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ABSTRACT The COVID-19 pandemic has generated a huge volume of research from various disciplines,
such as health sciences, social sciences, mathematical modeling, social network analysis, complex systems,
decision-making processes, computer simulation, economics, among many others. One of the key problems
has been to understand the diffusion processes of the virus, which quickly spread worldwide through
transport networks, mainly air flights. Almost two years after start the pandemic, it is necessary to collect
and synthesize the existing work on this matter. This work focuses on studies related to the COVID-19
contagion simulation through transport networks. In particular, we are specially interested in the different
datasets and epidemiological models used. The search methodology consists of four exhaustive searches
in Google Scholar carried out between January 2020 and January 2021. Of the 1786 findings, we chose
54 articles related to Covid-19 contagion modeling and simulation through transport networks. The results
show 30 different data sources for the collection of air flights and 11 additional sources for maritime and
land transport. These datasets are usually complemented with other data sources, local and international,
with demographic information, economic data, and statistics of traceability of the pandemic. The findings
also found 15 spread models of contagion, with the SEIR model being the most widely used, followed by
mathematical-based risk models. This diversity of results validates the need for these types of compilation
efforts since researchers do not have a single centralized repository to collect air flight data.

INDEX TERMS COVID-19, Epidemiological model, Contagion network, Contagion simulation, Air
travelling

I. INTRODUCTION

I
T is not news to say that the coronavirus disease—
identified in late 2019 (COVID-19) and declared a pan-

demic in early 2020—changed the lives of people worldwide.
Since the first months of 2020, numerous scientists and
researchers around the world have focused on the study,
understanding, and prevention of the phenomenon. In turn,
the governments and public administrations of the various
countries have developed different public policies to face the
crisis [1].

The first outbreaks were identified in Wuhan, China, a city
of more than 10 million inhabitants, which has the largest
airport in the region and therefore carries out several daily air
travel for commercial and tourist purposes [2], [3]. Air flights
were quickly identified as high risk due to the high probabil-
ity of contagion within them [4]–[6]. This risk was known,

since there were already studies on the risks of contagion
on airplanes, with other diseases such as tuberculosis [7].
Besides, China is the third largest country on the planet. By
also considering international flights, it is easy to understand
the rapid spread of the disease and how it reached Europe so
quickly [8], being Europe one of the main tourist destinations
of Chinese people. Despite the above, the first confirmed case
of contagion outside of China was in Thailand, generated
by 16 people who arrived by direct flight from Wuhan less
than two weeks after the virus was discovered [9]. Thus,
air traffic was considered one of the main causes of global
contagion [10], [11]. Sooner or later, the virus would reach
the other continents, and the predictive simulations of when
it would be the moment did not take long to appear [12],
[13]. At the same time, some studies focused on identifying
the most critical airports (that is, risky for the contagion and
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spread of the virus) [14], and various sanitary restrictions
were proposed and implemented within some airports [15].
However, some studies early assured that these measures
would not be sufficient due to the incubation periods of the
virus, the difficulties of traceability, and early diagnosis [16].
In addition, some political models have also been considered
aggravating for the proper management of the pandemic [17].

Due to the above, many countries closed their borders
and decreed curfews and long quarantines. Meanwhile, many
travelers had to resort to evacuation flights (not exempt from
contagion risk) to return from their destinations [18], [19].
As a result of these measures, many researchers turned to
study the economic impact of the crisis and its effects on
tourism [20], [21]. Many studies also appeared on the phys-
ical and mental health problems derived from the lockdown
and social distancing [22], [23]. On the other hand, several
studies also related to environmental effects (positive and
negative) [24], [25], and some changes in the habits and
transportation in citizens appeared [26], [27]. Furthermore,
among the scientific community, there seems to be a relative
consensus that neither quarantines nor the closure of airports
alone solves a health crisis of this magnitude [28]. Moreover,
after the opening of the borders, it is considered necessary to
maintain special care in the health of passengers who enter a
destination from other countries of origin [29].

Due to the enormous amount and diversity of research
carried out on the pandemic, its causes and effects, surveys
and systematic reviews are helpful tools to gather, synthe-
size and order existing scientific advances regarding certain
specific topics. Some of these works arose early, related to
contagion risks inside airplanes [30] or behavioral models
of contagious diseases [31]. From computer science, there
exist surveys on big data and artificial intelligence techniques
regarding the pandemic context [32]–[34], as well as other
studies more focused on virus traceability: tracking apps [35],
[36], geolocated [37] and spatio-temporal [38] data analysis
techniques, among others.

In this article, we present a survey of COVID-19 conta-
gion modeling and simulation through transport networks.
Although there are studies related to land transport networks,
such as cars [39], public transport [40], road networks [41],
or rail systems [42], we focus on air flight networks, as they
are considered, as previously said, as the most critical for the
spread of the virus. Additionally, we consider some studies
on maritime and land transport networks. This study focuses
mainly on articles published during 2020.

This article attempts to shed light on how applied science
currently seeks to model contagion networks at a pandemic
level and simulate contagion spread processes through these
networks. These models and simulations are relevant to es-
tablish public policies and make decisions related to risk
management and prevention of possible outbreaks. However,
as we shall see below, there is still no consensus on the
most appropriate ways to address these problems. Likewise,
there is a wide variety of data sources with different formats
and levels of accessibility, which make experimentation and

comparison of models more complex in terms of sensitivity
and trade-off analysis.

The rest of the article is structured as follows. Section II
describes the methodology used for the collection and review
of scientific articles. Section III presents the works related
to the contagion modeling and simulation of COVID-19
through air transport networks. The datasets, epidemiological
models, and main analysis methods used are surveyed and
discussed. Section IV is devoted to present additional work
related to other types of transportation networks. Finally,
Section V discusses our main findings, Section VI presents
some limitations of the study, and Section VII ends with the
main conclusions of this work.

II. METHODOLOGY
The main aim of this work is to know how applied science
currently models epidemiological processes at a global level,
using transport networks, in particular air flight networks.

This objective is achieved through a bibliographic review
process carried out considering the following steps: research
questions statement, searching process, data selection, data
extraction, and data analysis. These steps are described be-
low.

A. RESEARCH QUESTION STATEMENT

The research questions of this work are the following:

Q1. What are the main data sources for modeling (air)
transport networks?

Q2. What are the main spread models used to simulate
contagion processes on (air) transport networks?

These research questions will guide the following steps.
The answers to these questions allow us to fulfill the main
aim of this work and obtain the main conclusions.

B. SEARCHING PROCESS

The search for scientific articles was carried out through
Google Scholar instead of databases such as WoS or Scopus
to not excluding preprints or scientific reports. Indeed, sev-
eral manuscripts were published in open access repositories
such as arXiv or medRxiv, due to the urgency required by
the context. In some cases, these kind of documents were
later published in journals or conferences. In such cases, it
was decided to cite the most recent version, prioritizing peer
review over the number of citations.

Four searches were carried out, for articles dated between
January 1, 2020, and January 18, 2021. Table 1 illustrates
the characteristics for each type of search. Searches 1 and 2
were made using search terms: “flight network”+“covid-19”
and “flight”+“contagion”+“covid”, respectively. Recursively,
the search for articles was continued from the citations of
the articles already found. Thus, if a paper A is cited by
another paper B, then B must also be included in the search
results. In turn, if B is cited by another article C, then C

is also included in the search results, and the same process is
repeated for C. This recursive process ends when there are no
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more citations to add. Note that the citations for each article
are also provided by Google Scholar. With recursive searches
1 and 2, we obtained a total of 1473 search results.

For search 3, the 262 citations that the article [43] pos-
sessed by January 18, 2021 were considered. We chose this
article because of its early impact on the scientific community
in terms of citations. In this case, a recursive search was not
carried out since many articles that cited this article, in turn,
had several hundred references, thus increasing the search
space too much. Furthermore, in a cursory review, these new
results were already far from the research questions.

Finally, search 4 includes those articles obtained in a non-
systematic way from isolated searches of relevant literature.
In this way, 51 additional articles were included in the search
results.

C. DATA SELECTION

For all search results, their titles and abstracts were con-
sidered. The selection criterion depends on whether or not
the article refers to the main objective of this work. Table 1
shows the number of papers selected for each search. Among
the first three searches, only three matches were detected
between the selected articles. Thus, a total of 54 articles were
selected. Some of the results not selected in these searches
were used in the Introduction of this work.

D. DATA EXTRACTION

The 54 selected articles were subsequently downloaded and
collected in a single database.

The following attributes were saved for each article: search
number from which the article was found, DOI or URL of
the article, title, type of transport considered, data sources,
spread models, keywords, and optional comments related to
the main variables and analysis methods used.

E. DATA ANALYSIS

The 54 articles collected were read carefully, always seeking
to answer the research questions initially proposed. These
articles are extensively reviewed in the following sections.
The data analysis will be mainly qualitative. However, in
addition to only listing the different data sources and spread
models considered, their use frequencies are also calculated.

III. CONTAGION MODELING AND SIMULATION ON AIR
FLIGHT NETWORKS
The articles found related to simulation or modeling of
contagion in air flight networks are illustrated in Table 2. The
results are ordered by the last name of the first author. For
each paper, we focus on two aspects: data sources and spread
models, which are detailed below.

A. DATASETS

There are some surveys on COVID-19 datasets. Although
they are not focused on transport networks, they were found
from our search methodology, and they seem relevant to
mention. In [93], various open-source datasets are gathered,

including some with mobility data. A research domain tax-
onomy is also proposed to identify the key features of open-
source datasets in terms of their type, applications, and meth-
ods. Moreover, in [94], various COVID-19 data sources for
researchers and epidemiologists are mentioned. The authors
mention there is no international standard for the collection,
documentation, and dissemination of COVID-19 data, so
each country does it in its own way. The above generates
problems of usability, quality, interoperability, and complete-
ness of the data. To face these difficulties, the authors propose
policies and guidelines for sharing epidemiological data. The
aim is to help early detection of epidemics, minimize deaths,
and make informed decisions. Finally, they also propose stan-
dards for data and infrastructures (hardware and software)
necessary for open access data.

In what follows, we focus on air transport networks data
sources used in COVID-19 spread researches. It is nec-
essary to clarify that air transport is governed by various
public and private entities, which must coexist to establish
regulations and minimum operating standards. Among the
various international organizations, the International Civil
Aviation Organization (ICAO) stands out, as it is the only
one with international authority among the signatory states.
Other organizations include the International Air Transport
Association (IATA), a trade association representing airlines;
the Civil Air Navigation Services Organization (CANSO),
for air navigation service providers (ANSPs); and the Airport
Council International (ACI), a trade association of airport
authorities. Additional international trade groups are The
Airline Cooperative (ACO), Air Transport Action Group
(ATAG), International Association of Travel Agents Network
(IATAN), and International Society of Transport Aircraft
Trading (ISTAT).

The data sources regarding air transport networks are
shown in Table 2. In the 50 investigations, 61 air transport
network data sources were used, of which 30 correspond to
different data sources. Table 3 shows the data sources used
more than once, along with their access links.

Note that the most used data source (eight uses) is the
one provided by the International Air Transport Association
(IATA), through the World Air Transport Statistics (WATS).1

This source collects information on flight restrictions and the
number of passengers traveling from one airport to another.
In particular, the World Air Transportation Statistics 2019
report released in February 2019 was of great value for the
first investigations. In the second place, with five uses, we
find OpenFlights, a website that provides datasets of airports,
airlines, planes, and routes. These data are available under
the Open Database License. It is closely followed by Fligh-
tradar24, a real-time global flight tracking service capable of
tracking more than 180 000 flights at any given time, from
more than 1200 airlines, flying to or from more than 4000

airports. Flightradar24 also offers a series of search filters,
statistics and weather information. Unlike OpenFlights, it

1www.iata.org/en/publications/store/world-air-transport-statistics/
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TABLE 1: Summary of searches carried out.

# Type Search strategy Results Selection

1 Recursive from terms “flight network” + “covid-19” 53 12
2 Recursive from terms flight + contagion + covid 1420 23
3 Non-recursive from cites cites of [43] 262 17
4 Free search N/A 51 6

Total (with coincidences) 1786 58
Total (without coincidences) 54

is a paid service based on deferred subscriptions for data
collection. Also with four uses is the World Bank. Overall,
the World Bank website is a trusted and freely accessible
repository of economic and financial data worldwide. In
particular, we are interested in their efforts to provide data
about the numbers of passengers transported by air transport.
In this sense, the World Bank interacts directly with the
ICAO,2 jointly providing data on registered carrier departures
worldwide.3

Next, we have four data sources, each used in three of
the identified investigations. The Official Aviation Guide
(OAG) provides global air traffic data through a database of
millions of flights since 2004. This database is paid, with the
possibility of a free trial. It includes not only information on
flights but also on cancellations, boarding gates, and baggage
information. In addition, it provides a statistics service spe-
cialized in COVID-19. OpenSky is another real-time global
flight tracking service, like Flightradar24, but which, like
OpenFlights, offers open traffic data for research. In addition
to a historical database and various datasets ready for down-
load, OpenSky has an API (downloadable for Python or Java
programming languages) to retrieve live airspace information
for research and non-commercial purposes. The third data
source is OurAirports. It offers information on almost 67
thousand airports around the world, including departure and
arrival flights. They also provide airport and flight datasets
for free download, with millions of data frequently updated.
Finally, VariFlight is another payment platform, but unlike
Flightradar24, not based on subscription services but person-
alized payment services, depending on the data required.

There are also four data sources, each used in two inves-
tigations. The Bureau of Transportation Statistics (BTS), de-
pending on the United States Department of Transportation,
has a series of datasets for download, not only related to avia-
tion but also with: maritime transport, highways, transit, rails,
pipelines, bikes, and pedestrians, among others. Eurostat is
the statistical office of the European Union, whose mission
is to provide high-quality statistics and data on Europe. Its
website offers databases on multiple themes, including differ-
ent types of transportation, including air transport. The World
Factbook (by CIA) also has some global data to be requested.
Lastly, FLIRT is a network analysis tool developed by the
EcoHealth Alliance, which provides simulated passengers’

2www.icao.int/sustainability/Pages/eap-statistics-programme.aspx
3https://data.worldbank.org/indicator/IS.AIR.DPRT

data from hundreds of airlines. FLIRT has been developed
to identify where infected travelers and contaminated goods
are likely to travel. The system calculates the connectedness
between airports using passenger, cargo, and network data.
The aim is to predict locations at risk of exposure to infected
travelers and goods after an infectious disease outbreak has
been detected.

Additionally, 21 other data sources used only once were
found. Several of these data sources are local. From Aus-
tralia, it is considered the Australia Bureau of Statistics
(ABS). From Canada, the Stats Canada. From China, the
Ding Xiang Yuan, an online Chinese community for health-
care professionals; and the Baidu Migration Big Data Plat-
form, coming from Baidu, a Chinese multinational technol-
ogy company specializing in Internet-related services and
products and artificial intelligence. From South Korea, the
Incheon International Airport website, the largest airport in
this country. From United States of America, the Automatic
Dependent Surveillance-Broadcast (ADS-B), that exchanges
data to construct an airline transportation network; the Air-
line Origin and Destination Survey DB1B, collected by the
Office of Airline Information of the BTS; the U.S. De-
partment of Homeland Security, and the Federal Aviation
Administration (FAA).

Besides, some particular efforts appear, such as GISAID,
a global science initiative that seeks to facilitate fast and
open access to epidemic and pandemic virus data; the Global
Epidemic and Mobility Model Simulator system (GleamViz);
the SafeGraph, an application with social distancing metrics
based on mobility data collected by smartphones; Umetrip,
a Chinese mobile application that provides real-time in-
formation on more than 700 thousand flights around the
world; and VenPath, and holistic global provider of compliant
smartphone data. Of course, large companies such as Apple
or Google could not be absent through their Apple Maps
Mobility Trend data set and Google COVID-19 Community
Mobility Reports initiatives, respectively.

Lastly, there are three investigations with private data
sources and two with simulation generated data. Among the
private sources, one is the company Saber Data & Analytics
Market Intelligence. Regarding the simulated data, in [60] the
authors use random graphs crossed with real-world country-
level network data, empirical data on the global spread of
COVID-19 outbreak at a country-level, and confirmed cases
of COVID-19 obtained from the World Health Organiza-
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TABLE 2: Articles about contagion modeling and simulation on air flight
networks.

Ref Data source Spread model

[44] IATA network-based
[43] IATA -
[45] OpenSky eRG
[46] BTS SIS
[47] Sabre mathematical model
[48] OpenFlights OLS
[49] OpenFlights network-based
[50] ABS mathematical model
[51] VenPath -
[52] IATA scoring tool
[53] OurAirports

[54]-based model
branching process

[55] OpenFlights SIR variation
[56] Flightradar24

Stats Canada
SEIR variation

[57] OpenFlights SEIRS + graph diffusion model
[58] IATA -
[59] FLIRT risk model
[60] random graphs ERGM + statistical model
[61] CIA -
[62] FLIRT mathematical model
[63] OpenSky -
[64] personal statistical model
[65] IATA

Eurostat
-

[66] Incheon Airport -
[67] Ding Xiang Yuan SEIR
[68] SafeGraph

FAA
statistical model

[69] World Bank regression model
[70] DB1B

Eurostat
OAG

risk model

[14] GleamViz SIR variation
[71] World Bank/ICAO

CIA
statistical model

[72] VariFlight SEIR
[73] World Bank/ICAO -
[74] IATA statistical model
[75] GISAID network-based
[76] BTS -
[77] OpenSky mathematical model
[78] ADS-B statistical model
[79] World Bank -
[80] OurAirports

Flightradar24
-

[81] Flightradar24 -
[82] Flightradar24

OurAirports
statistical model

[83] IATA statistical model
[84] personal SEIR + mathematical model
[85] OpenFlights -
[86] IATA SEIR
[87] OAG

Google
SEIR

[88] OAG -
[89] Umetrip mathematical model
[90] VariFlight -
[91] Baidu -
[92] VariFlight mathematical model

tion. Furthermore, in [53] authors use a mathematical model
from [54] to generate a simulation to study the global risk of
outbreak by airport from available data.

To finish this section, it is necessary to clarify that in most
studies, the data extracted from the aforementioned sources
were complemented with other data, for example, census

data, traceability data, infections, recoveries, and deaths that
each country manages at a national level.

Among the international data sources mentioned in the
works, we can highlight the World Health Organization
(WHO) (www.who.int/data), the European Centre for Dis-
ease Prevention and Control (ECDC) (www.ecdc.europa.
eu), the EU Open Data Portal (www.data.europa.eu/data/),
City Population (www.citypopulation.de), and Worldometer
(www.worldometers.info/coronavirus/). The Research and
Expertise on the World Economy (CEPII) (www.cepii.fr) was
also used in [65] as a data source to know the closure of
international borders. Some global indices that have been
used as complementary data are the Global Health Security
(GHS) Index (www.ghsindex.org) [52], or the Fragile States
Index (www.fragilestatesindex.org) [53].

Some institutions have also created very useful data repos-
itories for academic purposes. A data source widely used
by various investigations is the Center for Systems Sci-
ence and Engineering (CSSE) of Johns Hopkins Univer-
sity (https://coronavirus.jhu.edu). It also highlights the So-
cioeconomic Data and Applications Center (Sedac) (https:
//sedac.ciesin.columbia.edu), from the NASA, or some gov-
ernment platforms, such as the UK Government Disease
surveillance data (https://coronavirus.data.gov.uk). Also, sev-
eral general-purpose dataset repositories have been used to
upload COVID-19 databases. Among the most used exam-
ples are Figshare (www.figshare.com), Opendatasoft (https:
//public.opendatasoft.com), Socrata (www.dev.socrata.com/
data/), Zenodo (www.zenodo.org), among many others.

B. EPIDEMIOLOGICAL MODELS

Many of the initially collected works focus on simulating
and modeling general-purpose spread processes, not neces-
sarily referring to contagion networks or the COVID-19 phe-
nomenon. For example, in [95], an architecture was proposed
to study diffusion processes in multiplex networks using
agent-based simulation. The authors used the communication
network used in a nuclear emergency plan as a case study.
The methods used in that case were DEVS (discrete-event
system specification) and agent-based modeling for multi-
plex networks. There is also work on space-time networks us-
ing graph neural networks [96], mathematical models based
on Monte-Carlo simulations [97], [98], and contagion models
based on genetic algorithms and cellular automata [99].

A spread model or diffusion model can be defined as a
mathematical or algorithmic model that makes it possible
to quantitatively evaluate the evolution of nodes on a net-
work over time or through a sequence of discrete steps.
Therefore, the spread models represent network dynamics.
In the contagion networks context, these models are also
called epidemiological models, where what is “spread” is an
epidemic or disease.

One of the epidemiological models most used to study
the spread of COVID-19 has been SIR and its various vari-
ants [100]. There exist several simulations works based on
mobility data and SIR adaptations in the COVID-19 context.
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TABLE 3: Air transport network data sources by frequency of use.

Data source URL Frequency

International Air Transport Association (IATA) https://www.iata.org 8
OpenFlights https://openflights.org/data.html 5
Flightradar24 https://www.flightradar24.com 4
World Bank (2 crossed with ICAO) https://data.worldbank.org 4
Official Aviation Guide (OAG) https://www.oag.com 3
OpenSky https://opensky-network.org 3
OurAirports https://ourairports.com 3
VariFlight http://www.variflight.com/en/ 3
Bureau of Transportation Statistics (BTS) https://www.transtats.bts.gov 2
Central Intelligence Agency (CIA) https://www.cia.gov/the-world-factbook/ 2
Eurostat https://ec.europa.eu/eurostat/ 2
FLIRT https://www.ecohealthalliance.org/program/flirt 2
Airline Origin and Destination Survey (DB1B) https://www.transtats.bts.gov/DatabaseInfo.asp?QO_VQ=EFI&Yv0x=D 1
Apple Maps Mobility Trend data set https://covid19.apple.com/mobility 1
Automatic Dependent Surveillance-Broadcast (ADS-B) https://www.faa.gov/nextgen/programs/adsb/ 1
Australia Bureau of Statistics (ABS) https://www.abs.gov.au 1
Baidu Migration Big Data Platform https://qianxi.baidu.com/ 1
Ding Xiang Yuan https://ncov.dxy.cn 1
GISAID https://www.gisaid.org/ 1
Global Epidemic and Mobility Model (GleamViz) http://www.gleamviz.org 1
Google COVID-19 Community Mobility Reports https://www.google.com/covid19/mobility/ 1
Incheon International Airport https://www.airport.kr 1
Saber Data & Analytics Market Intelligence https://your.sabre.com/inthistogether/airlines 1
SafeGraph https://www.safegraph.com 1
Stats Canada https://www.statcan.gc.ca/ 1
Umetrip http://www.umetrip.com 1
U.S. Federal Aviation Administration (FAA) https://www.faa.gov 1
VenPath https://www.venpath.net 1
Personal data not provided 2
Simulated data from supplementary data not provided 2

Total 61

However, many of them do not seek to model contagion
dynamics in air transport networks [101]–[106]. On the other
hand, some works cover this type of network, but not to
study contagion processes. For example, in [107], the au-
thors use an airport-based Susceptible-Infected-Recovered-
Susceptible (ASIRS) epidemic model on a 2015 air traffic
network (data provided by the Civil Aviation Administration
of China, CAAC) to study the propagation of delays caused
by air traffic.

There is also a wide variety of agent-based simulation
studies. These models have been used for different purposes,
distinct from those sought here but equally helpful and inter-
esting. For example, to help establish adequate contagion pre-
vention policies within educational establishments [108] or
containment strategies, including air flight restrictions [109].
Other studies have combined agent-based models with SIR-
based models to simulate economic and health effects derived
from social distancing [110].

Next, we focus on the researches in Table 2 based on
modeling or simulation of contagion in air transport networks
during the COVID-19 context. Note that of the 50 works,
there are 16 that do not use spread models nor consider
network dynamics. In most of these cases, a descriptive
analysis of the data or statistical analysis of accumulated data
is carried out. Table 4 summarizes the frequency of use of

TABLE 4: Spread models by frequency of use.

Type Spread model Frequency

SI-based

SEIR 6
SIR 2
SEIRS 1
SIS 1

network-based
(non-random) network-based 3
ERGM 1

statistical-based

probability distribution-based 4
regression model 2
branching process 1
OLS 1
statistical model 3

mathematical-based

risk model 5
scoring tool 1
mathematical model 2

physical-based eRG 1

Total 34

the different models for the remaining 34 works. We have
classified these models into five types:
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1) SI-based models
The Susceptible-Infective (SI) model is a stochastic spread
model based on simple differential equations [111]. The
model acts on a population whose members or actors must
have one of two possible states: infected (I) or healthy but
susceptible (S) to being infected. In each unit of time, a fixed
number of interactions between pairs of actors may occur.
If the interaction considers an infected and a susceptible to
be infected, then the first actor can infect the second with a
certain probability also fixed by parameters. The SI model
was originally defined as a continuous model, but there are
also discrete versions [112].

There are several variations. The most known is the
Susceptible-Infectious-Recovered (SIR) model, which in-
cludes an additional possible state for actors: the recovered
(R), representing a recovered, immunized, or deceased actor.
In our context, variations of the SIR model are used twice.
In [55], by applying the model simultaneously on a topo-
logical network of interconnected cities according to regular
flights between them, and in [14], where the authors include
mobility variables (including travel restrictions) as well as
demographic and geographic distribution.

The most used model in this review is the Susceptible-
Exposed-Infectious-Recovery (SEIR) model [56], [67], [72],
[84], [86], [87]. The exposed actors (E) are those who, during
a latency period, have been infected but are not yet infectious
themselves [113]. In [86], the authors subtly modify the
model to include exported infected cases. In [87], the authors
complement the model results with network analysis and
Bayesian analysis to represent the transmission of contagion
to other geographical areas. In [84] they also complement
the model with other mathematical models, and in [56] they
modify the differential equations of the standard SEIR model
to include demographics dynamics derived from the flight
network.

Finally, there are two works that include different varia-
tions of the SI model. In [57], the authors use the Susceptible-
Exposed-Infectious-Recovery-Susceptible (SEIRS) model.
The SEIRS model is similar to the SEIR model, but it does
not guarantee the immunity of the recovered, so they could
become susceptible to infection again. The above is a valid
assumption since not even current COVID-19 vaccines guar-
antee absolute immunity. The authors complement this model
with a graph diffusion model to capture the clusteredness
of the population distribution. Finally, in [46], the authors
use the Susceptible-Infectious-Susceptible (SIS) model, a
simpler model that simplifies the exposed or recovered states.
The authors also use an airport network model to include the
congestion of U.S. airports.

2) Network-based models
Some studies define spread models based directly on air
transport networks (as potential contagion networks). In [44],
the network dynamics are modeled using passenger flow,
the effective distance between origins and destinations, and
arrival times. In [49], the authors use centrality measures,

a social network analysis tool is used to identify the most
relevant actors (e.g., sources of contagion) within the trans-
port network. In [75], the authors model the spread of the
virus through Zipf’s law, a discrete power-law distribution
associated with social networks and information retrieval.
Finally, in [60] exponential random graph models (ERGM)
together with statistical models to model contagion dynamics
are used.

3) Statistical-based models
Regarding statistical models, the use of a wide variety of
statistical methods is observed. In [69], [74], regression
models are used. In [48], the authors used ordinary least-
squares (OLS), a type of standard multiple linear regression
(MLR). In [53], they use a probabilistic branching process
that considers the volume of air travelers between airports
and the reproduction number in each location, taking into
account the local population density. Other works focus on
models based on specific probability distributions. In [64],
they use full probability distribution of arrival times; in [71],
negative binomial regression; in [92], a binomial distribution,
and in [83], different statistical distributions (exponential,
Poisson, and geometric) to estimate the geographical paths
of the COVID-19. Additional statistical models defined are
based on the difference-in-differences technique [68], the
Hazards model [78], and time series [82].

4) Mathematical-based models
While statistical models are based mainly on probabilistic
methods, probability distributions, and regressions, mathe-
matical models consider mathematical equations and formu-
las to obtain measurements and scores. In particular, five
mathematical models of contagion risk are identified. In [59],
the model considers all the end destinations of flights from
four big cities of China involving 168 territories worldwide.
The authors calculate the total risk of transmission into a
country by aggregating the risk associated with all the entry
airports of the country. In [62], the model assesses the risk
of infectious diseases by considering the relative mobility-
interaction effect and travel-specific risk. In [70], the authors
assess the risk of contagion based on historical data from
multiple sources obtained from more than 640 thousand flight
routes over 1491 airports. In [77], it is considered the risk of
case importation across 162 countries, in the context of local
epidemic growth rates. In [89], it is considered an “imported
case risk index” based on an ordinary differential equation
that uses the potentially infected population and air connec-
tivity between Chinese provinces and foreign countries.

In addition, in [52], a simple scoring tool is defined to
produce a stratified estimate of the relative risk of COVID-
19 importation to Pacific island countries and territories. Fi-
nally, other kinds of mathematical models are also proposed.
In [47], the authors define a ratio of infected individuals to
the estimated number of travelers. In [50], the expected pro-
portion of under-ascertainment of cases and an age-specific
deterministic model is calculated.
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TABLE 5: Articles about contagion modeling and simulation on other trans-
portation networks.

Ref. Transport type Data source Spread model

[114] maritime AIS -
[115] maritime AIS -
[63] air

land (walk) Apple Maps
-

[67] air

land (train, bus)
maritime (sails)

Ding Xiang Yuan SEIR

[68] air

maritime
SafeGraph
DHS

statistical model

[116] maritime Cruise Mapper statistical model
[117] maritime Princess Cruises SEIR
[83] air

maritime
land (train, road)

GIS statistical model

[88] air

land (train, bus)
Xinxin Travel
China Railway

-

[91] air

land (car, train, bus) Baidu
-

5) Physical-based models

To finish with the spread models, in [45], epidemic Renor-
malization Group (eRG) is used, based on the renormal-
ization group (RG), a technique from theoretical physics
to perform calculations on systems with a large number of
simple elements in interaction. The model consists of first-
order differential equations considering the number of flights
among pairs of airports.

IV. CONTAGION MODELS ON OTHER TRANSPORT
NETWORKS
In what follows, we mention the works found and related to
other types of transport networks, different from air flights.
These articles are summarized in Table 5. Note that of the
ten works included here, six were already described in Sec-
tion III. Therefore, in this section, we only explain the part
of their studies referring to other means of transport. Besides
the air transport networks, the second most studied networks
are maritime transport (seven appearances), followed by dif-
ferent forms of land transport (five appearances).

In [114], [115], the authors refer to the relevance of the Au-
tomatic Identification System (AIS) as a data source to study
contagion networks in the context of maritime transport. AIS
is an automatic tracking system based on ship transceivers,
used by Vessel Traffic Services (VTS). It provides real-time
and historical data. In [115], the authors also mention several
alternatives for ship tracking: ExactEarth (www.exactearth.
com), FleetMon (www.fleetmon.com), MarineTraffic (www.
marinetraffic.com), OrbComm (www.orbcomm.com), Vessel
Tracker (www.vesseltracker.com), and VesselFinder (www.
vesselfinder.com).

Continuing with maritime transport, in [68], the authors
use data from cruise ports provided by the U.S. Depart-
ment of Homeland Security (DHS) (www.dhs.gov). Note that
the SafeGraph application, also mentioned in Section III,
can also be used in this context to collect mobility data

through smartphones. In [116], the authors created a database
consisting of 43 cruise ships with passengers infected with
COVID-19. The data was extracted from news reports and
cruise ship alerts obtained through Cruise Mapper (www.
cruisemapper.com). In [117], the authors use the Princess
Cruises’ official website. This website includes data about
infected travelers, quarantine updates, and other news and
notices (www.princess.com). The authors cross-checked this
information with information from the National Institute of
Infectious Diseases, Japan. The two remaining papers on
maritime transport also include land travel data. In [67], the
authors use data provided by the Ding Xiang Yuan com-
munity of health professionals, already mentioned before.
In addition to airline schedules for 90 cities, they consider
around 19 lines of sail passengers in China. Regarding land
transport data, they take 11 primary railroads in China, which
occupy the major railway passenger flow, connecting around
120 cities. They also collect bus data from connections be-
tween cities at a mid-range geological distance (150 km) and
between central cities and other cities in the province. In the
case of [83], they use maritime and land transport data from
a Geographical Information System (GIS). However, these
data are not detailed enough.

Three other works use land transport data. In [63], the aim
was to analyze the changes in mobility patterns in Europe
during the COVID-19 pandemic. Besides the OpenSky data
source used to collect flight data, the authors also use an
Apple Maps Mobility Trend data set (https://covid19.apple.
com/mobility). In [88], in addition to the air data provided by
OAG, China Railway (www.12306.cn), for train travel, and
Xinxin Travel (www.cncn.com), for bus travel are considered
as data sources. In [91], the authors use the Baidu Migration
Big Data Platform for air and land data (car, train, bus). This
data source was already mentioned in Section III.

Finally, half of the works use spread models or analysis
methods considering the network dynamics. In [67], [117],
the authors use the SEIR model, which we recall was also the
most used for air transport networks. Statistical models al-
ready described in Section III are used in [68], [83]. In [116],
they also use a statistical model, but based on correlation and
regression analysis to determine risk factors for COVID-19
attack rates on cruise ships worldwide.

V. DISCUSSION
After reviewing the 54 articles selected from the 1786 search
results, we can answer the research questions posed in Sec-
tion II. Regarding question Q1 (What are the main data
sources for modeling (air) transport networks?), Table 3
shows 30 air flight data sources used 61 times in the different
studies.

The most used data source is the International Air Trans-
port Association (IATA), followed by flight tracking services
such as OpenFlights and Flightradar24. OpenFlights provides
free but pre-pandemic datasets, while Flightradar24 provides
paid data. On the one hand, using data from old air flights
can be justified for the design of contagion models and
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simulations, where it is assumed that current routes do not
vary much from previous years. However, the volume of trips
(and therefore the number of passengers) between origins
and destinations can vary significantly from year to year.
Clearly, the ideal would be to use updated data, reflecting
how flights decreased considerably between March and July
2020 due to border closures. On the other hand, buying
air flight data is expensive, reaching around C3500 for a
month of flight data in Europe alone. Due to the above,
a good option found is OpenSky, which offers an open-
access dataset with trips made during the pandemic. The data
has been updated throughout the pandemic since January
1, 2019, and it contains all the flights seen by more than
2500 volunteer members of the OpenSky network. Despite
the above, this dataset is not the ideal solution, for example,
to simulate the evolution of COVID-19 worldwide. In effect,
the dataset is incomplete, as it does not contain data for some
small countries and airports. Furthermore, it includes just
a few flights from some major countries such as China. In
addition, the data is somewhat unbalanced since most of the
flights collected have their origin or destination in the United
States.

Besides these data sources, numerous complementary data
sources were distinguished, which do not have to do with
transport but with the evolution of COVID-19 in different
countries and regions. Undoubtedly, international organiza-
tions such as the World Health Organization (WHO) have
been key to providing valuable data related to COVID-19,
such as information and advice on good practices for ap-
plying methods and processes. However, these organizations
cannot intervene in the standards in which data related to air
flights and transport networks are stored and preprocessed.
The difficulty of achieving standards in this regard lies in the
complex system of public and private organizations in charge
of the administration, regulations, and coordination between
these transport networks. Thus, in practice, according to
the literature found, there is also no standardized way of
modeling infection processes through air transport networks
(neither maritime nor terrestrial).

Despite the above, the International Air Transport Associa-
tion (IATA) and the International Civil Aviation Organization
(ICAO) provide standard codings to identify the different air
flights and airports. Thus, the various air flight data sources
generally consider quite similar attributes. The desired mini-
mums are the flight code, the origin, the destination, and the
flight date. Although it could be a useful variable, the number
of flight passengers is not usually available at the research
level.

For other means of transport, the Automatic Identifica-
tion System (AIS) stands out as a data source for maritime
transport. As Table 5 shows, most data sources are local. In
general, the same diversity problems and lack of standardized
repositories for data extraction are observed.

Regarding question Q2, the main spread model used to
simulate contagion processes on air transport networks seems
to be the SEIR model. Table 3 shows 6 articles, and Table 5

another 2 using this model. Furthermore, Table 3 shows
another 4 studies based on SIR models and their variations.
As mentioned in Section III-B, the SEIR model allows an
additional state of “exposed actors,” that is, actors who have
been infected but are not yet infectious themselves during
a latency period. Exposed actors exist in the COVID-19
pandemic since, according to the Centers for Disease Control
and Prevention (CDC), the Coronavirus incubation period
may last between 2 and 14 days.

Notwithstanding the preceding, note that the statistics-
based models are the most widely used as a whole, with 11
uses on air transport networks and another 3 uses on maritime
transport networks. Although these models are more diverse,
those based on probability distributions stand out. Finally, the
risk models were used in 5 different articles, and therefore
they are only surpassed in use by the SEIR model. Although
risk models are all models, their idea is to mathematically
model the risk of contagion from people on air transport
networks.

One aspect to highlight is that the studies do not observe
comparisons between different spread models. Also, there
are very few exhaustive analyzes on which variables (data)
are most relevant when modeling contagion processes. We
believe the researchers in future works should consider these
kinds of comparative studies. The absence of widely used
datasets, as mentioned above, can be an additional impedi-
ment to this.

VI. LIMITATIONS OF THE STUDY
This study includes an extensive review of articles published
during 2020. Some of the papers may appear published in
2021 but initially appeared as preprints in 2020. However, we
do not consider publications that appeared after January 18,
2021. Since there are many related works on the subject, we
leave the possibility open to expand this survey in the future.

Additionally, another limitation that we identified is that
we have focused on articles written in English. Although
most scientific papers are written in this language, some pub-
lications on this topic are likely written in other languages,
such as Chinese.

VII. CONCLUSIONS
The COVID-19 pandemic took everyone by surprise. Its
rapid diffusion forced the scientific community to generate
valuable knowledge in short times. This acquired knowl-
edge can be useful in application development and strategic
decision-making processes. A big problem has been the
contagion modeling and simulation on transport networks,
particularly in air transport. This survey reflects the great
diversity of related scientific publications on the subject only
during the first year of the pandemic. As far as we know, this
is the first survey related to this topic.

A wide diversity of data sources is observed. This diversity
implies that researchers do not have a single centralized
repository to collect air flight data. Likewise, there is also a
wide variety of repositories with traceability data, statistics,
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and reports of people affected by the pandemic. A problem
that emerges from this study is the lack of standardized data
sources. The data formats are also very diverse, and this
makes the work of researchers difficult.

Various contagion spread models through transport net-
works were analyzed, being the SI-based models the most
widely used, although not by much. In particular, the SEIR
model is the most widely used since it allows modeling not
only healthy or infected actors but also recovered actors and
actors exposed to the virus, incubating the disease so not
yet infectious. It is striking that no other types of spread
models have been found, such as the Linear threshold model
or the Independent cascade model [118], originally applied
to collective behavior [119] and viral-marketing [120], re-
spectively. In addition, several statistical models are used,
based on probability distributions, regression models, among
others. Mathematical models mostly use risk models. Fur-
thermore, we found other network-based models and even a
model coming from theoretical physics.

As possible lines of future work, the bibliographic review
could continue to be expanded, including 2021 research.
In this case, it is suggested to carry out a systematic non-
recursive search to face the (possibly explosive) growth in the
number of publications on the subject. It would also be bene-
ficial to build a dataset (as complete as possible) of air flights
between January and June 2020, leaving it open access to the
scientific community. The datasets provided by OpenSky can
be a good starting point to continue expanding from there, for
example, with more flights from China and smaller countries.
The above would allow comparing simulations and contagion
models to expand the possibilities of experimentation and
validation.

REFERENCES
[1] C. Cheng, J. Barceló, A. S. Hartnett, R. Kubinec, and L. Messerschmidt,

“COVID-19 government response event dataset (CoronaNet v.1.0),” Nat

Hum Behav, vol. 4, no. 7, pp. 756–768, Jun. 2020.
[2] J. T. Wu, K. Leung, and G. M. Leung, “Nowcasting and forecasting the

potential domestic and international spread of the 2019-nCoV outbreak
originating in wuhan, china: a modelling study,” Lancet, vol. 395, no.
10225, pp. 689–697, Feb. 2020.

[3] M. U. G. Kraemer, C.-H. Yang, B. Gutierrez, C.-H. Wu, B. Klein, D. M.
Pigott, L. du Plessis, N. R. Faria, R. Li, W. P. Hanage, J. S. Brownstein,
M. Layan, A. Vespignani, H. Tian, C. Dye, O. G. Pybus, and S. V. S. and,
“The effect of human mobility and control measures on the COVID-19
epidemic in china,” Science, vol. 368, no. 6490, pp. 493–497, Mar. 2020.

[4] A. Barnett, “Covid-19 risk among airline passengers: Should the middle
seat stay empty?” medRxiv, Jul. 2020.

[5] R. J. Milne, L.-A. Cotfas, C. Delcea, L. Crăciun, and A.-G. Molănescu,
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