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Containers, enabling lightweight environment and perfor-
mance isolation, fast andflexibledeployment, andfine-grained
resource sharing, have gained popularity in better appli-
cation management and deployment in addition to hard-
ware virtualization. They are being widely used by organi-
zations to deploy their increasingly diverse workloads de-
rived frommodern-day applications such as web services,
big data, and IoT in either proprietary clusters or private
and public cloud data centers. This has led to the emergence
of container orchestration platforms, which are designed
tomanage the deployment of containerized applications in
large-scale clusters. These systems are capable of running
hundreds of thousands of jobs across thousands ofmachines.
To do so efficiently, they must address several important
challenges including scalability, fault-tolerance and availabil-
ity, efficient resource utilization, and request throughput
maximization among others. This paper studies theseman-
agement systems and proposes a taxonomy that identifies
different mechanisms that can be used to meet the afore-
mentioned challenges. The proposed classification is then
applied to various state-of-the-art systems leading to the
identification of open research challenges and gaps in the
literature intended as future directions for researchers.
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1 | INTRODUCTION

Containers have gained significant attention in recent years. They are standalone, self-contained units that package
software and their dependencies together and provide process isolation at the operating system level. Hence, similar to
Virtual Machines (VMs), containers are a virtualization technique that enable the resources of a single compute node to
be shared betweenmultiple users and applications simultaneously. However, instead of virtualizing resources at the
hardware level as VMs do, containers do so at the operating system (OS) level.

There are multiple technologies that realize the concept of containers. Perhaps the most widely used one is
Docker [1] but there are several products on themarket including LXC [2], OpenVZ [3], Linux-VServer [4], and rkt [5].
Althoughwith different underlying architectures and designed for different operating systems (e.g. DockerWindows
containers vs. Docker Linux containers), there are various defining characteristics of containers that are a common
denominator between different solutions. Firstly, containers executing on a single host share the operating system’s
kernel and run as isolated processes in user space, hence there is no need for a hypervisor. This isolation is done in
such a way that there is no interference between applications, albeit some performance interference due to co-located
processes competing for resources. This however is controlled to some extent by containermanagers by limiting the
amount of resources such as CPU and memory that a container can use. Secondly, containers use as many system
resources as they need at any given point in time and hence there is no need to permanently allocate resources such as
memory. Finally, containers are spawned from images, which are executable packages that include everything that is
needed to run them. This includes code, libraries, settings, and system tools. More importantly, these images can be
constructed from filesystem layers and hence are lightweight and use considerably less space than VMs.

As a result of the aforementioned features, containers provide a flexible environment in which applications are
isolated from each other and offer benefits in terms of ease of deployment, testing, and composition to developers.
Furthermore, they enable a better utilization of resources and the performance overhead that results from running
applications in containers has been shown to bemarginal by various studies [6, 7, 8]. Their provisioning time has also
been found to bemuch faster than VMs and in many cases, almost immediate [9]. These benefits have led to a consider-
able increase in the adoption and popularity of this technology. Containers are being widely used by organizations to
deploy their increasingly diverse workloads derived frommodern-day applications such as web services, big data and
IoT in either private or public data centers. This in turn, has led to the emergence of container orchestration platforms.
Designed tomanage the deployment of containerized applications in large-scale clusters, these systems are capable of
running hundreds of thousands of jobs across thousands of machines.

Such orchestration systems are commonly designed to schedule a workload of containerized applications of one or
more types. Each application type has its own characteristics and requirements such as high-availability long-running
jobs, deadline-constrained batch jobs, or latency-sensitive jobs for instance. The majority of systems support multi-
tenancy, that is, they schedule applications belonging tomultiple users on a shared set of compute resources, allowing for
better resource utilization. Hence, as applications are submitted for deployment, the orchestration systemmust place
them as fast as possible on one of the available resources while considering its particular constraints andmaximizing
the utilization of the compute resources in order to reduce to the operational cost of the organization. These systems
must also achieve this while handling a considerably large number of compute resources, providing fault tolerance and
high-availability, and promoting a fair resource allocation.

In summary, to achieve their goal, container orchestrating tools must efficiently manage a wide range of container-
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ized applications and the distributed resources that support their execution. This is a challenging problem considering
several issues thatmust be addressed such as scaling to a large number ofmachines, maximizing the application through-
put,minimizing the application deployment delay,maximizing the resource utilization,meeting the specific requirements
and constraints of different applications, providing fault tolerance and high availability, supporting different types of
applications, and achieving a fair allocation of resources, among others. In this work, we aim to study how different
container orchestration systems achieve these requirements as well as the different capabilities they offer. In the
context of cloud computing, a similar problem has already been faced by VM resourcemanagers, which are responsible
for allocating compute, storage, and networking resources to applications within a data center. There are various
surveys that explore this topic in great detail [10, 11, 12] and aid in understanding the foundations of the systems
studied in this work, which can be seen as the evolution of VM-based infrastructure-as-a-service resourcemanagers.

The rest of this paper is organized as follows. Section 2 presents a reference architecture for container-based
cluster management systems. Section 3 introduces the proposed taxonomy from three different perspectives, the
application, scheduling, and resourcemodels of cluster management systems. Section 4 describes and classifies various
state-of-the-art systems followed by future directions in Section 6 and a summary to conclude in Section 7.

2 | REFERENCE ARCHITECTURE FOR CONTAINER ORCHESTRATION SYSTEMS

Container Orchestration Systems enable the deployment of containerized applications on a shared cluster. They enable
their execution andmonitoring by transparently managing tasks and data deployed on a set of distributed resources.
A reference architecture is shown in Figure 1; the components shown are common tomost container orchestration
systems, however, not all of them have to be implemented in order to have a fully functional system. Four main entities
or layers are identified in the presented architecture, namely one or more Jobs, a Cluster Manager Master, a Compute
Cluster, and the physical Infrastructure. From a high-level perspective, users submit jobs composed of one or more tasks
to the cluster manager master. This entity then assigns the submitted tasks to worker nodes in the compute cluster,
where they are executed. The compute cluster is an abstraction of interconnected nodes that can be either physical or
virtual machines on different infrastructures such as clouds or private clusters. A detailed explanation of each layer and
its responsibilities is presented below.

Jobs
Users submit their applications in the form of jobs. These jobs usually belong to different users and are heterogeneous;
they can range from long lasting latency sensitive services to short lived resource intensive batch jobs. A job is composed
of one or more smaller tasks. Tasks are generally homogeneous and independent, but some frameworks extend this
definition and allow users to define jobs in terms of interdependent and heterogeneous tasks. Users can also express
the resource requirements of jobs in terms of the amount of CPU andmemory they will require for example. OtherQoS
requirements such as fault-tolerance requirements, time constraints, priorities, andQoS classes can be included as part
of the job definition.

ClusterManagerMaster
Themaster component is the core of the orchestration system. It has a resource monitormodule responsible for keeping
track of real-time resource consumptionmetrics for eachworker node in the cluster. This information is usually accessed
by other modules in the system as required. For instance, the task scheduler and relocator modules may use these data
tomake better optimization decisions. The accountingmodule has a similar functionality to the resourcemonitor but
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F IGURE 1 A high-level container orchestration system reference architecture.

focuses on collecting the actual resource usage andmetrics relevant to the owner of the cluster management system.
On one hand, infrastructure-relatedmetrics consolidated by this module include the overall resource utilization, energy
usage, and cost if deployed on a cloud environment. On the other hand, user-relatedmetrics may include the number
and type of jobs submitted by users as well as the amount of resources consumed by these jobs. Thesemeasurements
may aid in enforcing user quotas or estimating billing amounts for example.

The admission controlmodule is responsible for determining whether i) the user’s resource quota is equal to or
larger than the amount of resources requested or ii) there are enough resources available in the cluster to execute the
submitted jobs. For the latter scenario, multiple decisions can bemade in case resources are insufficient. On one side of
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the spectrum, jobs could simply be rejected. On the other side, a more complex solution would take into consideration
users’ priorities andQoS classes to preempt jobs deemed less important and free resources for those incoming jobs that
are consideredmore important. Another possible solution would be to consider increasing the number of cluster nodes
to place the incoming jobs.

The task schedulermaps jobs, or more specifically tasks, onto the cluster resources. This is usually done by con-
sidering several factors and opposing goals. Firstly, the resource requirements and availabilities must be considered.
Secondly, cluster management systems are concerned with efficiently using resources and hence, maximizing the
utilization of the cluster nodes is usually an objective of schedulers. Finally, mapping tasks so that additional QoS
requirements of jobs in terms of affinities, priorities, or constraints aremet is another key scheduler responsibility.

The task relocator can be seen as a rescheduler. Whenever tasks need to be relocated either because they are
preempted or for consolidation purposes for example, this component is responsible for determining their fate. A task
relocation policy may simply choose to discard the task or to place it back in the scheduling queue. More sophisticated
approaches may analyze the state of the system and determine a new optimal location for the task with the aim of
improving resource utilization.

The task launcher is responsible for launching the tasks’ containers on specific cluster machines once this decision
has been finalized by the scheduler or the relocator. Furthermore, to support themanagement of executing tasks, the
task monitor is responsible for auditing running tasks andmonitoring their resource consumption andQoSmetrics. This
information aids in detecting failures or QoS violations and enables the system tomake better scheduling or relocation
decisions.

Finally, the resource provisioner is in charge of managing the addition of new cluster nodes. This can be either a
manual or an automatic process. In amanual process, usually system administrators will launch a new nodewith the
worker agent software installed in it and execute a call for the agent to advertise itself to themaster. This call can be
processed by the resource provisioner so that the new node is now accounted for by themaster. However, a resource
provisioner is not always necessary in such a case, as the worker may automatically send a heartbeat signal to the
resourcemonitor to advertise itself for instance. In the case of an automatic process however, the resource provisioner
is an essential component of the architecture as it will be responsible for dynamically adding virtual nodes (i.e., virtual
machines) to the cluster when the existing resources are insufficient to meet the applications’ demands. It will also
decide when nodes are no longer required in the cluster and will shut the nodes down to prevent incurring in additional
costs.

Compute Cluster
Each machine in the cluster that is available for deploying tasks is a worker node. Each of these nodes has a worker
agentwith various responsibilities. Firstly, it collects local information such as resource consumptionmetrics that can
be periodically reported to the master, specifically to the resource monitor. Secondly, it starts and stops tasks and
manages local resources, usually via a container manager tool such as Docker or Linux Containers. Finally, it monitors
the containerized tasks deployed on the node, information which is usually relied onto the taskmonitor component in
themaster.

Infrastructure
One of themain benefits of containers is their flexibility in being deployed in a multitude of platforms. Because of these,
the cluster machines can be either virtual machines on public or private cloud infrastructures, physical machines on a
cluster, or evenmobile or edge devices among others.
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F IGURE 2 Applicationmodel taxonomy

3 | TAXONOMY

In this taxonomy, we identify various characteristics and elements of container-based cluster orchestration systems. In
particular, we study these platforms from the scheduling, application, and resourcemodel perspectives. The aim of this
section is to explain each taxonomy classification, examples and references to systems for each category are presented
in Section 4.

3.1 | ApplicationModel

In this section, we identify a classification for the application model used by container-based cluster management
systemsas depicted in Figure2. This taxonomy is related to the Job components as depicted in the reference architecture
(Figure 1). In particular, we present various ways in which jobs or applications can be described by users as well as
different characteristics that they can have.

To efficiently utilize resources, instead of running separate clusters of homogeneous containers, organizations
prefer to run different types of containerized applications on a shared cluster. A common type of applications are
long-running services that require high availability and must handle latency-sensitive requests. Examples include
user-facing or web services. Another type of application are batch jobs. These have a limited lifetime and are more
tolerable towards performance fluctuations. Examples include scientific computations or map-reduce jobs. Cron jobs
are a type of batch jobs that occur periodically. The advantage for schedulers is that the timewhen cron jobsmust be
deployed is known in advance and hence this information can be used tomake better scheduling decisions.

Supporting a mixed workload may pose further challenges for container orchestrating systems as each type of
application has different QoS requirements that must be fulfilled when performing the scheduling. However, having
multiple applications share a cluster has significant benefits in terms of resource utilization. For example, Google [13]
demonstrated they would need 20-30% more machines to run their workload if long running and batch jobs were
segregated into separate clusters. Having amixed workload allows for less performance-sensitive jobs to use resources
that are claimed but not used by those with more stringent requirements for example. A batch job with a loose deadline
could for instance tolerate being placed in a nodewith less CPU resources available than those requested for the job. As
a result, better job packing can be achieved.

Container orchestration systemsmay allow jobs to be defined by users in different ways. For instance, a jobmay
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be defined as a single containerized task. To offer more flexibility, frameworks generally allow jobs to be defined as a
composition of multiple independent tasks that are identical, or almost identical to each other. Each of these tasks can
then be deployed in a container on any given resource; this applicationmodel is used by Google’s Borg [13] system for
example. Another approach is to define a job in terms of multiple dependent tasks that must be co-located on the same
node, as is done in Kubernetes [14]. Finally, systems like Apollo [15] fromMicrosoft provide users with amore powerful
application model in which they can define jobs as a graph of tasks. This enables users to define the communication
patterns and dependencies between tasks and enables the scheduler tomake better optimization decisions asmore
details on the application are known in advance.

3.2 | Scheduling

This section discusses containerized cluster management systems from the scheduling perspective. The classifications
presented here relatemainly to the Task Scheduler and Task Relocator components from the Cluster ManagerMaster
entity described in Figure 2. In particular, we analyze the problem from twodifferent angles, thefirst one is the scheduler
architecture presented in Section 3.2.1 and the second one is related to the job scheduling policies depicted in Section
3.2.2.

3.2.1 | Scheduler Architecture

Regarding the scheduler architecture, there have been extensive studies on their classification on distributed systems.
For example, Casavant and Kuhl [16] proposed a taxonomy of scheduling algorithms in general purpose distributed
computing systems, Toptal and Sabuncuoglu [17] presented a classification of different factors related to distributed
scheduling as well as a survey of the literature in the same topic, and Krauter et al. [18] proposed a taxonomy and
performed a survey of grid resource management systems for distributed computing that included the scheduler
architecture or organization. Since this specific characteristic is key in understanding different approaches to scheduling
in cluster management systems, we identify here themost prevalent architectures used by the surveyed frameworks as
shown in Figure 3. After briefly introducing their general definition, we aim to keep the discussion as relevant to the
problem addressed in this work as possible.

In a centralized architecture, there is a single scheduler responsible for making placement decisions for the con-
tainerized applications. These schedulers aremonolithic in that they implement all the policy choices for the different
types of workloads in a single code base. They have a global view of the system and the available resources and hence
have the capability of choosing any of the existing nodes whenmaking a placement decision. This also enables such
schedulers tomake better optimization decisions. However, they have the disadvantage of being a single point of failure
in the system and suffering from scalability issues as the load of incoming scheduling requests increases and the number
of nodes in the cluster grows.

Decentralized architectures can be used to improve scalability. In this case, multiple distributed scheduler replicas
exist. The replica instances can be monolithic, meaning that they handle a subset of the requests but implement all
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the policies and handle all the workloads. On the other hand, the replicas can be modular and hence, each instance
can specialize on a specific application type or implement a different set of policies. For example, there may be a
scheduler for long running jobs and a scheduler for batch jobs. Each of these can in turn be replicated. There are two
key aspects that need to be considered by decentralized schedulers. The first one is determining how the requests
are partitioned between schedulers. The second one consists onmanaging the state of the system between different
replicas. For monolithic decentralized schedulers for example, the load can be partitioned using a traditional load
balancingmechanism; for modular ones, the type of application to schedule will achieve this goal.

Regarding statemanagement, an approach is to provide each replicawith access to the entire cluster state. If paired
with optimistic concurrency control, despite the need to redo some work, this method successfully increments the
parallelism of the schedulers. Omega [19] is an example of a system implementing a decentralizedmodular scheduler
with shared state and optimistic concurrency control. On the other hand, each scheduler replica may have a partial view
of the system state in which a particular resource is only made available to a particular scheduler at a time. Also known
as pessimistic concurrency, this approach ensures there are no conflicts between schedulers by selecting the same
resource for different applications. Another option is to implement an optimistic concurrency approach, in which all the
schedulers have access to a shared state, increasing parallelism but also the potential for wasted scheduling effort if
conflicts happen too often.

Finally, in a two-level architecture, the resourcemanagement and the application framework are decoupled, and
the scheduling is done in two separate layers. The bottom layer is responsible for managing the cluster resources and
either offering available resources (i.e., offer-based) or granting resource requests (i.e., request based) to application
frameworks. These application frameworks are then responsible for making the actual placement decisions, that
is, determining which tasks will be deployed on which resources. This approach offers a great deal of flexibility to
frameworks and mitigates the load and stress on the central scheduler. Mesos [20] is an example of an offer-based
two-level scheduler while Fuxi [21] is an example of a request-based one.

It isworthmentioning that offer-based schedulers that hold a lock on resources offered to an application framework
(i.e., pessimistic concurrency control) are more suited to application frameworks capable of making fast scheduling
decisions on small and short-lived and small tasks [19]. Mesos for example, alternates offering all the available cluster
resources to each application scheduler. As a result, long scheduling decisions by application frameworks would result
in nearly all resources being locked and out of access to other schedulers during this period of time.

3.2.2 | Job Scheduling

From the perspective of job scheduling, there are various policies and considerations that can be implemented by cluster
managers. Namely, we consider in this work the constraints used to determine the placement of a task in a node, the
pool of nodes that is consideredwhenmaking this placement decision, whether tasks are preempted or not andwhether
rescheduling tasks is a feature supported by the system or not. This taxonomy is shown in Figure 4.

To improve the scalability of the system and to reduce the time from job submission to job placement, some
schedulers will select resources to execute tasks from a subset of the cluster nodes, as opposed to evaluating the
suitability of every single cluster node. This will speed up the decision time and enable the system to process more
requests per time unit and to reduce the amount of time jobs have towait before being assigned to resources. A possible
strategy to achieve this is to select the best suited node to place a particular containerized task based on a randomized
sample of the entire cluster nodes as done by Borg. Another approach is to partition the cluster into smaller sub-clusters
and assign them to different scheduler replicas.

Schedulers can have greater flexibility in placing tasks if they can preempt existing assignments, as opposed to
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simply considering resources that are idle, but this comes at the cost of wasting some work in the preempted tasks.
Preemption is useful when a priority scheme is in place. In this way, high priority tasks can obtain resources at the
expense of lower priority ones, which are preempted. The systemmay even notify tasks before preempting them so
that they have time to save their state and gracefully finish their execution. Preempted tasks will often be rescheduled
elsewhere in the cluster though. This is one scenario in which rescheduling is currently being used in existing systems
such as Borg.

Another rescheduling use case is related to failures; when a worker node is deemed to have failed or is unreachable,
the orchestrator will reschedule the tasks that were running on the machine on other nodes. Other systems like
Kubernetes [14] transparently manage the replication of failure-sensitive tasks via a replication controller. In this way,
when a task terminates abruptly causing the number of current replicas to be smaller than the expected number of
replicas, the task will be relaunched or rescheduled by the system. Finally, it is not unusual for tasks to be evicted from a
node and rescheduled if they have exceeded their expected resource usage. This is further discussed in Section 3.3.

Placement constraints are offered as amean for users to customize the behavior of the scheduler to meet their ap-
plications’ specific requirements. Hence, this feature does not apply to two-level schedulers, which leave the placement
decisions to the application frameworks. For centralized and decentralized schedulers, value-based constraints are the
simplest way of achieving this with a user specified valuematching a specific attribute of the node where the task is
to be placed. Specifying the name of the nodewhere a taskmust be deployed is an example of this type of constraint.
Another example is specifying a hardware component that must be present in the host, such as the disk type being SSD.

Query-based constraints on the other hand, offer more expression power to the users by enabling them to define
more complex placement rules such as spreading the load evenly across a set of nodes and filtering attributes according
to a set of values. For example, inMarathon [22], the constraint ["rack_id", "GROUP_BY"]will lead to tasks being evenly
distributed across racks.

Limit-based constraints allow the control of machine diversity, that is, they enforce per-attribute limits such as the
number of tasks of a given type to be deployed on a single host. Their functionality is actually a subset of the functionality
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offered by query-based constraints. An example would be a constraint ensuring that nomore than two instances of a
job are deployed on a single host. Aurora [23], a framework built on top ofMesos implements this type of scheduling
constraints.

Label-based constraints are similar to value-based but offer more flexibility in that users can define their own labels
used to specify identifying attributes of objects that aremeaningful and relevant to them, but that do not reflect the
characteristics or semantics of the system directly. For example, in Kubernetes labels can be used to force the scheduler
to co-locate tasks from two different jobs that communicate a lot into the same availability zone.

Finally, affinity-based placement constraints enable users to define rules on how jobs can be scheduled relative to
other jobs. An affinity rule would lead to jobs being co-locatedwhereas an anti-affinity onewould prevent jobs from
being co-located. A key difference with the other placement constraints is that affinity rules apply constraints against
other jobs running on a node, as opposed to applying constraints against labels or features of the actual node. Finally, it
is worthwhile mentioning that the use of constraints can significantly impact the performance of scheduling algorithms.
An affinity-based constraint in Yarn [24] would enable users for example to place two containers with tag x on a node on
which containers with tag y are running.

3.3 | Cluster Infrastructure andManagement

This section describes different characteristics of the compute cluster, its management, and the underlying infrastruc-
ture supporting it. Section 3.3.1 presents a taxonomy for the cluster infrastructure, Section 3.3.2 introduces a taxonomy
for different resource management techniques, Section 3.3.3 outlines different cluster-wide objectives, and finally
Section 3.3.4 introduces different features of container-based cluster management systems that support multi-tenancy.

3.3.1 | Cluster Infrastructure

Figure 5 depicts the taxonomy for the cluster infrastructure. This classification defines the different types of infrastruc-
tures that can support the compute cluster, which based on their characteristics may have a significant impact on how
the compute cluster resources aremanaged by the cluster manager master.

The resources in a cluster may be static in that there is a fixed number of machines that remains relatively constant
(failures, maintenance, and new hardware addition, may be exceptions) or elastic in that the cluster scales out and in
based on the current demand of the system. Static settings are more likely to be based on baremetal, or non-virtualized
servers. Their management consist on efficiently utilizing all of the existing resources. Elastic approaches on the other
hand, expect the cluster to vary in size over time and aremore common on virtualized environments. This scaling may
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be available throughmanual methods, in which a system administrator or an external framework adds (or removes) one
or more compute resources to (from) the cluster, which then become available (unavailable) to the scheduler for placing
containers. Autoscaling methods on the other hand, enable the addition and deletion of resources from the cluster
in an automated fashion. The autoscaler is part of the system as opposed to an external decision maker and hence
decides whether nodes should be added or removed based on the current state of the system. The current utilization of
resources would be a good indicator to trigger such decision for example. Although the latter scenario considerably
increases the complexity of the system, it may enable a better utilization of resources leading to decreased operational
costs, a potential improvement in performance, and reduced energy consumption.

3.3.2 | ResourceManagement

Different resource management techniques implemented by the Cluster Manager Master are illustrated on Figure 6.
Allocating computational resources in distributed environments is a challenging problem. Orchestration systems usually
achieve this with task resource requests, which allow users to define the amount of resources such as memory and
CPU that a given task will use (at its peak time). This information is then used by the framework to efficiently assign
containers tomachines based on their available resources and the tasks currently deployed on them.

Resource limits on the other hand, are an upper bound on the amount of resources a job or a task is allowed to
consume. They are usually enforced by orchestration systems by means of resource reclamation. That is, by either
throttling the use of a given resource when a task has exceeded its limit or by evicting the task. The choice between
throttling or killing generally depends onwhether the over consumed resource is compressible or non-compressible.
Compressible resources are those to which the amount used by a task can be controlled without the need of killing it,
an example is CPU capacity. Non-compressible resources are those that cannot be reclaimedwithout killing the task,
an example is RAM. It is worthwhile noticing that resource reclamation does not have to be enforced for every task
in the system, contrary to this, many frameworks apply thesemethods selectively to tasks with specific priorities or
importance within the system. For example, Borg will only throttle or kill non-production tasks, but would never apply
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these rules to production ones.
Resource granularity refers to the way in which resources are allocated to tasks, which equates to the way in which

tasks are allowed to express resource requests. Some systems assign tasks to fixed-sized coarse-grained slots. In this
way, CPU cores are assigned for example in units of 1 andRAM in units of 256 bytes. An example of such system is YARN;
which enables CPU requests to bemade in increments of 1 virtual core and RAM requests in increments of 1megabyte.
These increment values can be configured by users, but theymust be larger than the aforementioned ones. Fine-grained
resource granularity on the contrary, gives users more control and flexibility on the amount of resources they request.
Borg users for example request CPU in units ofmilli-cores andmemory and disk space in bytes. According to the authors
findings [13], this enabled the system to have a better resource utilization by requiring 30-50% less resources in the
median case thanwhen rounding up resource requests to the nearest power of two. For the purpose of this taxonomy,
we define units equal to or larger than one CPU core and 1megabyte for RAMor disk to be coarse-grained, anything
smaller we classify as fine grained. Yet another option is to bundle resources, just as virtual machines are. In this way,
a resource unit is specified as a tuple of resource amounts and allocations are done in number of resource units. An
example are ScheduleUnits in Fuxi, defined as a unit size description of a set of resources such as <1 core CPU, 1GB
Memory>. Resource requests and allocations are then specified in number of ScheduleUnits.

To achieve a better utilization of the available resources, many frameworks oversubscribe their servers. This idea is
basedmainly on two observations. Firstly, it is uncommon for tasks to consume the amount of resources they requested
throughout their entire lifetime and instead their average usage is usually significantly lower. Secondly, users tend
to overestimate the amount of resources they request for a given task. Hence, rather than letting unused requested
resources go unused, container orchestration systemsmay choose to assign these unused reserved resources to tasks
that can tolerate lower-quality resources. To be able to achieve this safely, a relatively accurate estimate of the actual
resource consumption of tasks must be made by the orchestration system. When tasks exceed this estimate, the
resources must be reclaimed either by throttling or killing the opportunistic tasks which may eventually need to be
rescheduled somewhere else.

Resource consumption estimation is used to predict and estimate the amount of resources a container consumes at
different points in time, as opposed to relying simply on the amount of resources requested for a particular container.
The reason is twofold. Firstly, resource requests are usually misestimated, and overestimated, by users. Secondly, the
resource consumption of a task is likely to vary over time, with the peak consumption spanning only over a fraction
of its lifetime. Both scenarios lead to resources that are reserved but are idle most of the time and hence lead to
the cluster being underutilized. By monitoring and estimating the resource consumption of containers then, better
oversubscription and opportunistic scheduling decisions can bemade by the system.

3.3.3 | SystemObjectives

Many of the resource management mechanisms are put in place in order to fulfil a higher-level goal, referred to as
the system objectives. These objectives ultimately guide the design and decisionsmade by themodules in the Cluster
ManagementMaster. Their classification is outlined in Figure 7.

Scalability is a primary goal of existing systems. An approach to achieving it is to avoid a centralized scheduler. For
example, having scheduler replicas and an optimistic concurrencymanagement approach to sharing the cluster state
seems to lead to high-levels of scalability. Making quick scheduling decisions will also have a positive impact on the
scalability of the system. Other policies used for this purpose include caching the score given to nodes when selecting
them in the scheduling process, using equivalence classes to group tasks with similar characteristics for scheduling
purposes, and selecting a node to place a task from a subset of the cluster nodes [13].
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SystemObjectives

Scalability
High Resource Utilization
High Availability
High Scheduling Throughput
Application-specific QoS

F IGURE 7 System objectives taxonomy

Ensuring that applications deployed on the cluster have high-availability is another goal for many systems. To
achieve this, management systemsmust be able to appropriately handle, mitigate, and detect node and task failures.
Some systems achieve this by automatically rescheduling tasks when they fail or are evicted, spreading task replicas
across machines and racks, and avoiding redeploying tasks on amachine where the task previously failed, among others.

Achieving high cluster utilization is also a primary concern, especially in proprietary clusters as under-utilizing
resources will ultimately lead to higher operational costs for the organization. Oversubscription, fine-grained resource
allocation, resource consumption estimation, resource reclamation, and preemption are some of themethods used for
this purpose.

Maximizing job throughput is another common goal of systems. This will eventually lead to amore scalable system
and to a reduced delay between job submission and job placement. This may be crucial for applications requiring
low response times or latencies or with a very strict deadline. Ultimately, high throughput is achieved bymaking fast
scheduling decision andmay require the optimality of the placement decisions to be compromised.

Finally, management systems may aim to satisfy Quality of Service (QoS) requirements that are specific to the
applications they serve. This may be an inherent characteristic in two-level schedulers as the application frameworks
can use the resources requested or offered to them in such a way that different objectives such as meeting a deadline or
minimizing themakespan of a job are fulfilled. For systemswith a centralized or decentralized built-in scheduler this
goal is not as straightforward. Of the surveyed systems, Apollo is the only one that considers the applications’ goals
when scheduling. It aims to deploy tasks so that their makespan is minimized. It does however assume that this is a
commonQoS requirement across all the applications it handles; managing heterogeneous QoS parameters for different
applications is an interesting challenge that has not been addressed yet.

In this taxonomy, systems are classified as having one of the above objectives if and only if the functionality to
achieve them is built-in into the core components of the system. For instance, the scheduler must have policies in place
that aim to allocate tasks across nodes in different power domains to achieve high-availability. We do not consider the
case in which a framework offers users themeans of achieving these objectives by using mechanisms such as placement
constraints, job replication, or QoS classes.

3.3.4 | Multi-tenancy Features

Multi-tenancy refers to the ability of a systemor framework to servemultiple tenants in a physically shared environment.
A tenant is defined as a user or an application that must be kept logically isolated from other tenants. Within the context
of cluster orchestration systems, two particular scenarios arise based on themembership of tenants to either the same
or different organizations. On one hand, multi-tenancy across different organizations enables a single cluster to be
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Multi-tenancy Features

Security Isolation

Access control
Restricted API Access
Authentication
RBAC-based Authorization

Container-centric
Restricted Execution
Hypervisor Isolation

Network Isolation
PortMapping
IP-per-container
Third-party Network Isolation

Performance Isolation
Compute Resource Isolation
Per-tenant ResourceQuota

F IGURE 8 Multi-tenancy features taxonomy

shared between users or stakeholders belonging to different companies. In this scenario, applications deployed on the
cluster are untrusted and hence strong policies isolating tenants are necessary. For example, each tenant should have
access to their own set of control plane objects (e.g., master component), resource quotas should be enforced based
on howmuch tenants have paid, network isolation should be strong to prevent communication between applications
belonging to different tenants, performance and security isolation of applications may require stronger guarantees
thanwhat is currently provided by containers (e.g. VMs), and sole-tenant nodesmay be necessary in some particular
instances.

On the other hand, multi-tenancy within a single organization sees the resources of a cluster being dedicated to a
particular company but shared between different employees or teamswithin that organization. Cluster management
systems are commonly deployed under this scenario, which requires a less strict degree of isolation between tenants as
it is assumed all applications deployed in the cluster are trusted. In this case, the cluster control plane can be shared
among tenants, the current level of isolation provided by shared-OS containers is usually sufficient, and communication
across tenancy domains may be desirable in some instances.

Based on this, we have identified different multi-tenancy features as illustrated in Figure 8 that are present in
cluster management systems and provide different levels of isolation between tenants. Security isolation policies refer
to features restricting access to the cluster resources and what containers can do on a particular node. In particular, we
categorize frameworks based onwhether they provide (or not) the following access control, isolation-enabling features.
An authentication module capable of identifying genuine tenants, an API which allows tenants to create, access, or
modify only those objects they own and hides those that belong to other tenants, and an authorizationmodule that
ensures tenants can only access those resources they are entitled to (e.g., role-based access control (RBAC) capabilities).
Container-centric isolation defines whether a framework supports the definition of policies that restrict what the code
executing inside containers can or cannot do (e.g., disable applications running as root) or whether hypervisor-based
containers with hardware-enforced isolation are supported or not. Examples of hypervisor-based containers are Kata
containers [25], runV [26] and vSphere Integrated Containers [27].
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Network isolation featuresmask the use of a single physical network by applications frommultiple tenants. They
usually allow restrictions to be put in place defining the way in which applications across different tenant domains can
communicate with each other. In an IP-per-containermodel, each container is assigned a unique IP address and as a
result, owns the entire available port range. This model enable containers to resemble VMs or physical hosts from the
networking perspective. Hence, rules can then be put in place defining address ranges to or fromwhich applications
are allowed to send or receive packets. This rule can be defined and enforced in different manners. For instance, a
simple approach relying on network routing tables can be devised or third-party vendor plugins can be used to provide
network isolation for different requirements. Examples of these third-party plugins include Calico [28], Flannel [29],
and Nuage [30].

Port mapping on the other hand, forces all of the containers running in a node to share the same IP. Containers on
the node are assigned a separate network stack, usually via Linux network namespaces. In this way, each container
is assigned a non-overlapping range of ports and only packets addressed to or from these ports are delivered. Other
network stack resources that are partitioned include routes and firewall rules, which enables the network within a
single running kernel instance to be virtualized.

Finally, performance isolation policies refer to features that prevent a tenant’s resource usage from negatively
impacting other tenant’s applications. Achieving compute resource usage isolation is a key aspect, which is accomplished
to some degree by all frameworks within the scope of this work bymeans of containerization. Other mechanisms that
facilitate performance isolation include enabling and enforcing a per-tenant resource quota and scheduling related
policies such as placement constraints and preemption. A discussion on these scheduling features was presented in
Section 3.2.

4 | SURVEY

This section discusses a set of state-of-the-art container orchestration systems and analyzes them in the context of the
presented taxonomy. The results are summarized in Tables 1, 2, 3, 4, 5, and 6.

4.1 | Borg

Google’s Borg [13] cluster management system is designed to run hundreds of thousands of heterogeneous jobs across
several clusters, each with tens of thousands of machines. Users submit jobs to Borg, which are composed of one or
more homogeneous tasks. Each job runs in a cell, which is a set of heterogeneous machines managed as a unit. The
workload in Borg cells is composed of two types of applications. The first are long running services that must remain
available at all times. These servicesmust serve short-lived requests withminimal latency and correspondmostly to
end-user-facing web applications. They are commonly classed as high-priority or production jobs. The second type of
workload corresponds to batch jobs. These can take from a few seconds to days to complete and are commonly classed
as lower-priority or non-production jobs. Tasks run on containers deployed on physical machines and have resource
requirements specified in terms of disk space, RAM , and CPU cores, among other resources. The container stack used
is proprietary and is based on Linux cgroups [31]. However, an open source version of this stack, called lmctfy [32], is
readily available.

Regarding the scheduler, a queue of pending tasks is asynchronously monitored. This queue is transversed in
a high to low priority order with jobs selected based on a round robin scheme within each priority. The scheduling
algorithm has two parts: finding feasible machines that match the task’s requirements and choosing one of these
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machines (scoring). The scoring mechanism favors machines that already have the tasks’ packages, spreading tasks
(from the same job) across power and failure domains, and packing quality like mixing low and high priority tasks on the
samemachine to allow the high priority ones to consumemore resources when required (e.g., in a load spike).

Borg does not rely solely on the amount of resources requested for a task to reserve CPU and RAM for example.
Instead, it estimates the amount of resources a taskwill use and reclaims the rest forwork that can tolerate lower quality
resources such as batch jobs. This reservation changes dynamically based on the fine-grained resource consumption of
the taskmeasured every few seconds. Borg differentiates between compressible resources like CPU cycles that can
be reclaimed from a task by decreasing its QoSwithout killing it; and non-compressible resources likememory, which
generally cannot be reclaimedwithout killing the task. Hence, tasks that try to consumemore ram are killed, while CPU
is throttled to the requested amount.

Borg uses various technologies as building blocks to achieve its goals. For instance, Chubby [33], a distributed lock
service implemented at Google that provides strong consistency, supports the framework’s name system that allows
tasks to be located by clients and other services. To enable themonitoring of tasks, these have a built-in HTTP server
that publishes information about their health as well as different performance metrics. Supporting the accounting
module by recording data such as job submissions and task resource usage is Infrastore, a scalable read-only data store
with an interactive SQL-like interface via Dremel [34] also developed at Google. A Paxos-based store [35] is used to
maintain the replicated state of fivemaster processes in a highly availablemanner. Finally, Linux chroot jail is used as
part of the container stack to securely isolate multiple tasks running on the samemachine.

Overall, Borg is one of themost advanced surveyed systems. It supports features such as oversubscriptionwith
resource consumption estimation, mixedworkloads, fine-grained resource requests, and task preemption among others.
Its cluster utilization rate was reported to be between 60 and 70 percent and its throughput to be approximately 10
thousand tasks per minute in a cluster composed of tens of thousands of nodes.

4.2 | Kubernetes

Kubernetes [14] is a framework designed tomanage containerizedworkloads on clusters. The basic building block in
Kubernetes is a pod. A pod encapsulates one or more tightly coupled containers that are co-located and share the same
set of resources. Pods also encapsulate storage resources, a network IP, and a set of options that govern how the pod’s
container(s) should run. A pod is designed to run a single instance of an application; in this waymultiple pods can be
used to scale an application horizontally for example. The amount of CPU, memory, and ephemeral storage a container
needs can be specifiedwhen creating a pod. This information can then be used by the scheduler tomake decisions on
pod placement. These compute resources can be specified both as a requested amount or a as cap on the amount the
container is allowed to consume.

The scheduler ensures that the total amount of compute resource requests of all pods placed in a node does not
exceed the capacity of the node. This even if the actual resource consumption is very low. The reason behind this is
to protect applications against a resource shortage on a nodewhen resource usage later increases (e.g., during a daily
peak). If a container exceeds its memory limit, it may be terminated andmay be later restarted. If it exceeds its memory
request, it may be terminated when the node runs out of memory. Regarding the CPU usage, containers may or may not
be allowed to exceed their limits for periods of time, but they will not be killed for this. On the other hand, containers
and pods that exceed their storage limit will be evicted. Other resources (called Extended Resources) can be specified to
advertise new node-level resources, their resource accounting is managed by the scheduler to ensure that nomore than
the available amount is simultaneously allocated to pods.

From a technical perspective, Kubernetes allows for various types of container runtimes to be used, with Docker
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and rkt natively supported by the platform. More recently, the release of the framework’s Container Runtime Interface
(CRI) API has enabled Kubernetes to support other container technologies such as containerd [36] and frakti [37], a
hypervisor-based container runtime. Furthermore, CRI-O [38], an implementation of the CRI API, currently enables
Kubernetes to support any OCI (Open Container Initiative) compliant container runtime such as runc [39]. Also,
supporting Kubernetes in managing the cluster nodes and jobs is etcd [40], an open source, highly-available, distributed
key-value store. Specifically, etcd is used to store all of the cluster’s data and acts as the single source of truth for all of
the framework’s components.

Overall, Kubernetes is a highly mature system; it stemmed from ten years of experience at Google with Borg and
Omega and is the leading container-based cluster management systemwith an extensive community-driven support
and development base. It provides users with a wide range of options for managing their pods and the way in which
they are scheduled, even allowing for pluggable customized schedulers to be easily integrated into the system. It is
worthwhile noticing that the Kubernetes built-in scheduler is classified as decentralized andmonolithic in this survey,
however, this can be overridden by the use of pluggable schedulers which, based on their implementation, can be either
centralized, monolithic decentralized, or modular decentralized. To conclude, although Kubernetes’ performance and
scalability may still not reach the levels of industry-based systems like Borg, as of version 1.10, Kubernetes is capable of
supporting clusters of up to 5000 hundred nodes [41], which suits the needs of many organizations nowadays.

4.3 | Swarm

Docker Swarm [42] orchestrates applications on a cluster of physical or virtual nodes runningDocker. Users can execute
regular Docker commands (i.e., the standard Docker API) which are then executed by a swarmmanager. The swarm
manager is responsible for controlling the deployment and the lifecycle of Docker-based containerized applications
on the cluster nodes. These applications are represented as services andmay be composed of one or more containers.
Notice however that these services are intended to be long-running jobs that are continuously running. The replication
of services is allowed and is transparently handled by the swarmmanager when an application is deployed. However,
the failure of nodes or services is not automatically handled by the framework and hence replicas are not redeployed if
they fail.

Three scheduling strategies are available to deploy containers. Spread selects the nodewith the least number of
containers deployed on it, binpack selects the nodewith theminimum amount of CPU and RAMavailable, and random
chooses a random node from the cluster. Swarm also supports placement constraints to enable users to customize the
behavior of the scheduler based on their requirements. These include value, label and affinity-based constraints. In this
way, containers can be deployed on nodes with a specific operating system, stored container image, deployed service, or
that belong to a specific cluster rack for example.

Overall, Swarm specializes on the scheduling of Docker containers, it is easy to use for Docker users and is
lightweight and flexible. Furthermore, the simplicity of the scheduling policies leads to a scalable system where
placement decisions are made fast; its performance in this matter has been corroborated by evaluating it an envi-
ronment running 30,000 containers [43]. However, the system lacks some key functionality offered bymore robust
management systems like Kubernetes. For instance, Swarm does not handle failures of nodes, whereas themajority of
surveyed systems are capable of automatically maintaining a specified number of container replicas running throughout
an application’s lifetime.
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4.4 | Mesos

Mesos [20] is an open-source management system built around the idea of two-level scheduling. It delegates the
scheduling of tasks to application frameworks, such asHadoop andMPI, while it remains responsible for distributing the
available cluster resources among all of its client frameworks. In particular, scheduling inMesos is done in two phases.
In the first stage, Mesos divides the resources of the cluster and periodically presents each application framework
with a resource offer. These resource offers are based on policies that preserve priorities and fairness. Frameworks
can accept or reject these offers. Once an application framework accepts an offer, it can schedule its tasks on the
obtained resources using its own scheduler. Afterwards, Mesos actually launches the tasks for the framework on the
corresponding hosts.

Asmentioned in Section 3, offer-based two-level schedulersmay encounter difficulties when application frame-
works have long scheduling cycles and placemostly long-running tasks that tend to hog resources. To alleviate these
issues,Mesos resource offers are time-bounded and hence applications are incentivized tomake fast scheduling de-
cisions. The reservation of resources for short tasks is also possible inMesos. In this way, a specific set of resources
on each node can be associated with amaximum task duration, time after which tasks running on those resources are
killed. It could be argued that the benefits of this are twofold. First, it creates an incentive for applications to deploy
short tasks, and second, it alleviates the impact that long tasks may have on the system.

Mesos provides application frameworks with high-availability by maintaining multiple replicas of the master
component. ZooKeeper [44] is used to elect a leader within the replicatedmasters. Regarding the container runtimes
supported, Mesos allows users to deploy applications packed in Docker containers or in its custom, Linux-based
containers calledMesos containers.

Altogether,Mesos provides a large degree offlexibility to its users and applications. Users candeploy different types
of frameworks on top ofMesos to suit their requirements. Applications on the other hand can apply their specialized
knowledge and schedule applications based on it. Furthermore, the unique scheduling model of Mesos and its use
of fine-grained resource sharing-model, enables it to achieve high-utilization while remaining adaptable to workload
changes and robust. The simplicity of the system also allows it to scale to 50,000 nodes.

In the following sections, we introduce Aurora andMarathon, two orchestration frameworks that rely onMesos to
manage the cluster resources. Even though they do not implement the entire functionality of a cluster management
system, they are included in the survey as they provide users with different applicationmodels and different scheduling
features that complement those offered byMesos.

4.4.1 | Aurora

Originally developed by Twitter, Aurora [23] is a scheduler that runs on top ofMesos and enables long-running services,
cron jobs, and ad-hoc jobs to be deployed in a cluster. Aurora specializes in ensuring that services are kept running
continuously and as a result, whenmachine failures occur, jobs are intelligently rescheduled onto healthymachines.
Furthermore, as opposed toMesos, Aurora handles jobs which are composed of multiple, near identical tasks. Each task
is in turn composed of one ormore processes, which aremanaged by an executor process that runs onworker nodes
and is responsible for launching andmonitoring tasks. To deploy a job in Aurora, a job configuration is first submitted.
This configuration specifies the amount of resources required by each task as well as other constraints such as the
node where tasks should be deployed. Each task then aims to find a resource offer made byMesos that matches its
requirements.
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4.4.2 | Marathon

Marathon [22] is a meta-framework forMesos that is designed to orchestrate long-running services. Because of this,
it focuses on providing applications with fault-tolerance and high-availability; Marathon will ensure that launched
applications will continue to run even in the presence of node failures. Aside from this, the framework also offers
placement constraints, application health checks and monitoring, and application autoscaling. Pods as defined in
Kubernetes (i.e., a set of applications that must be co-located) are supported inMarathon as of version 1.4. In this way,
storage, networking, and other resources can be shared among multiple applications on a single node as defined by
users.

It is worthwhile mentioning that in terms of functionality, Marathon and Aurora are very similar products. However,
there are a few differences. The main one is that Marathon handles only service-like jobs. Furthermore, setting up
and usingMarathon is considered to be simpler than doing so with Aurora [45]; Marathon includes for example a user
interface throughwhich users can directly schedule tasks.

4.5 | ApacheHadoop YARN

YARN [24] is a cluster manager designed to orchestrate Hadoop tasks, although it also supports other frameworks such
as Giraph, Spark, and Storm. Each application framework running on top of YARN coordinates their own execution flows
and optimizations as they see fit. In YARN, there is a per-cluster resourcemanager (RM) and an applicationmaster (AM)
per framework. The applicationmaster requests resources from the resourcemanager and generates a physical plan
from the resources it receives. The RM allocates containers to applications to run on specific nodes. In this context,
a container is a bundle of resources bounded to run on a specific machine. There is one AM per job (a job is a set of
tasks related to a framework) and it is responsible for managing its lifecycle. This includes increasing and decreasing
resource consumption, managing the flow of executions, etc. The AM needs to harness the resources available on
multiple nodes to complete a job. To obtain these, the AM requests resources from the RM and the request can include
locality preferences and properties of the containers [46]. Finally, YARN supports two different containerizers, a custom
built-in container manager based on Linux cgroups andDocker.

4.6 | Omega

Omega [19] is Google’s next generation cluster management system. As opposed to amonolithic or two-level scheduler
as used by other approaches, Omega proposes the use of a parallel scheduler architecture built around shared state. In
this way, Omega offers a platform that enables specialized and custom schedulers to be developed, providing users
with a great deal of flexibility. The shared cluster state is maintained in a centralized, Paxos-based, transaction-oriented
data store that is accessed by the different components of the architecture (such as schedulers). To handle conflicts
derived from this, Omega uses an optimistic concurrency control approach. This means that occasionally a situation
will arise in which two schedulers select the same set of resources for different tasks, hence, the scheduling of one of
these tasks may have to be re-done. Despite this additional work, the overhead was found to be acceptable and the
resulting benefits in eliminating blocking as would be done by a pessimistic concurrency approachwas found to offer
better scalability [19].
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4.7 | Apollo

Apollo [15] is a scheduling framework developed atMicrosoft. It aims to balance scalability and scheduling quality by
adopting a distributed and coordinated scheduling strategy. In this way, it avoids suboptimal decisions by independent
distributed schedulers, and removes the scalability bottleneck of centralized ones. The scheduling of tasks is done
so that the task completion time is minimized. This is a unique feature among all the surveyed systems. The runtime
of tasks is estimated based on historical data statistics from similar tasks. Apollo uses opportunistic scheduling to
drive high utilization while maintaining low job latencies. While regular tasks are scheduled to ensure low latency,
opportunistic ones are scheduled to drive high utilization by filling the slack left by regular tasks. In Apollo, the physical
execution plan of jobs is represented as DAGs, with the tasks representing a basic computation unit and the edges the
data flow between tasks. Tasks of the same type are logically grouped together in stages, with the number of tasks per
stage indicating the degree of parallelism of the DAG.

4.8 | Fuxi

Fuxi [21] is a resourcemanagement and scheduling system that supports Alibaba’s proprietary data platform. It is the
resource management module on their Aspara system, which is responsible for managing the physical resources of
Linux clusters within a data center and controlling the parallel execution of parallel applications. Users submit jobs
to the FuxiMaster alongwith information such as the application type and themaster package location. A FuxiAgent
then launches the corresponding applicationmaster, which retrieves the application description and determines the
resource demand for different stages of the job execution. The applicationmaster then sends resource requests to the
FuxiMaster. When resources are granted, the applicationmaster sends concrete work plans to FuxiAgents. FuxiAgents
use Linux cgroups to enforce resource constraints. When the application processfinishes, the applicationmaster returns
the resources back to FuxiMaster. Finally, incremental or locality-based scheduling enables Fuxi tomake scheduling
decisions inmicro seconds. When resources are free, the decision of whom to allocate them to is only made between
those applications in themachine’s queue, as opposed to considering all the other existingmachines and applications.

5 | SYSTEM CLASSIFICATION AND DISCUSSION

This section contains the classification of the surveyed container orchestration systems based on the presented tax-
onomy. Firstly, as a reference to readers, Table 1 depicts the organization fromwhich each of the surveyed systems
originate from, as well as whether they are open source or proprietary and the container runtimes they support. Next,
the classification of the studied systems is presented on Tables 2, 3, 4, 5, 6, 7, and 8. Specifically, Table 2 displays the
application model summary while Table 3 contains the classification from the scheduling perspective. Tables 4, 5, 6,
7, and 8 depict the classification of the studied systems from the cluster infrastructure andmanagement perspective.
Note that N/A is usedwhen a property does not apply to the given system andN/S is usedwhen details regarding the
specific characteristic were not specified in the information sources that describe the system.

Overall, we found that the commercial systems includemore advanced features than the open source ones. Some of
these features such as preemption and rescheduling however, may be tailored for the specific needs of an organization
and hencemay be unsuitable for more general open source systems, unless the flexibility of deciding their goals is left
up to users or developers. This is a complex endeavor.

In terms of scheduling, two-level schedulers such asMesos and YARN offer themost flexibility and extensibility
by allowing each application framework to define their own scheduling policies based on their needs and specialized
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TABLE 1 Originating organizations of the surveyed systems

System OriginatingOrganization Open Source Container Technology

Borg Google Linux cgroups-based
Kubernetes Google Docker, rkt, CRI API implementations,

OCI-compliant runtimes
Swarm Docker Docker
Mesos UCBerkeley Mesos containers, Docker
Aurora Twitter Mesos containers, Docker
Marathon Mesosphere Mesos containers, Docker
YARN Apache Linux cgroups-based, Docker
Omega Google N/S
Apollo Microsoft N/S
Fuxi Alibaba Linux cgroups-based

TABLE 2 System classification for the applicationmodel
System Workload Job Composition

Borg All Independent tasks
Kubernetes All Co-located tasks
Swarm Long-running jobs Co-located tasks
Mesos All Single task
Aurora Long-running and cron jobs Independent tasks
Marathon Long-running jobs Co-located tasks
YARN Batch jobs Single task
Omega All Independent tasks
Apollo Batch jobs Task graph
Fuxi Batch jobs Task graph

knowledge. However, framework schedulers in this type of systems are limited in the decisions they can make as
they only have access to the cluster state information that is provided by the resourcemanager. To address this issue,
shared-state schedulers such as Kubernetes andOmega support pluggable schedulers that can be used simultaneously
to schedule different types of jobs with different characteristics. This approachmay avoid the scalability and scheduler
complexity issues of fully centralized schedulers such as Borg. However, the ability of the system to scale the number of
schedulers to a large number while remaining efficient is an open research question.

Oversubscribing resources seems a common practice in most systems with the aim of achieving high cluster
utilization. However, how this is achieved in practice may have a considerable impact in the performance of applications
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TABLE 3 System classification for job scheduling
System Architecture Node Selection Preemption Rescheduling Placement Con-

straints

Borg Centralized mono-
lithic

Randomized sample Value-based

Kubernetes Decentralizedmono-
lithic

All nodes Label and
affinity-based

Swarm Decentralizedmono-
lithic

All nodes Label and
affinity-based

Mesos Two-level offer-
based

N/A N/A

Aurora Two-level offer-
based

All nodes Value and limit-
based

Marathon Two-level offer-
based

All nodes Value and query-
based

YARN Two-level request
based

All nodes Value and
affinity-based

Omega Decentralizedmodu-
lar

All nodes N/S

Apollo Decentralizedmono-
lithic

Cluster partition and
randomized sample

None

Fuxi Two-level Request-
based

All nodes Value-based

and the orchestration system itself. For example, relying on users’ estimates of an application resource requirements
may not leave room for oversubscription or may make this process cumbersome in that resources are frequently
exhausted (e.g., out of memory events) in servers and hence tasks have to be frequently evicted and rescheduled. Borg’s
approach to oversubscription seems to work well, with task resource usage being estimated based on fine grained
resource consumption measurements over time, instead of relying solely on user resource requests. This approach
raises another interesting feature that could greatly benefit container orchestration systems, resource consumption
estimation.

All of the studied systems require users to specify the amount of resources, at least in terms of CPU andmemory,
that a task will consume. This is not only a challenging task for users but also a risk for orchestrators. Users may
easily overestimate their resource requirements for example. This will lead to an inefficient use of resources with
many remaining idle. Some work on automatically determining resource requirements would greatly facilitate the
deployment of containerized applications for users, improve their quality of service, and allow cluster resources to be
better utilized.

Regarding preemption, although a common denominator in proprietary systems, only Aurora supports this func-
tionality in the open-source category. The use of preemption enables clusters to be used to run jobs with different
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TABLE 4 System classification for cluster infrastructure

System Cluster Elasticity Cluster Infrastructure

Borg Static Non-virtualized
Kubernetes Elastic, manual and autoscaling Virtualized, non-virtualized
Swarm Elastic, manual scaling Virtualized, non-virtualized
Mesos Elastic, manual scaling Virtualized, non-virtualized
Aurora Elastic, manual scaling Virtualized, non-virtualized
Marathon Elastic, manual scaling Virtualized, non-virtualized
YARN Elastic, manual scaling Virtualized, non-virtualized
Omega Static Non-virtualized
Apollo Static Non-virtualized
Fuxi Static Non-virtualized

TABLE 5 System classification for resourcemanagement
System Quota Manage-

ment
Resource Reclama-
tion

Resource Granu-
larity

Oversubscrip-
tion

Resource Es-
timation

Borg Limits, requests Eviction, throttling Fine-grained
Kubernetes Limits, requests Eviction, throttling Fine-grained
Swarm Requests Eviction Fine-grained
Mesos Requests Eviction, throttling Fine-grained
Aurora Limits Eviction, throttling Fine-grained
Marathon Requests Eviction, throttling Fine-grained
YARN Requests Eviction Coarse-grained
Omega N/S N/S Fine-grained
Apollo Limits Eviction, throttling Fine-grained
Fuxi Requests Eviction Bundle

purposes such as production or staging in amore robust manner. In this way for example, the resourcemanager can
make room for production jobs by evicting staging ones if the cluster no longer has adequate resources. It may also
work in the opposite way, with testing jobs opportunistically using resources but only if they are not in use or needed by
production jobs.

Kubernetes was the only systemwith a cluster autoscaler, although it is not a built-in component but rather an
add-on that is deployed as a pod in the cluster. The autoscaler’s main goal is to place pods that failed to schedule due to
insufficient resources in newly provisioned nodes. It is restricted however to provisioning only nodes that are similar in
characteristics to those already in the cluster or node group. Hence, if a cluster is composed of smallVMs, the newly
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TABLE 6 System classification for system objectives
System Scalability High Availability High Utilization High Throughput ApplicationQoS

Borg
Kubernetes
Swarm
Mesos
Aurora
Marathon
YARN
Omega
Apollo
Fuxi

provisioned nodes will also be small. Although this may achieve the purpose of placing a currently unschedulable node,
the consequences in terms of cost and resource utilization for instance are not taken into consideration.

Finally, themajority of the studied systems, except Swarm,were designedwithmulti-tenancy inmind. This is aligned
with their goal of executing heterogeneous workloads on a set of shared resources. In particular, the frameworks are
built with the aim of allowing multiple tenants from a single organization to share a single compute cluster. For the
open source systems, information on different isolation features wasmostly available. However, for the proprietary
ones, the details on how isolation was achieved were elusive in the information sources. In particular, the classification
for Omega, Apollo, and Fuxi, was partial due to the aforementioned reason. Despite this, it is clear from the use cases,
problem formulation, scheduling approaches, and evaluation sections in the corresponding manuscripts that these
frameworks do support intra-organizational multi-tenancy. In fact, for the specific case of Omega, it could be assumed
that themulti-tenancy features of Borg apply to this system as well, but this could not be confirmed.

6 | FUTURE DIRECTIONS

Although most systems (mostly the proprietary ones) are mature and include advanced features, the optimization
space can still be further explored. This is especially true in the era of cloud computing, as most existing frameworks
ignore many of the inherent features of cloud computing in favor of assuming a static cluster of resources. As a
result, elasticity, resource costs, and pricing and service heterogeneities are ignored. For organizations deploying their
workloads through container orchestrators in cloud, this translates into higher and unnecessary costs, potentially
reduced application performance, and a considerable amount of man hours in tuning their virtual cluster tomeet their
needs.

In light of this, a possible optimization to current systems is related to rescheduling. In particular, rescheduling
for either defragmentation or autoscaling when the workload includes long-running tasks. Regardless of how good
the initial placement of these tasks is, it will degrade over time as the workload changes. This will lead to an inefficient
use of resources in which the load is thinly spread across nodes or the amount of resources in different nodes are not
sufficient to run other applications. Rescheduling applications that tolerate a component being shut down and restarted
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TABLE 7 Security isolation taxonomy

Access Control Container-centric

System Restriced API
Access

Authentication RBAC-based
Authorization

Restricted Exe-
cution

Hypervisor Iso-
lation

Borg N/S
Kubernetes
Swarm
Mesos
Aurora
Marathon
YARN
Omega N/S N/S N/S N/S N/S
Apollo N/S N/S
Fuxi N/S N/S N/S N/S

TABLE 8 Network and Performance isolation taxonomy
Network Isolation Performance Isolation

System IP-per-container PortMapping Third-party Plugins Compute Perfor-
mance Isolation

Per-tenantRe-
sourceQuota

Borg
Kubernetes
Swarm
Mesos
Aurora
Marathon
YARN
Omega N/S N/S N/S N/S
Apollo N/S N/S N/S
Fuxi N/S N/S N/S

will enable the orchestration system to consolidate and rearrange tasks so that more applications can be deployed on
the same number of nodes or some nodes can be shutdown to reduce cost or save energy. Similarly, if more nodes are
added to the cluster, being able to reschedule some of the existing applications on the new nodesmay be beneficial in
the long term.
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Another future direction is for cloud-aware placement algorithms to consider the heterogeneities of the underlying
resources, including different pricing models, locations, and resource types and sizes. This would enable for instance to
dynamically provision resources of different pricingmodels to the virtual cluster in order to satisfy growing needs of
the applications with minimum cost. For example, a customer-facing application should be placed on reserved instances
that are leased for lower costs and longer periods of timewhile offering high availability. Batch jobs on the other hand
could be placed on unreliable rebated resources, whose sudden termination will not disrupt the end user experience.
The use of on-demand instances can be explored for applications with requirements in betweenwhere the availability is
needed but they are not long-running services. To realize these goals, it is required to filter unqualified resources and
propose new resource affinity models to rank the resources when provisioning for different applications. These policies
can be implemented as extensions of the existing filtering and affinity rankingmechanisms of the current platforms for
example.

Even though intra-organizational multi-tenancy is themost common use case for containerized clusters, existing
frameworks are continuously striving to facilitate stronger isolationmechanisms to suit stricter multi-tenancy require-
ments that satisfy the requirements of inter-organizational multi-tenancy. For example, enabling tenants to have their
own control plane objects is yet to be a feature of existing systems. Another important consideration is related to fault
isolation; although frameworks offer several failuremanagement and recoverymechanisms to applications, work is
still required to ensure that a failure from one tenant does not cascade to other tenants. For example, the failure of
a node’s operating system due to a faulty ormalicious container will cause other containers sharing that node to fail.
The consequences of this may differ for different application types. For instance, those with replicated containers may
not be highly impacted. However, non-replicated critical applications may suffer grave consequences from such an
event. Although this may be an inevitable side-effect of OS-level virtualization, the risks can potentially bemitigated for
example by scheduling critical applications or those that are not replicated in single-tenant nodes. Another important
aspect to consider in terms of security are denial of service attacks, preventing or mitigating the effects of these within
a cluster or a network of containers is still in need of research.

Finally, application QoSmanagement is limited in existing systems. It is not unusual for applications to have specific
QoS requirements. For instance, long-running services commonly have to serve aminimum number of requests per
time unit or have stringent latency requirements. Batch jobs on the other hand can have a deadline as a time constraint
for their execution or may need to be completed as fast as possible. For the first scenario, many systems offer a
basic autoscaling mechanism. It monitors the CPU utilization of a service, and if a predefined threshold is exceeded,
another instance of the service is launched. This however, is a baseline approach to autoscaling and integratingmore
sophisticated approaches to container-basedmanagement systems is required. For batch jobs, orchestrating them and
assigning them to resources so that their QoS aremet is another open research area. Although Apollo addresses this to
a certain degree, this feature is not present in any open source system and support for heterogeneous QoS constraints
is still unexplored.

7 | SUMMARY AND CONCLUSIONS

In this work, we studied orchestration systems that are designed tomanage the deployment of containerized applica-
tions in large-scale clusters. The growing popularity of container technologies has been a driving force contributing to
the evolution and increased adoption of these systems in recent years. Frameworks such as Kubernetes are beingwidely
used by organizations to deploy their large-scale workloads that include diverse applications such as web services and
big data analytics. They are designed tomanage the deployment of applications in clusters and are capable of running
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hundreds of thousands of jobs across thousands of machines. To achieve this, they are designed to address important
challenges such as scalability, fault-tolerance and availability, efficient resource utilization, and request throughput
maximization among others.

To better understand containerized management systems, this work first introduced a reference architecture
identifying key components and their responsibilities. These were segregated in four hierarchical layers, namely an
application layer composed of jobs submitted by users, a cluster manager master in charge of orchestrating these
jobs andmanaging the cluster resources, a cluster of worker compute nodes, and the infrastructure where the nodes
are deployed. Based on these layers, the roles of the components within them, and existing frameworks, a taxonomy
identifying various characteristics of container-based cluster management systems from the perspective of their
application, scheduling, and cluster managementmodels was proposed. Classifications based on the types of workload
supported, the features supportingmulti-tenancy, the scheduler architecture and scheduling policies, the elasticity of
the cluster, themanagement of nodes and their resources, and the system’s objectives were proposed and discussed in
detail. A survey of the state state-of-the-art systemswas also presented, and the proposed taxonomy applied to them.

Furthermore, future directions derived from gaps identified in the literaturewere presentedwith the aim of guiding
emerging research. In particular, we identified the need for further work exploring elastic, cloud-based clusters. This
would encompass addressing issues such as cost-aware scheduling that consider the heterogeneity of cloud resources
such as different pricingmodels, geographical locations, and VM costs and specifications. Rescheduling to address not
only defragmentation but to support the efficient use of a dynamic cluster achieved through autoscaling is another
topic that requires further attention. Managing theQoS requirements of applications is another area that should be
further explored. For example, guaranteeing the execution time of batch jobs to be within a specified deadline is yet to
be a feature of any of the surveyed open source systems. Finally, extending the functionality of existing frameworks
to provided increased isolation features supporting variousmulti-tenancy use cases is necessary. Although the vast
majority of studied frameworks successfully support intra-organizational multi-tenancy use cases, further research is
required to enable them to provide the foundation for models such as container as a service for example.

To conclude, management systems orchestrating containerized jobs in clusters are growing in popularity. Their
adoption to provide as-a-service models resembling those offered by cloud computing as well as their use within organi-
zations will continue to increase. This due to their ease of use and flexibility, their ability to efficiently use resources,
their performance offerings, and advances in container technologies, among others. It is important then, for these
systems to continue to be developed and optimized to offer users with varying requirements a robust solution to their
needs and aid in shaping the future of distributed computing and applications.
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