.

To avoid these problems, risk managers should not rely only on statistical

methods. Our economic model in this paper, based on assumptions about the

liquidity provided by long-term investors and the behavior of convergence

traders, suggests that risk managers calculate their optimal risky positions

after considering the capitalization and positions of other traders in the mar-

ket. Therefore, it offers risk managers a different perspective for controlling

these endogenous risks associated with the convergence traders’ wealth ef-

fect in extreme situations.

V. Conclusion

In this paper, we develop an equilibrium model of contagion that operates

through a wealth effect of convergence traders. Convergence traders special-
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ize in trading a small number of assets in which they take large risky po-

sitions against noise trading. Wealth effect occurs when convergence traders

suffer large capital losses due to unfavorable shocks and need to liquidate

positions across their portfolio. Their position liquidation can cause the orig-

inal shocks to be greatly amplified and transmitted from one asset to other

assets.

In equilibrium, the asset price dynamics and convergence traders’ wealth

dynamics are simultaneously determined. This simultaneous relationship in-

troduces endogenous risks into the model in the form of contagion and vol-

atility amplification through the wealth effect of convergence traders. Our

model cautions risk managers to take into account these endogenous risks.

Failure to do so can cause much larger risks in trading than what is forecast

by naive statistical tools. Our economic model, based on assumptions about

the liquidity provided by long-term investors and the behavior of conver-

gence traders, suggests a direction of future research which could lead to

better tools for risk management.

Appendix A. Derivation of Asset Return Processes

Given the aggregate portfolio policies X A~u,W ! and X B~u,W ! for conver-

gence traders, we derive asset return processes by applying Ito’s lemma. The

market clearing condition gives the price functions for the two assets:

P A
� F A

� kA~u� X A !, ~A1!

P B
� F B

� kB~ NuB
� X B !. ~A2!

The excess return process for investing in one share of asset A is given by

dQA
� dP A

� ~DA
� rP A !dt

� sF dz A
� kAdu� kAdX A

� rkA~u� X A !dt.
~A3!

Similarly, the excess return for investing in one share of asset B is

dQB
� sF dz B

� kBdX B
� rkB~ NuB

� X B !dt. ~A4!

As discussed in Section II, we assume without loss of generality that the

fundamental process of the two assets have the same fundamental volatility

sF . From Ito’s lemma, we obtain

dX A
� Xu

A du� 102Xuu
A E~du!2 � XW

A dW � 102XWW
A E~dW !2 � XuW

A E~dudW !,

~A5!

dX B
� Xu

B du� 102Xuu
B E~du!2 � XW

B dW � 102XWW
B E~dW !2 � XuW

B E~dudW !.

~A6!
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The asset return processes and convergence traders’ wealth process are si-

multaneously determined in the equilibrium. Equations ~A1! through ~A4!
show the dependence of return processes dQA and dQB on convergence trad-

ers’ aggregate wealth W. On the other hand, convergence traders’ wealth

depends on the return processes through their budget constraint

dW � X AdQA
� X BdQB

� ~rW � C!dt. ~A7!

To deal with this circular relationship, we first substitute equation ~A7! into

equations ~A5! and ~A6!, then further substitute equations ~A5! and ~A6!
into equations ~A3! and ~A4!. Finally, we obtain a set of two linear equations

for dQA and dQB :

~1 � kAX AXW
A !dQA

� kAXW
A X BdQB

� sF dzA � kA~1 � Xu
A!du� @rkA~u� X A !� kAXW

A ~rW � C!#dt

�

kA

2
Xuu

A E~du!2 �

kA

2
XWW

A E~dW !2 � kAXuW
A E~dudW ! ~A8!

� kBX AXW
B dQA

� ~1 � kBX BXW
B !dQB

� sF dzB � kBXu
B du� @kBXW

B ~rW � C!� rkB~ NuB
� X B !#dt

�

kB

2
Xuu

B E~du!2 �

kB

2
XWW

B E~dW !2 � kBXuW
B E~dudW !.

~A9!

Solution to these linear equations gives us the following return processes:

dQA
� mAdt � sA

A dz A
� sB

A dz B
� su

A dzu , ~A10!

sA
A

� sF ~1 � kBX BXW
B !A~u,W !, ~A11!

sB
A

� sF kAX BXW
A A~u,W !, ~A12!

su
A

� �kAsu @~1 � Xu
A!~1 � kBX BXW

B !� kBXW
A X BXu

B#A~u,W !, ~A13!

mA
� A~u,W !$kAlu~u� Nu!@~1 � Xu

A!~1 � kBX BXW
B !� kBXW

A X BXu
B#

� kAXW
A ~rW � C!� rkA~1 � kBX BXW

B !~u� X A !

� rkAkBXW
A X B~ NuB

� X B !%

�

kAsu
2

2
@Xuu

A ~1 � kBX BXW
B !� kBXW

A X BXuu
B #A~u,W ! ~A14!

�

kA~sW !2

2
@XWW

A ~1 � kBX BXW
B !� kBXW

A X BXWW
B #A~u,W !

� kAsusu
W@XuW

A ~1 � kBX BXW
B !� kBXW

A X BXuW
B #A~u,W !,
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dQB
� mBdt � sA

B dz A
� sB

B dz B
� su

B dzu , ~A15!

sA
B

� sF kBX AXW
B A~u,W !, ~A16!

sB
B

� sF @1 � kAX AXW
A #A~u,W !, ~A17!

su
B

� kBsu @Xu
B~1 � kAX AXW

A !� kAX AXW
B ~1 � Xu

A!#A~u,W !, ~A18!

mB
� A~u,W !$�kBlu~u� Nu!@Xu

B~1 � kAX AXW
A !� kAX AXW

B ~1 � Xu
A!#

� kBXW
B ~rW � C!� rkB~1 � kAX AXW

A !~ NuB
� X B !

� rkAkBX AXW
B ~u� X A !%

�

kBsu
2

2
@Xuu

B ~1 � kAX AXW
A !� kAX AXuu

A XW
B #A~u,W ! ~A19!

�

kB~sW !2

2
@XWW

B ~1 � kAX AXW
A !� kAX AXWW

A XW
B #A~u,W !

� kBsusu
W@XuW

B ~1 � kAX AXW
A !� kAX AXuW

A XW
B #A~u,W !.

In the expressions above, the common term

A~u,W ! �

1

1 � kAX AXW
A

� kBX BXW
B

~A20!

represents the wealth amplification factor. The total volatility of these re-

turns is

sA
� !~sA

A!2 � ~sB
A!2 � 2fFsA

AsB
A

� ~su
A!2, ~A21!

sB
� !~sA

B!2 � ~sB
B!2 � 2fFsA

BsB
B

� ~su
B!2. ~A22!

The instantaneous correlation between the two return processes is

f �

1

sAsB
@sA

AsA
B

� sB
AsA

B
� fF ~sA

AsB
B

� sB
AsA

B!� su
Asu

B# . ~A23!

From the budget constraints, we can derive the process for convergence

traders’ aggregate wealth:

dW � mWdt � sA
W dz A

� sB
W dz B

� su
W dzu , ~A24!

mW
� X AmA

� X BmB
� rW � C, ~A25!

sA
W

� X AsA
A

� X BsA
B , ~A26!

sB
W

� X AsB
A

� X BsB
B , ~A27!

su
W

� X Asu
A

� X Bsu
B . ~A28!
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The total volatility of the wealth process is

sW
� !~sA

W!2 � ~sB
W!2 � 2fFsA

WsB
W

� ~su
W!2. ~A29!

It is useful to show the return processes when the effect of convergence

traders is small ~X A
r 0, X B

r 0!. Under this situation, the excess return

processes are

dQA
� sF dz A

� kAdu� rkAudt, ~A30!

dQB
� sF dz B

� rkB NuBdt. ~A31!

Sharpe ratios of asset A and B are

mA

sA
�

rkAu� kAlu~u� Nu!

!sF
2

� ~kAsu!
2

, ~A32!

mB

sB
�

rkB NuB

sF

. ~A33!

The Sharpe ratio of asset A f luctuates with its supply u, and the variance of

the Sharpe ratio is

Var�mA

sA� �

~r � lu!
2~kA !2su

2

2lu @sF
2

� ~kAsu!
2 #

. ~A34!

These return processes represent the original trading opportunities when

there are no convergence traders at all.

Appendix B. Derivation of Optimal Strategy

In this section, we derive convergence traders’ optimal trading strategy

given the return processes of assets A and B. We can write the asset return

processes in the following form:

dQA
� mA~u,W !dt � sA

A~u,W !dz A
� sB

A~u,W !dz B
� su

A~u,W !dzu , ~B1!

dQB
� mB~u,W !dt � sA

B~u,W !dz A
� sB

B~u,W !dz B
� su

B~u,W !dzu . ~B2!

These return processes represent the trading opportunities to an individual

convergence trader, and these processes depend on the two state variables u
and W. The parameter u denotes the supply shock to asset A. It follows

du � �lu~u� Nu!dt � sudzu .
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The parameter W is the aggregate wealth of convergence traders, and it

follows the process

dW � mW~u,W !dt � sA
W~u,W !dz A

� sB
W~u,W !dz B

� su
W dzu . ~B3!

We denote an individual convergence trader ’s portfolio choices, consump-

tion, and wealth as X i A

, X i B

, C i, and W i, respectively. The convergence

trader ’s budget constraint is

d RW � X i A

dQA
� X i B

dQB
� ~rW i

� C i !dt. ~B4!

The convergence trader maximizes her lifetime utility given by

J~W i,u,W ! � max
$X iA

, X iB
,C i %

Et�
0

`

e�rs ln~Ct�s
i ! ds. ~B5!

We solve the portfolio and consumption policies through a Bellman equation

as developed by Merton ~1971!. The Bellman equation can be derived as

rJ~W i,u,w! � max
$X iA

, X iB
,C i %

@ ln~C i !� L
0J #

� max
X iA

, X iB
,C i

@ ln~C i !� JW i ~X i A

mA
� X i B

mB
� rW i

� C i !

� 102JW iW i ~~X i A

!2~sA !2 � ~X i B

!2~sB !2

� 2X i A

X i B

fsAsB ! ~B6!

� lu~ Nu� u!Ju� mWJW � 102su
2 Juu� 102sW

2 JWW

� JW iuE~dW idu!0dt � JW iwE~dW idW !0dt

� JuwE~dudW !0dt# ,

where L
0 is the drift operator, and f is the instantaneous correlation be-

tween dQA and dQB. The value function of a logarithmic utility maximizer

can be specified as

J~W i,u,w! �

1

r
ln~W i !� j~u,W !. ~B7!

The first order condition of the Bellman equation gives the optimal portfolio

and consumption policies:

X i A

�

W i

1 � f2 � mA

~sA !2
� f

mB

sAsB �, ~B8!

X i B

�

W i

1 � f2 � mB

~sB !2
� f

mA

sAsB �, ~B9!

C i
� rW i. ~B10!
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After substituting the optimal policies into the Bellman equation, W i dis-

appears from both sides of the equation, and the Bellman equation collapses

into a partial differential equation in u and W only:

rj~u,W ! � ln~ r!� r~r � r!�
r

2~1 � f2 !
� ~mA !2

~sA !2
� 2f

mAmB

sAsB
�

~mB !2

~sB !2
�

� lu~ Nu� u! ju� mW jW � 102su
2 juu� 102sW

2 jWW � susu
W juW .

~B11!

Therefore, the convergence trader ’s policy functions and value function be-

come separated. The solution to the PDE of the value function exists under

certain technical conditions. We will focus on the policy functions and dis-

cuss the equilibrium of asset markets.

It is a well-known result of logarithmic utility that log-utility maximizers

do not have any hedging need. Their portfolio and consumption policies are

solely determined by their current trading opportunities and their wealth.

For a general utility maximizer, the hedging need is represented by the

dependence of policy functions on the value function. The assumption of log-

arithmic utility for convergence traders greatly simplifies the problem with-

out losing the key feature of our model, which is the wealth effect.

Notice that log-utility maximizers hold a locally mean-variance efficient

portfolio. It is easy to derive the instantaneous expected trading profits and

variance of this portfolio:

E� X i A

W i
dQA

�

X i B

W i
dQB� � var� X i A

W i
dQA

�

X i B

W i
dQB�

�

1

1 � f2 � ~mA !2

~sA !2
�

~mB !2

~sB !2
� 2f

mAmB

sAsB �.

~B12!

This value is exactly the squared Sharpe ratio of the instantaneous mean-

variance efficient portfolio.

Appendix C. Partial Differential Equations

Appendix C presents the partial differential equations from the fixed-

point problem. Given convergence traders’ aggregate portfolio and consump-

tion functions X~u,W ! and C~u,W !, the optimal aggregate portfolio and

consumption rules can be easily derived from equations ~B8! through ~B10!
by replacing W i by W:

X *
A

�

W

1 � f2 � mA

~sA !2
� f

mB

sAsB �, ~C1!

X *
B

�

W

1 � f2 � mB

~sB !2
� f

mA

sAsB �, ~C2!

C � rW. ~C3!
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The equilibrium consumption rule is trivial ~C � rW !, and the equilibrium

portfolio rules from the fixed-point conditions are

X A
�

W

1 � f2 � mA

~sA !2
� f

mB

sAsB �, ~C4!

X B
�

W

1 � f2 � mB

~sB !2
� f

mA

sAsB �. ~C5!

By substituting all the necessary terms from equations ~A10! through ~A22!
into equations ~C4! and ~C5!, two partial differential equations are obtained.

In order to save space, the terms A, f, sA, sB, sW, and su
W are not substi-

tuted into the partial differential equations. Instead they are considered

functions of X A~u,W ! and X B~u,W ! from equations ~A20! through ~A28!. The

two partial differential equations are

X A~1 � f2 !

WA~u,W !
�

1

~sA !2
$kAlu~u� Nu!@~1 � Xu

A!~1 � kBX BXW
B !� kBXW

A X BXu
B#

� kAXW
A ~rW � C!� rkA~1 � kBX BXW

B !~u� X A !

� rkAkBXW
A X B~ NuB

� X B !%

�

kAsu
2

2~sA !2
@Xuu

A ~1 � kBX BXW
B !� kBXW

A X BXuu
B #

�

kA~sW !2

2~sA !2
@XWW

A ~1 � kBX BXW
B !� kBXW

A X BXWW
B #

�

kAsusu
W

~sA !2
@XuW

A ~1 � kBX BXW
B !� kBXW

A X BXuW
B #!

�

f

sAsB
$�kBlu~u� Nu!@Xu

B~1 � kAX AXW
A !� kAX AXW

B ~1 � Xu
A!#

� kBXW
B ~rW � C!� rkB~1 � kAX AXW

A !~ NuB
� X B !

� rkAkBX AXW
B ~u� X A !%

�

kBfsu
2

2sAsB
@Xuu

B ~1 � kAX AXW
A !� kAX AXuu

A XW
B #

�

kBf~sW !2

2sAsB
@XWW

B ~1 � kAX AXW
A !� kAX AXWW

A XW
B #

�

kBfsusu
W

sAsB
@XuW

B ~1 � kAX AXW
A !� kAX AXuW

A XW
B # , ~C6!
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X B~1 � f2 !

WA~u,W !
�

1

~sB !2
$�kBlu~u� Nu!@Xu

B~1 � kAX AXW
A !� kAX AXW

B ~1 � Xu
A!#

� kBXW
B ~rW � C!� rkB~1 � kAX AXW

A !~ NuB
� X B !

� rkAkBX AXW
B ~u� X A !%

�

kBsu
2

2~sB !2
@Xuu

B ~1 � kAX AXW
A !� kAX AXuu

A XW
B #

�

kB~sW !2

2~sB !2
@XWW

B ~1 � kAX AXW
A !� kAX AXWW

A XW
B #

�

kBsusu
W

~sB !2
@XuW

B ~1 � kAX AXW
A !� kAX AXuW

A XW
B #

�

f

sAsB
$kAlu~u� Nu!@~1 � Xu

A!~1 � kBX BXW
B !� kBXW

A X BXu
B#

� kAXW
A ~rW � C!� rkA~1 � kBX BXW

B !~u� X A !

� rkAkBXW
A X B~ NuB

� X B !%

�

kAfsu
2

2sAsB
@Xuu

A ~1 � kBX BXW
B !� kBXW

A X BXuu
B #

�

kAf~sW !2

2sAsB
@XWW

A ~1 � kBX BXW
B !� kBXW

A X BXWW
B #

�

kAfsusu
W

sAsB
@XuW

A ~1 � kBX BXW
B !� kBXW

A X BXuW
B # . ~C7!

The two partial differential equations in ~C6! and ~C7! are highly nonlinear

and entangled together. In addition to the two unknown functions X A~u,W !
and X B~u,W !, the partial differential equations involve the first derivatives

Xu
A , XW

A , Xu
B , XW

B and the second derivatives Xuu
A , XuW

A , XWW
A , Xuu

B , XuW
B , XWW

B .

Due to the complexity of the partial differential equations, they are solved

numerically.

Appendix D. Numerical Method to the Fixed-point Problem

To study the equilibrium, a numerical method is needed to solve the fixed-

point problem. We use a projection method in which each of the demand

functions X A and X B are approximated with rational functions, where both

the numerators and denominators are polynomials of two state variables.

The algorithm chooses coefficients of the polynomials so that the partial

differential equations describing the equilibrium are approximately solved

for a range of test values and so that the boundary conditions hold. Instead

of ordinary polynomials, we use Chebyshev polynomials for reasons of nu-

merical stability: With Chebyshev polynomials, the calculation of the values

of polynomials is more stable, there is less “collinearity” among estimated
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coefficients, and the degree of Chebyshev polynomials can be reduced easily

by truncating high-order terms. Also, the use of Chebyshev polynomials makes

it easier to impose boundary conditions as described in Appendix E. For a

detailed introduction to projection methods and Chebyshev polynomials, see

Judd ~1998! and Press et al. ~1992!.
To use Chebyshev polynomials, whose natural range is @�1,�1# , it is first

necessary to transform the state variables W and u to fit this range. To

transform W, whose range is ~0,`!, we introduce the transformed variable z,

and define it ~with exogenously specified scale parameter g! by

z �

W � g

W � g
, z � ~�1,1!. ~D1!

To transform theta, whose natural range is ~�`,�`!, we truncate the vari-

able at four standard deviations and use a linear transformation to define a

new state variable y by

y �

u� Nu

4su 0!2lu
, y � @�1,1# . ~D2!

Both of these transformations are obviously monotonic and smooth. The re-

verse transformations are

u � Nu�

4su

!2lu
y, ~D3!

W � g
1 � z

1 � z
. ~D4!

The derivatives to the two state variables u and W can be transformed as

?

?u
�

4su

!2lu

?

?y
, ~D5!

?2

?u2
�

8su
2

lu

?2

?y2
, ~D6!

?

?W
�

~1 � z!2

2g

?

?z
, ~D7!

?2

?W 2
�

~1 � z!4

4g2

?2

?z 2
�

~1 � z!3

2g2

?

?z
, ~D8!

?2

?u?W
�

!2su~1 � z!2

!lu
?2

?y?z
. ~D9!
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With these formulas, we can transform the original PDEs of X A~u,W ! and

X B~u,W ! in equations ~C6! and ~C7! into PDEs of X A~ y, z! and X B~ y, z!.
We approximate the equilibrium demand functions X A~ y, z! and X B~ y, z!

as

X A~ y, z! �

(
i�j�nu

A

au
A~i, j !Ti ~ y!Tj ~z!

(
i�j�nd

A

ad
A~i, j !Ti ~ y!Tj ~z!

, ~D10!

X B~ y, z! �

(
i�j�nu

B

au
B~i, j !Ti ~ y!Tj ~z!

(
i�j�nd

B

ad
B~i, j !Ti ~ y!Tj ~z!

, ~D11!

where Ti~! is ith order Chebyshev polynomial, and nu
A , nd

A , nu
B , and nd

B are the

total orders of polynomials in the numerators and denominators of X A and

X B. Let $au
A~i, j !%i�j�nu

A , $ad ~i, j !A %i�j�nd
A , $au

B~i, j !%i�j�nu
B , and $ad ~i, j !B %i�j�nd

B

denote the expansion coefficients. The total number of coefficient is

~nu
A

� 1!~nu
A

� 2!

2
�

~nd
A

� 1!~nd
A

� 2!

2
�

~nu
B

� 1!~nu
B

� 2!

2
�

~nd
B

� 1!~nd
B

� 2!

2
.

In terms of these state variables, the boundary conditions now hold for

z � �1 ~zero wealth! and z � �1 ~infinite wealth!. Furthermore, the boundary

conditions are actually linear in terms of the transformed state variables, so

for the purpose of estimating the coefficient parameters, they can be imple-

mented as linear constraints on the coefficients in the Chebyshev polynomi-

als.Appendix E explains in detail how the boundary conditions are implemented.

To capture the nonlinearities in the demand functions and the interactions

between the two state variables, we found it necessary to use high-order

polynomials. Let nu
A , nu

B , nd
A , nd

B denote the total orders ~maximum sum of

powers of the two state variables! of the polynomials in the numerators ~sub-

script u! and denominators ~subscript d! of the estimated equilibrium de-

mand functions X A and X B, respectively. Then the total number of coefficient

parameters needed to specify both demand functions is

~nu
A

� 1!~nu
A

� 2!

2
�

~nd
A

� 1!~nd
A

� 2!

2
�

~nu
B

� 1!~nu
B

� 2!

2
�

~nd
B

� 1!~nd
B

� 2!

2
.

The boundary conditions, implemented as linear constraints on the coeffi-

cients, reduce the number of coefficient parameters by 2nu
A

� 2nd
A

� 2nu
B

�

2nd
B

� 4. In our numerical implementation, we let the degree of both numer-

ator and denominator in X A be 12 and the degree of both numerator and
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denominator of X B be 10. This results in 314 coefficients. The constraints

implied by the boundary conditions reduce this number by 92. Thus, we

estimate 222 coefficient parameters.

To estimate the coefficients, we minimize the sum of squared errors in the

partial differential equations over a fixed set of test points. We noticed that

the demand functions appear to have more curvature near the boundaries

z � �1 and z � �1, so instead of using a uniformly spaced grid of test points

in the transformed state variables, we increased the number of points near

the boundaries. We chose a grid size of 21 ~for variable y! by 100 ~for vari-

able z!, so the partial differential equations are evaluated at 2,100 points.

Since there are 222 parameters to estimate, the system is overdetermined by

a factor of roughly 10.

On each test point, two types of error functions have been used at the

same time. One is defined as

Error1 � �� X A
� X *A

su
�2

� � X B
� X *B

su
�2

, ~D12!

the difference between the given strategy $X A, X B % and the optimal strategy

$X *A, X *B % normalized by the volatility of noise trading and the total supply

of asset B. Since the magnitude of demand is very small when convergence

traders’ capital is small, this way of calculating error underestimates the

percentage errors to arbitrageurs’ portfolio over the region where the arbi-

trageurs’ wealth is small. The other error function is defined as

Error2 �

sF!~X A
� X *A !2 � ~X B

� X *B !2

W
, ~D13!

the difference between the percentage wealth volatility caused by the fun-

damental shocks using $X A, X B % and $X *A, X *B % . Since this error function is

defined by the percentage of wealth, it can correctly estimate errors over the

region where arbitrageurs’ wealth is small, but it may underestimate the

absolute errors to market clearing condition over the region where arbi-

trageurs’ wealth is large ~where the demands are small relative to arbi-

trageurs’ wealth W !. To give precise estimates of the numerical errors over

all regions, a combination of these two types of errors is used:

Error � !Error12
� Error22. ~D14!

To solve the minimization problem, a Levenberg–Marquart algorithm is

used. Despite the use of Chebyshev polynomials, the Hessian in our problem

is not well behaved because of the linear constraints. Therefore, a gradient

method has the potential to work better than Newton’s method. The

Levenberg–Marquart algorithm is designed to adjust smoothly between these

two methods and thus deals with this problem.

Contagion as a Wealth Effect 1437



We also notice that as the degree of the polynomial expansion goes up,

estimation works better if X A is estimated holding X B fixed and vice versa.

We therefore estimate each demand function separately ~holding the other

fixed!. From our experience, the algorithm converges to stable estimates

for both demand functions after a few iterations. There seems to be a

collinearity problem between X A and X B that this approach deals with

effectively.

For the example described below, the numerical error of the fixed-point

problem is about 10�3, which is interpreted as the maximum difference be-

tween the given strategies of convergence traders X A, X B and optimal strat-

egies X *A, X *B. We take this as an indication that our numerical algorithm

has found an equilibrium.

Appendix E. Boundary Constraints

The boundary conditions are linear to the after-transformation state vari-

ables y:

X A~ y,1! � Nu�

4su

!2lu
T1~ y!, ~E1!

X B~ y,1! � Nu, ~E2!

X A~ y,�1! � 0, ~E3!

X B~ y,�1! � 0. ~E4!

Due to the properties of Chebyshev polynomials, we have Tj~1! � 1 and

Tj~�1! � ~�1! j. The functions of X A and X B in equations ~D10! and ~D11!
become an expansion of y only when z � 1 or z � �1. To match the coef-

ficient of y on the two bounds with the boundary conditions ~E1! through

~E4!, we obtain a series of constraints on expansion coefficients. These

linear constraints can be implemented by determining the first two col-

umns of the expansion coefficients from the rest of the columns of those

expansion coefficients. For the sake of space, these constraints are not

listed here. In this way, the total number of parameters is reduced by

2nu
A

� 2nd
A

� 2nu
B

� 2nd
B

� 4 ~first two columns of these four coefficient

matrices!. Therefore, the total number of parameters needed to specify

both demand functions X A and X B is

nu
A~nu

A
� 1!

2
�

nd
A~nd

A
� 1!

2
�

nu
B~nu

B
� 1!

2
�

nd
B~nd

B
� 1!

2
. ~E5!
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