

Cziva, R. and Pezaros, D. P. (2017) Container network functions: bringing

NFV to the network edge. IEEE Communications Magazine, 55(6), pp. 24-

31. (doi:10.1109/MCOM.2017.1601039)

This is the author’s final accepted version.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

http://eprints.gla.ac.uk/138001/

Deposited on: 08 March 2017

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk33640

http://dx.doi.org/10.1109/MCOM.2017.1601039
http://eprints.gla.ac.uk/138001/
http://eprints.gla.ac.uk/138001/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

IEEE COMMUNICATIONS MAGAZINE, ADVANCES IN NETWORKING SOFTWARE, JUNE 2017 1

Container Network Functions:
Bringing NFV to the Network Edge

Richard Cziva, Student Member, IEEE, and Dimitrios P. Pezaros, Senior Member, IEEE

Abstract—In order to cope with the increasing network uti-
lization driven by new mobile clients, and to satisfy demand for
new network services and performance guarantees, telecommu-
nication service providers (TSPs or telcos) are exploiting virtu-
alization over their network by implementing network services
in Virtual Machines (VMs), decoupled from legacy hardware-
accelerated appliances. This effort, known as Network Function
Virtualization (NFV) reduces OPEX and provides new business
opportunities.

At the same time, next generation mobile, enterprise, and
Internet of Things (IoT) networks are introducing the concept
of computing capabilities being pushed at the network edge, in
close proximity of the users. However, the heavy footprint of
today’s NFV platforms prevents them from operating at the
network edge. In this article, we identify the opportunities of
virtualization at the network edge and present Glasgow Network
Functions (GNF), a container-based NFV platform that runs and
orchestrates lightweight container vNFs, saving core network
utilization and providing lower latency. Finally, we demonstrate
three useful examples of the platform: IoT DDoS remediation,
on-demand troubleshooting for telco networks, and supporting
roaming of network functions.

I. INTRODUCTION

Data consumption is growing exponentially in today’s com-
munication networks. This irreversible trend is driven by the
increase of end-users and the wide-spread penetration of new
mobile devices (e.g., smartphones, wearables, sensors and
more). In addition, mobile data consumption is also accel-
erated by the increased capabilities of the mobile clients (e.g.,
higher resolution screens and HD cameras) and the user desire
for high-speed, always-on, multimedia-oriented connectivity.
In numbers, it has been estimated that connected devices will
exceed 50 billion, generating zettabytes (1 billion terabytes)
of traffic yearly by 2020.

At the same time, the telecommunication service provider
(TSP) market is becoming competitive with the rise of many
over-the-top service providers lowering subscription fees for
users. Moreover, today’s TSPs often experience poor resource
utilization, tight coupling with specific hardware, and lack of
flexible control interfaces which fail to support diverse mobile
applications and services. As a result, TSPs have started to lose
existing and new revenue, while suffering increased capital and
operational expenditure that cannot be balanced by increasing
subscription costs [1].

In order to cope with the aforementioned challenges, service
providers have started to softwarise their network infrastruc-
ture. By virtualizing traditional network services (e.g., fire-
walls, caches, proxies, intrusion detectors, WAN accelerators,

.

.

Fig. 1: Edge network examples

etc.), providers can save operational and capital expenses,
and satisfy user demands for customized and rapidly evolving
services. This transformation, referred to as Network Function
Virtualization (NFV), transforms how operators architect their
network to decouple network functionality from physical loca-
tions for faster and flexible network service provisioning [1].
NFV has gained significant attention since its first appearance
in 2012, resulting in many, albeit still preliminary deployments
at the provider’s data centers.

While NFV is gaining attention, a new, fifth generation
mobile architecture (5G) is being designed to support the
increased user demand mentioned above [2]. As a key design
objective, 5G mobile networks will utilise Mobile (or Multi-
Access) Edge Computing (MEC), an IT service environment
with cloud-computing capabilities at the edge of the home,
enterprise or IoT network, within close proximity to the mobile
subscribers [3], as shown in Figure 1. While there have
been a few proof of concept (PoC) implementations of MEC
(including, e.g., a video streaming deployment at the Wembley
Arena1), these PoCs do not present a generic NFV architecture
nor do they support today’s customer edge devices (e.g., home
routers).

In this article, we present Glasgow Network Functions
(GNF), an NFV platform that brings NFV and edge computing
together by using generic, lightweight Linux containers to host
vNFs in a distributed, heterogeneous edge infrastructure. We
present three useful applications and show that by utilising the

1https://blog.networks.nokia.com/mobile-networks/2015/12/04/ee-mobile-
edge-computing-ready-rock-wembley-stadium/ (Accessed on: 05/03/2017)

IEEE COMMUNICATIONS MAGAZINE, ADVANCES IN NETWORKING SOFTWARE, JUNE 2017 2

Customer Device Released Architecture CPU Memory
Residential CPE Home Routers

Virgin SuperHub 3 (Arris TG2492S) 2015 Intel Atom 2x1.4 GHz 2x256 MB

Google Fiber Network Box GFRG110 2012 ARM v5 1.6 GHz not known

Orange Livebox 4 2016 Cortex A9 1 GHz 1 Gb

Commodity Wireless Routers
TP-LINK Archer C9 home router 2016 ARM v7 2x1 GHz 128 MB

Ubiquiti EdgeRouter Lite 3 2014 Cavium MIPS 2x500 MHz 512 MB

Netgear R7500 Smart Wifi Router 2014 Qualcomm Atheros 2x1.4 GHz 384 MB

IoT Edge Gateways
Dell Edge Gateway 5000 2016 Intel Atom 1.33 GHz 2GB

NEXCOM CPS 200 Insdustrial IoT Edge Gateway 2016 Intel Celeron 4x2.0 GHz 4GB

HPE Edgeline EL4000 2016 Intel Xeon 4x3.0 GHz up to 64GB

TABLE I: Example edge device specifications

network edge (e.g., home, enterprise, IoT edge), providers can
alleviate their unnecessary core network utilization (which can
correspond to savings of millions of dollars per year), perform
better troubleshooting on their network, and provide location-
transparent services to their users.

II. OPPORTUNITIES AT THE NETWORK EDGE

An edge device provides the entry point to an enterprise
or service provider network that is generally faster and more
efficient. Edge devices include wireless routers and switches,
mobile access devices (e.g., base stations) and even IoT
gateways that connect IoT devices to the Internet. As edge
devices are located close to the users, services running at the
edge provide higher forwarding performance (high throughput,
low latency) than running services remotely, and therefore save
the utilization of the WAN infrastructure.

A. Edge Device Evolution

In recent years, edge devices have become smarter and their
capabilities have increased to run advanced network services,
such as Quality of Service (QoS) differentiation, parental
control filters, bandwidth reservations, and other multi-service
functions. In Table I, a few popular edge devices are presented
alongside their released date, architecture, CPU and memory
parameters. The list includes large-scale residential customer
premise equipment (CPE) from the UK (Virgin), US (Google
Fiber) and France (Orange). In addition, we have added
a few low-cost commodity home routers to this list along
with three IoT gateway devices from HP Enterprise, Dell,
and NEXCOM. As it can be observed from Table I, recent
CPE devices and home routers are equipped with powerful
computing capabilities (e.g., CPUs up to 1.6 GHz) and sizeable
RAM (up to 1GB) to run a Linux-based operating system
(e.g., OpenWRT or DD-WRT), and some lightweight network
functionality. As demonstrated in our previous work [4], even
a commodity TP-Link home router with 560 MHz CPU and
128MB of RAM can be used to run multiple vNFs using Linux
containers (our demo showed rate limiting, content filtering,
and firewall vNFs). Apart from the "low-cost" edge devices
like home routers and residental CPE, some vendors have

also introduced IoT gateways with high-end CPUs and up
to 64 GB of RAM to accommodate new services such as
intelligent analytics at the edge of the network. We envision
all of these devices (residential CPEs, home routers and IoT
gateways) along with other in-network NFV servers to be part
of a distributed NFV infrastructure.

B. Related NFV platforms

While the network edge has many benefits, traditional NFV
platforms have been built on top of commodity servers, mainly
exploiting Virtual Machines (VM)s (using technologies such
as, e.g., XEN or KVM) for vNFs. Table II presents a summary
of the features supported by some existing solutions that more
closely relate to the scope of our work. The information
presented reflects the public information available at the time
of writing.

Cloud4NFV [5] is a platform that promises to deliver a
novel service to end customers by building on top of cloud,
SDN and WAN technologies. Although we share a similar
vision with Cloud4NFV in providing end-to-end service man-
agement with function chaining and traffic steering, we advo-
cate the use of containers for vNFs, support roaming vNFs, and
exploit the capabilities of low-cost edge devices distributed at
provider’s scale. The UNIFY [6] and T-NOVA [7] research
projects share a similar vision of unifying the cloud and
provider networks by implementing a "Network Functions as a
Service" system. The OPNFV Linux foundation project is the
most popular open source NFV platform with support and de-
ployments from numerous vendors and large-scale providers.
While all these platforms have made important contributions
to the field, none of them have presented a container-based,
edge-centric and mobility-focused NFV system so far.

III. CONTAINER NETWORK FUNCTIONS

Recently, new, lightweight virtualization technologies have
been proposed for NFV, including containers, specialized VMs
(unikernels) and minimalistic distribution of general-purpose
VMs. These lightweight technologies could typically avoid
the hardware requirements and overheads associated with
hypervisors and VMs.

IEEE COMMUNICATIONS MAGAZINE, ADVANCES IN NETWORKING SOFTWARE, JUNE 2017 3

GNF Cloud4NFV [5] UNIFY [6] T-NOVA [7] OPNFV
Virtualization Technology Container VM VM VM VM

End-to-End Service Mgmt Yes Yes Yes Yes Yes

Distributed infrastructure Yes Yes Yes Yes Yes

Traffic Steering Yes Yes Yes No Yes

Runs on the network edge Yes No No No No

SFC support Yes Yes Yes No Yes

Roaming vNFs Yes No No No No

TABLE II: Summary of existing approaches

A. NF virtualization alternatives
As their main advantage, traditional VMs (used by, e.g.,

the Cloud4NFV [5] platform) allow vNF users to specify
their operating system for each individual network function,
while specialized VMs (used by the ClickOS [8] system)
and containers (used by GNF) need to run on a specific
platform. In case of specialized VMs, vNFs are compiled
to a binary that can only be executed on a purpose-built
hypervisor. While this approach provides high performance,
depending on a custom hypervisor limits deployability and,
moreover, specialized VMs restrict vNFs that need to be
implemented on a specific software environment (i.e., Click
in terms of ClickOs). We believe that containers are a good
compromise between specialized and commodity VMs as they
allow generic software to be used for vNFs. At the same time,
they incur significantly lower overhead than traditional VMs
and can be deployed in any Linux environment (available
from commodity routers to high-end servers) with similar
performances to the host machine. Similar to specialized
VMs, containers also allow much higher network function-
to-host density and smaller footprint at the cost of reduced
isolation. Using containers, commodity compute devices (or
public cloud VMs) are able to host up to hundreds of vNFs
as shown in [9], [10].

B. Performance of container vNFs
In Figure 2, we highlight some basic characteristics of

container vNFs that we measured on a commodity Intel i7
server with 16GB of memory. While these measurements
highlight performance characteristics most relevant to our
framework and use-cases, we refer interested readers to a more
comprehensive evaluation of container-based vNFs reported
in [10] [11].

1) Delay: Keeping the delay introduced by vNFs low is
important in order to implement transparent services and there-
fore it is a key benchmark for vNF technologies. In Figure 2
(a), we express the delay introduced by different virtualization
platforms through showing idle round-trip-time (RTT). While
ClickOS reaches slightly lower delay than containers, ClickOS
is built on top of a modified, specialized hypervisor that
optimises packet forwarding performance. On the other hand,
container-based functions use unmodified containers on a
standard Linux kernel, hence allowing deployment on devices
that do not support hardware virtualization (e.g., all the CPE
devices and home routers). As it is also shown, other VM-
based technologies such as KVM or XEN VMs result in a

much higher delay, which is mainly attributed to the packet
copy from the hypervisor to the VMs.

2) Instantiation time: In order to provide high flexibility
for placement and vNF migration, instantiation time is crucial.
Figure 2 (b) shows the time required to create, start, and stop
containers versus creating XEN VMs. As shown, 50 container
vNFs can be created and started in 10 seconds, while it takes
more than 40 seconds just to create the same amount of XEN
VMs that have not even booted up. Clearly, traditional VM
technologies are not suitable for highly multiplexed, highly
mobile vNFs, since roaming clients would require new vNFs
to be set up and ready to forward traffic in a matter of seconds.

3) Memory requirements: Since we are designing vNFs for
devices with ca. 512 MB of memory (as shown in Table I), it
is important to compare memory requirements of containers
with other virtualization technologies. Here, we have chosen to
compare only with ClickOS specialized VMs, since traditional
VMs would consume memory in the order of 100s of MBs
per VM (depending on the installed OS and the statically
assigned memory). As it is highlighted in Figure 2 (c), the
idle memory requirement for one container is about 2.21MB,
which linearly scales to only 221MB with 100 idle containers.
As it is also shown, ClickOS requires more than twice the
amount of memory per vNF.

IV. GLASGOW NETWORK FUNCTIONS

Glasgow Network Functions (GNF)2 [12], [9], [4] is a
container-based NFV platform designed for next generation
networks. It exploits lightweight, container vNFs deployed
as close to the users as possible by using a programmable
network edge. GNF has the following main characteristics:

Container-based: vNFs are encapsulated in lightweight
Linux containers to provide fast instantiation time, platform-
independence, high throughput and low resource utilization.

Minimal footprint: GNF vNFs runs at very low-cost (e.g.,
taking only a few MBs of memory), allowing its deployment
on commodity and low-end devices that do not support
hardware-accelerated virtualization.

Support for vNF roaming: With its small footprint and
encapsulated functions, GNF vNFs seamlessly follow users
between cells, providing a consistent and location-transparent
service.

End-to-end transparent traffic steering: Providers can

2https://netlab.dcs.gla.ac.uk/projects/glasgow-network-functions (Accessed
on: 05/03/2017)

IEEE COMMUNICATIONS MAGAZINE, ADVANCES IN NETWORKING SOFTWARE, JUNE 2017 4

 0

 20

 40

 60

 80

 100

 120

XEN dom0 ClickOS Container KVM virtio XEN domU KVM e1000

D
e
la

y
 (

µ
s
)

(a) Idle ping delays

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

s
)

Number of containers

create XEN VM
create & start container

start container
stop container

(b) Create, start and stop times

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 10 20 30 40 50 60 70 80 90 100

M
e
m

o
ry

 U
s
a
g
e
 (

M
B

)

Number of containers

Container
ClickOS

(c) Idle memory consumption of container NFs

Fig. 2: Performance evaluation of container NFs.

attach and remove vNF chains transparently without adversely
impacting the flow of traffic.

Figure 3 provides a high level overview of the proposed
system. As shown, the overall architecture is organized in four
planes: infrastructure plane (consisting of the edge devices and
the central NFV infrastructure where vNFs can be hosted), the
virtual infrastructure management plane (VIM), orchestration
plane, and a high-level service plane. We provide more de-
tails below on three planes where GNF resides: the service,
orchestration and VIM planes.

A. Service plane

The service plane provides high-level administrator access
to GNF. It allows providers to either directly call the GNF
Manager API or use the User Interface to manage vNF chains.

The GNF User Interface (UI) gives a graphical represen-
tation of all the connected edge devices as well as all the
connected User Equipment (UE). The UI operates by calling
the REST API of the Manager, and gives the ability to specify
vNF chains and assign them to selected traffic of UE. Traffic
to be forwarded through vNF chains can be selected with
OpenFlow 1.3 match properties [13]. For instance, an operator
can specify an intrusion detection vNF to be assigned to
all HTTP (port 80) traffic from a particular mobile phone
(identified by its MAC address).

Apart from creating vNF chains and assigning them to
mobile clients, the UI also displays notifications sent from
the vNFs. As an example, a notification can tell the provider
if an intrusion has been detected by any of the intrusion
detection vNFs. The notifications received from the vNFs are
linked to the mobile clients that help catching users performing
malicious activity. Notifications can be acknowledged, deleted,
and muted for a specific vNF by the operator.

B. Orchestration plane

The orchestration plane is implemented in the GNF Man-
ager that has network-wide knowledge of all vNF locations
and usage statistics from all managed devices. The Manager
provides a set of REST APIs to start, stop and migrate
container vNFs, and keeps a live HTTP connection with all
the Agents to retrieve health statistics used by the orchestration
algorithms. The Manager corresponds to the NFV Orchestrator

(NFVO) component of the ETSI MANO architecture [1]. In
our proof-of-concept implementation, Agents send connection
events, WiFi signal statistics (signal strength, packet counters),
and CPU and memory utilization of the device read from
Linux kernel statistics. Also, the Manager stores notifications
sent from the vNFs (relayed through the Agent) and provides
this information to the User Interface.

As the network-wide location of all vNFs and temporal
load statistics from all edge devices and the central NFV
infrastructure are available at the Manager, an orchestration
algorithm is used to allocate new vNFs to optimal locations.
When a new vNF is requested, GNF generally tries to host the
vNF as close as possible to the user to save the most in overall
network utilization. If no edge device in close proximity is
suitable, GNF hosts the vNF in the central NFV infrastructure.
When a user migrates between edge devices and has vNFs
associated or the utilization of one of the edge devices changes
(drops down or increases by 15%), GNF runs the orchestration
algorithms again for the corresponding vNF chains (for the
vNF chains of the user or the vNF chains associated with the
edge device) to optimise placement.

C. Virtual Infrastructure Management plane

This plane of the architecture handles the network connec-
tivity between edge devices (and a central NFV infrastructure)
and the management (start, stop, migrate, remove, upgrade) of
vNFs running on these devices. The two main components
performing these actions are the Agent and the Network
Controller detailed here alongside with details on the traffic
classification used in GNF.

1) Agent: The Agent is a lightweight daemon running
on the edge devices and at the central NFV infrastructure
managed by the provider. It is responsible for the instantiation
of the vNFs, and for reporting periodically the state of the
device to the Manager. The Agent corresponds to the VNF
Manager (VNFM) and Virtual Infrastructure Manager (VIM)
components of the ETSI MANO architecture [1].

When a new vNF is requested by a user, the Manager
notifies the most suitable Agent which retrieves (if not already
available locally) the NF from a central repository and starts
the vNF in a container. If the Agent is hosted on an edge device
that handles user connections, it also listens and reports all
client connections to the Manager by subscribing for instance

IEEE COMMUNICATIONS MAGAZINE, ADVANCES IN NETWORKING SOFTWARE, JUNE 2017 5

Fig. 3: The GNF platform - an overview

to HostAPD (Host Access Point Daemon) events. In case a
client leaves the edge (e.g., user roams to an other edge device
or disconnects from the network), the Manager gets notified
to either stop, re-locate or leave the vNF running at the same
edge. When a client is connected, the Manager is notified to
decide whether vNFs need to be started for this client or not.

On top of the lifecycle management of vNFs, the Agent
is responsible for setting up the containers’ virtual interfaces
inside the hosting devices. In GNF, all container vNFs are
connected to a local software switch (Open vSwitch) by two
virtual Ethernet pairs, where one interface pair is used to
receive traffic at the vNF and the other is used to send traffic
from the vNF. The connection between edge devices is done
by the Network Controller.

2) Network Controller: The Network Controller is an SDN
controller that manages transparent traffic redirection between
edge devices and the central NFV infrastructure that spans
across the provider’s network. This component is built on top
of OpenDaylight, an open-source, carrier-grade SDN platform
that gained acceptance from telco providers. Our OpenDay-
light module uses OpenFlow to manage traffic redirection
by inserting/deleting flow entries that do not modify the
original packets. We have implemented a transparent, hop-
by-hop redirection (that does not break existing connections)
through the provider’s network where flow entries are match-
ing on input ports and forwarding packets on output ports,
however, tunneling techniques can also be used to manage
traffic between distributed Open vSwitch instances.

3) Traffic classification: Classification is required to match
and forward packets to appropriate vNFs. To support fine-
grained yet standard and high-performance classification, GNF
relies on OpenFlow 1.3 classifiers that allow packets to be
matched on properties such as input port, Ethernet, MPLS,
ARP, IP, TCP and UDP headers. Traffic classification can
also exploit flow priorities provided by OpenFlow, meaning
that operators can set overlapping classifiers with different
priorities.

V. USE CASES

In this section, we present three example use cases of the
proposed GNF platform.

A. IoT DDoS mitigation

The Internet of Things (IoT) is a proposed development
where everyday objects run software equipped with network
connectivity that allows them to send and receive data. Re-
cently, there has been an increase of such devices in billions
of households and in many "smart cities" installations. Ex-
ample devices of this architecture include security cameras,
lightbulbs, smart TVs, weather sensors.

Recently, a historically large number of distributed denial-
of-service (DDoS) attacks have been built on exploiting
vulnerabilities of insecure routers, IP cameras, digital video
recorders and other unprotected devices. This malware, dubbed
"Mirai", spread to vulnerable devices by continuously scan-
ning the Internet for IoT systems protected by factory default
or hard-coded usernames and passwords. In one of the recent
attacks, an Akamai-hosted website peaked at an unprecedented
665 Gbps (and 143m pps), and resulted in the website taken of-
fline due to the financial implications of the extensive network
utilization3. Another similar, unseen IoT DDoS attack on 21st

October 2016 has caused widespread disruption of legitimate
Internet activity since insecured IoT devices directed large
amount of bogus traffic to DNS services4.

We advocate that such distributed attacks from IoT devices
can be efficiently mitigated by providers with a distributed
NFV platform (similar to the one proposed in this article) that
utilises the network edge as the first point of controlled entry
to the provider’s network. As a GNF vNF can be deployed
on generic home or IoT gateways (also called as "capillary
gateways"), malicious traffic can be blocked in a matter of
seconds by creating a new iptables-based GNF vNF and setting
up DROP rules on the selected traffic. Blocking traffic at
the customer edge is not only easy even after the attack is
launched, but it also avoids unnecessary core network utiliza-
tion that costs millions of dollars to serve. Moreover, edge
vNFs can reduce the complexity of securing new applications
and devices in the future by automating proactive security
configuration in-the-network.

3https://blogs.akamai.com/2016/10/620-gbps-attack-post-mortem.html (Ac-
cessed on: 05/03/2017)

4https://www.theguardian.com/technology/2016/oct/21/ddos-attack-dyn-
internet-denial-service (Accessed on: 05/03/2017)

IEEE COMMUNICATIONS MAGAZINE, ADVANCES IN NETWORKING SOFTWARE, JUNE 2017 6

B. Distributed, on-demand measurement and troubleshooting

Current telecommunication networks face the difficult task
of maintaining an increasingly complex network and at the
same time introducing new technologies and services while
keeping expenditure low. According to recent studies, config-
uration of network access control is one of the most complex
and error-prone network management tasks that are hard to
identify (unless a user complains) and require highly skilled
engineers to fix [14]. As these misconfigurations become
the main source of network unreachability and vulnerability,
providers seek ways to perform customer-centric and auto-
mated troubleshooting of their network.

Through using a platform like GNF, operators can install
small vNFs at different points in the network (e.g., customer
edge or VNF servers at the core) that perform basic trou-
bleshooting actions using simple tools like ping, traceroute or
tcpdump, that are lightweight and are available in a Linux
kernel. While performing similar actions today takes long
manual setup effort and involvement of an engineer, GNF
can allow collecting troubleshooting data (alarms, routing
tables, configuration files, etc.) from multiple points in the
network in an automated or on-demand fashion. This can
reduce operational expenses and result in a faster problem
identification and mitigation. For proof of concept, we have
implemented network monitoring vNFs for this use-case that
can be found in our GitHub repository5.

C. Roaming Network Functions

5G cellular systems are expected to deploy and overlap
different types of cells, such as small/spot cells that utilise
high frequency (5 GHz or above) to support high capacity
transmission with limited spectrum sharing. While these small
cells offer high performance, they increase roaming between
cells. Hence, to efficiently support users with customized
network services, we advocate that network services should
also migrate between cells, following the UE.

As shown in Figure 4, GNF allows vNF chains to be
associated with a particular UE. In the presented scenario, a
simple chain with 2 vNFs is assigned to any traffic leaving the
UE. As shown, once the UE is connected, these services can be
co-located to a nearest edge device, called Home Router 1. In
case of roaming between cells, the GNF Manager recomputes
the allocation of vNFs and initiates migration if a more optimal
placement can be reached. In our example case, one vNF is
placed to the edge device closer to the user, while one vNF has
been migrated to a central NFV infrastructure (since the closest
edge device is considered overloaded by the GNF Manager).
This migration scenario has been demonstrated in our previous
work [4] with rate limiters, firewalls and parental filter vNFs.

VI. DISCUSSION

While containers provide many benefits for NFV, there are
technology-related challenges to be considered when choosing
containers as a platform for vNFs.

5https://github.com/UofG-netlab/gnf-dockerfiles (Accessed on: 05/03/17)

A. vNFs for the network edge

As edge devices have relatively low capabilities compared
to traditional NFV servers, some of today’s vNFs cannot be
run on the edge. However, according to recent research [15],
many virtual appliances in service provider data centers are
simple packet or application firewalls and gateways that can
be implemented on these resource-constrained devices. Also,
it is important to note that next generation, container-based
vNFs will be tailored to a single or a small group of clients
(providing customized services), while traditional vNFs handle
aggregate traffic from many clients.

B. Security and isolation

Containers typically offer weaker isolation between co-
located instances than traditional VMs. While this has many
benefits on the performance and agility of the vNFs, it can
potentially result in interference between vNFs if deployed
without proper resource guarantees, as analyzed in detail by
ETSI [11]. However, deploying with OS-level security mea-
sures (such as, e.g., using SELinux with access control security
policies support, and using AppArmor to set per-program
restricted access profiles) containers can be mature enough
for production environments. Recently, security improvements
have also focused on minimal host OS distributions for reduc-
ing the attack surface while executing host management tools
in isolated management containers [11].

C. Management framework

Containers for the network edge introduce additional man-
agement and orchestration challenges, since many small vNFs
can potentially replace the few large vNFs that we see in
NFV frameworks today (also known as the micro-services
architecture). Moreover, vNFs will need to be managed over a
distributed, heterogeneous infrastructure that the edge forms,
which further increases the complexity of placement and
orchestration algorithms.

VII. CONCLUSION

Most NFV platforms have been targeted towards exploiting
traditional or specialized VMs for hosting vNFs typically
found in remote, over-provisioned data centers. However, as
a programmable network edge is gaining traction with the
rise of the next generation mobile networks (5G), there is
a need for lightweight NFV technologies that can exploit
the benefits the edge offers (e.g., localized, high-throughput,
low-latency network connectivity). In order to bring NFV to
the network edge, we have proposed the Glasgow Network
Functions (GNF), an NFV platform built on top of standard
Linux containers that are lightweight enough to run on a
variety of edge devices. By running GNF vNFs on the edge of
next-generation enterprise, mobile, and IoT networks, service
providers have the ability to run customized, high-performance
network services while reducing the increasing cost of core
network management and operations.

IEEE COMMUNICATIONS MAGAZINE, ADVANCES IN NETWORKING SOFTWARE, JUNE 2017 7

Fig. 4: vNF migration timeline

ACKNOWLEDGMENTS

The authors would like to thank Simon Jouët for his
contributions to earlier versions of GNF. The work has
been supported in part by the UK Engineering and Physical
Sciences Research Council (EPSRC) projects EP/L026015/1,
EP/N033957/1, EP/P004024/1, and EP/L005255/1, and by the
European Cooperation in Science and Technology (COST)
Action CA 15127: RECODIS – Resilient communication
services protecting end-user applications from disaster-based
failures.

REFERENCES

[1] M. Chiosi, et al., Network Functions Virtualisation: An Introduction,
Benefits, Enablers, Challenges & Call for Action, ETSI White paper
(2012).

[2] S. Abdelwahab, B. Hamdaoui, M. Guizani, T. Znati, Network function
virtualization in 5G, IEEE Communications Magazine 54 (4) (2016)
84–91.

[3] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, V. Young, Mobile edge
computing - a key technology towards 5g, ETSI White Paper 11 (2015).

[4] R. Cziva, S. Jouet, D. P. Pezaros, Roaming Edge vNFs using Glasgow
Network Functions, in: Proc. of ACM SIGCOMM, 2016, pp. 601–602.

[5] J. Soares, M. Dias, J. Carapinha, B. Parreira, S. Sargento, Cloud4nfv:
A platform for virtual network functions, in: Proc. of IEEE CloudNet,
2014, pp. 288–293.

[6] A. Császár, W. John, M. Kind, C. Meirosu, G. Pongrácz, D. Staessens,
A. Takács, F.-J. Westphal, Unifying cloud and carrier network: Eu fp7
project unify, in: Proc. of IEEE/ACM UCC, 2013, pp. 452–457.

[7] G. Xilouris, M. A. Kourtis, M. J. McGrath, V. Riccobene, G. Petralia,
E. Markakis, E. Palis, A. Georgios, G. Gardikis, J. F. Riera, A. Ramos,
J. Bonnet, T-NOVA: Network functions as-a-service over virtualised
infrastructures, in: Proc. of IEEE NFV-SDN, 2015, pp. 13–14.

[8] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
F. Huici, ClickOS and the art of network function virtualization, in:
Proc. of USENIX NSDI, 2014, pp. 459–473.

[9] R. Cziva, S. Jouet, D. P. Pezaros, GNFC: Towards Network Function
Cloudification, in: Proc. of 2015 IEEE NFV-SDN, 2015, pp. 142–148.

[10] A. Ghanwani, D. Krishnaswamy, R. R. Krishnan, P. Willis, N. Sriram,
A. Chaudhary, F. Huici, An Analysis of Lightweight Virtualization
Technologies for NFV, Internet-Draft draft-natarajan-nfvrg-containers-
for-nfv-03 (Accessed on: 06/03/2017), Internet Engineering Task Force
(Jul. 2016).

[11] ETSI, DGS/NFV-EVE004. Network Functions Virtualisation (NFV);
Virtualisation Technologies; Report on the application of Different
Virtualisation Technologies in the NFV Framework (2016).

[12] R. Cziva, S. Jouet, K. J. S. White, D. P. Pezaros, Container-based
network function virtualization for software-defined networks, in: Proc.
of IEEE ISCC, 2015, pp. 415–420.

[13] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, J. Turner, OpenFlow: Enabling Innovation
in Campus Networks, ACM SIGCOMM Computer Communication
Review 38 (2) (2008) 69–74.

[14] R. Alimi, Y. Wang, Y. R. Yang, Shadow configuration as a network
management primitive, ACM SIGCOMM Computer Communication
Review 38 (4) (2008) 111–122.

[15] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, V. Sekar,
Making middleboxes someone else’s problem: network processing as
a cloud service, ACM SIGCOMM Computer Communication Review
42 (4) (2012) 13–24.

Richard Cziva [M] (r.cziva.1@research.gla.ac.uk) received a B.Sc. degree
in Computer Engineering from the Budapest University of Technology and
Economics, Hungary, in 2013. He is a final-year PhD student at the School of
Computing Science, University of Glasgow. His research focuses on the devel-
opment and orchestration of lightweight, container-based NFV frameworks.
He has worked with wide-area network providers such as NORDUnet and
REANNZ, won numerous travel grants, and received two best paper awards.

IEEE COMMUNICATIONS MAGAZINE, ADVANCES IN NETWORKING SOFTWARE, JUNE 2017 8

Dimitrios P. Pezaros [SM] (dimitrios.pezaros@glasgow.ac.uk) is Senior
Lecturer (Associate Professor) and director of the Networked Systems Re-
search Laboratory (netlab) at the School of Computing Science, University
of Glasgow. His research focuses on the resilient and efficient operation
of future virtualized networked infrastructures through the exploitation of
programmable technologies such as SDN and NFV. He is a Chartered
Engineer, and holds B.Sc. (2000) and Ph.D. (2005) degrees in Computer
Science from Lancaster University, UK.

