
Journal of Cloud Computing:
Advances, Systems and Applications

Zhou et al. Journal of Cloud Computing: Advances, Systems

and Applications (2021) 10:16

https://doi.org/10.1186/s13677-021-00231-z

RESEARCH Open Access

Container orchestration on HPC systems
through Kubernetes
Naweiluo Zhou1* , Yiannis Georgiou2, Marcin Pospieszny3, Li Zhong1, Huan Zhou1,

Christoph Niethammer1, Branislav Pejak4, Oskar Marko4 and Dennis Hoppe1

Abstract

Containerisation demonstrates its efficiency in application deployment in Cloud Computing. Containers can
encapsulate complex programs with their dependencies in isolated environments making applications more
portable, hence are being adopted in High Performance Computing (HPC) clusters. Singularity, initially designed for
HPC systems, has become their de facto standard container runtime. Nevertheless, conventional HPC workload
managers lack micro-service support and deeply-integrated container management, as opposed to container
orchestrators. We introduce a Torque-Operator which serves as a bridge between HPC workload manager (TORQUE)
and container orchestrator (Kubernetes). We propose a hybrid architecture that integrates HPC and Cloud clusters
seamlessly with little interference to HPC systems where container orchestration is performed on two levels.

Keywords: Cloud computing, HPC workload manager, Container orchestration, TORQUE, Kubernetes, Singularity

Introduction
Cloud computing demands high-portability. Container-

isation ensures environment compatibility by encapsu-

lating applications together with their libraries, config-

uration files and other dependencies [1], thus enabling

users to move and deploy programs easily among clusters.

Containerisation is a virtualisation technology [2]. Rather

than simulating the holistic operating system (OS) as in

a Virtual Machine (VM), containers only share the host

OS. This feature makes containers more lightweight than

VMs. Containers are dedicated to run micro-services [3]

and one container mostly hosts one application. Never-

theless, containerised applications can become complex,

e.g. thousands of separate containers may be required in

production. The production can benefit from container

orchestrators that can provide efficient environment pro-

visioning and auto-scaling [4].

Big Data Analytics hosted on Cloud are compute-

intensive or data-intensive, mainly due to deployment

*Correspondence: naweiluo.zhou@hlrs.de
1High Performance Computing Center Stuttgart (HLRS), University of Stuttgart,
Stuttgart, Germany
Full list of author information is available at the end of the article

of Artificial Intelligence (AI) or Machine Learning (ML)

applications, which demand extremely fast knowledge

extraction in order to make rapid and accurate deci-

sions. High Performance Computing (HPC) systems are

traditionally applied to perform large-scale financial and

engineering simulation that demand low latency and high

throughput. HPC is not ready to fully support AI appli-

cations due to their complex environment requirements.

In the muti-tenant environment of an HPC cluster, it is

difficult to install new software packages since this may

alter working environments of existing users and even

raise security concerns. Furthermore, HPC systems, espe-

cially HPC production systems, usually provide a com-

plete stack of software packages which often do not allow

user customisation. Containerising AI applications can be

a potential solution.

Nevertheless, typical HPC jobs are large workloads that

are normally hardware-specific. HPC jobs are often sub-

mitted to a batch queue within a workload manager where

jobs wait to be scheduled from minutes to days. An HPC

cluster is typically equipped with a workload manager. A

workloadmanager is composed of a resource manager and

a job scheduler. A resourcemanager [5] allocates resources

© The Author(s). 2021Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-021-00231-z&domain=pdf
http://orcid.org/0000-0001-9329-4500
mailto: naweiluo.zhou@hlrs.de
http://creativecommons.org/licenses/by/4.0/

Zhou et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:16 Page 2 of 14

(e.g. CPU and memory), schedules jobs and guarantees

no interference from other user processes. A job sched-

uler determines the job priorities, enforces resource limits

and dispatches jobs to available nodes [6]. A container

orchestrator, such as Kubernetes [3], on its own does not

address all the requirements of HPC systems, therefore,

cannot replace existing workload managers in HPC cen-

tres. HPC workload managers, such as TORQUE, lack

micro-service support and deeply-integrated container

management capabilities in which container orchestrators

manifest their efficiency.

This work contributes to the following aspects.

• We present a hybrid architecture that is composed of

an HPC cluster and a Cloud cluster, where container

orchestration on the HPC cluster can be performed

by the container orchestrator (i.e. Kubernetes)

located in the Cloud cluster. Little modification is

required on the HPC systems;
• We propose a dual-level scheduling for container

jobs on HPC systems;
• We describe the implementation of a tool named

Torque-Operator which bridges TORQUE and

Kubernetes.

The rest of the article is organised as follows. First,

we present the background on the key technologies and

the challenges in “Background” section. Next, “Related

work” section briefly reviews the work of state of the art.

We describe the proposed architecture and the structure

of Torque-Operator in “Architecture and tool descrip-

tion” section. Following that, performance evaluation is

given in “Use cases” section. Last, “Conclusion and future

work” section concludes this paper and proposes future

work.

Background
This section presents a concise background of technolo-

gies and techniques on orchestration of HPC and Cloud

clusters, which leads to the motivation description of con-

necting Cloud clusters with HPC clusters. Orchestration

under this context means automated configuration, coor-

dination and management of HPC systems and Cloud

computing systems.

Workloadmanagers for HPC

A key component of an HPC system is its workload man-

ager. Slurm [7] and TORQUE [8] are the two main-stream

workload managers. Often TORQUE is coupled with a

complex job scheduler, e.g. Moab [9].

TORQUE

The structure of a TORQUE managed cluster consists of

a head node and many compute nodes as illustrated in

Fig. 1 where only three computer nodes are shown. The

Fig. 1 TORQUE structure. pbs_server, scheduler and pbs_mom are the
daemons running on the nodes. Mother Superior is the first node on
the node list that finds by the scheduler

head node (coloured in blue in Fig. 1) controls the entire

TORQUE system. A pbs_server daemon and a job sched-

uler daemon are located on the head node. The batch job

is submitted to the head node (in some cases, the job is

first submitted to a login node and then transferred to the

head node). A node list that records the configured com-

pute nodes in the cluster is maintained on the head node.

We briefly describe the procedure of job submission on

TORQUE as follows:

1. The job is submitted to the head node by the

command qsub. The job is normally written in a

PBS (Portable Batch System) script. A job ID will be

returned to the user as the standard output of qsub.

2. The job record, which incorporates a job ID and the

job attributes, is generated and passed to pbs_server.

3. pbs_server transfers the job record to the job

scheduler (e.g. Moab) daemon. The job scheduler

daemon adds the job into a job queue and applies a

scheduling algorithm to it (e.g. FIFO) which

determines the job priority and its resource

assignment.

4. When the scheduler finds the list of suitable nodes

for the job, it returns the job information to

pbs_server. The first node on this list becomes the

Mother superior and the rest are called sister MOMs
or sister nodes. pbs_server allocates the resources
and passes the job control as well as execution

information to the pbs_mom daemon installed on the

mom superior node instructing to launch the job on

the assigned compute nodes.

5. The pbs_mom daemons on the compute nodes

manage the execution of jobs and monitors resource

usage. pbs_mom will capture all the outputs and

direct them to stdout and stderr into the output and

Zhou et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:16 Page 3 of 14

error files of the job and copy them to the designated

location when the job completes successfully. The

job status (completed or terminated) will be passed

to pbs_server by pbs_mom. The job information will

be updated.

Before and after a job execution, TORQUE executes

prologue and epilogue scripts to prepare systems and per-

form node health check, append text to output and error

log files, clean up system, etc.

In TORQUE, nodes are partitioned into different groups

called queues. In each queue, the administrator sets limits

for resources such as walltime and job size. This feature

can be useful for job scheduling in a large HPC clus-

ter where nodes are heterogeneous or certain nodes are

reserved for special users.

Slurm

The structure of a Slurm [7] managed cluster is com-

posed of one or two Slurm servers and many compute

nodes. Figure 2 illustrates its structure. A Slurm server

hosts the slurmctld daemon which is responsible for clus-

ter resource and job management. Slurm servers and the

corresponding slurmctld daemons can be deployed in

active/passive mode in order to provide service of high

reliability for computing clusters. Each compute node

hosts one instance of the slurmd daemon, which is respon-

sible for job staging and execution. There are additional

daemons, e.g. slurmdbd that allows to collect and record

accounting information formultiple Slurm-managed clus-

ters and slurmrestd that can be used to interact with

Slurm through a RESTAPI. The Slurm resource list is held

as a part of the slurm.conf file located on Slurm server

nodes, which contains a list of nodes including features

(e.g. CPU speed and model, amount of installed RAM)

and configured partitions including partition names, list

of associated nodes and priorities.

Fig. 2 Slurm structure [7]

Implementation of AI in HPC

The advancement of ML and Deep Learning (DL) have

brought higher performance and more accurate solutions

to applications in different domains, e.g. computer vision

and natural language processing. ML and DL algorithms

are often data intensive and computation demanding.

Industry and academia seek the solutions in Cloud com-

puting, as it allows large datasets to be easily ingested

and managed to train algorithms, and enables ML and

DL models to scale efficiently at low cost. Compared with

Cloud, HPC systems show the advantages in computa-

tional power, storage and security [10]. Exploiting HPC

infrastructures for ML and DL training is becoming a

topic of increasing importance [11].

AI applications are usually developed with high level

scripting languages or frameworks, e.g. TensorFlow [12]

and Pytorch [13], which often require connections to

external systems to download a list of open-source soft-

ware packages during application execution. For example,

an AI application written in Python cannot be com-

piled into an executable that includes all the depen-

dencies necessary for execution as in C/C++, therefore,

the developers need flexibility to customise their execu-

tion environments. Since HPC environments, especially

on HPC production systems, are often based on closed

source applications and their users have restricted account

privileges and security restrictions [14], for instance the

access to external systems is blocked. Deployment of AI

applications on HPC infrastructure is challenging. Con-

tainerisation can be a potential candidate, which enables

easy transition of AI workloads to HPC while fully taking

advantage of HPC hardware and the optimised libraries of

AI applications without compromising security on HPC

systems.

Containerisation

A container is an OS level virtualisation technique that

provides application execution environment separation.

Figure 3 differentiates the architecture of VMs and con-

tainers. A traditional VM loads an entire guest OS into

memory, which can occupy gigabytes of storage space

on the host and requires a significant fraction of sys-

tem resources to run. Per contra, a container can utilise

the dependencies on its host OS. The host merely needs

to start new processes to boot new containers [15], thus

making start-up time of a container similar to that of a

native application [16–22]. Apart from portability, con-

tainers can also guarantee reproducibility, i.e. once a

workflow has been defined and stored in the container, its

included working environment remains unaltered regard-

less of its running occurrences. Containers can run inside

VMs as this is the case in most of the Cloud clusters [23].

There are multiple technologies that realise the concept

of containers, e.g. Docker [24], Singularity [25], Shifter

Zhou et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:16 Page 4 of 14

Fig. 3 Structure VMs and containers. On the VM side, the virtualisation
layer often appears to be Hypervisor while on the container side it is
the container runtime

[26], Charlie Cloud [27], Linux LXC [28] and Rkt Core OS

[18]. Docker may be the most popular one on Cloud. Sin-

gularity developed for HPC systems shows the following

merits:

• Run with user privileges and need no daemon

process. Acquisition of root permission is only

necessary when building images, which can be

performed on user working computers;
• Seamless integration with HPC. Singularity natively

supports GPU, Message Passing Interface (MPI) [29]

and InfiniBand. In contrast with Docker, it demands

no additional network configurations;
• Portable via a single image file. Au contraire, Docker

is built up on top of layers of files.

Most Docker images can be converted to Singularity

images. Singularity has thereby become the standard con-

tainer runtime in practice for HPC systems.

HPC applications are often specifically optimised for

the nodes, which is not the case for containerised appli-

cations. Furthermore, not all containerised applications

can execute in parallel. Considering that performance is

essential for HPC applications, it poses the key question

on massive usage of containerised applications on HPC

clusters [30].

Container orchestration for cloud clusters

The complex containerised applications in production can

benefit immensely from container orchestrators that offer

[31–33]:

• Resource limit control. This feature reserves the CPU

and memory for a container, which restrains

interference among containers and provides

information for scheduling decisions;

• Scheduling. Determine the policies on how to

optimise the placement of containers on specific

nodes;
• Load balancing. Distribute the load among container

instances;
• Health check. Verify if a faulty container needs to be

destroyed or replaced;
• Fault tolerance. Create containers automatically if

applications or nodes fail;
• Auto-scaling. Add or remove containers

automatically.

Kubernetes [32] has a rapidly growing community and

ecosystem with numerous platforms being developed

upon it. Its architecture is composed of a master node

and many worker nodes. Kubernetes runs its containers

inside pods that are scheduled to the worker nodes. A pod

can encapsulate one or multiple containers. Kubernetes

provides its services by deployment that are created by

submission of yaml files. In the yaml file, users specify the

services and computation.

Kubernetes is based on a highly modular architecture

which abstracts the underlying infrastructure and allows

internal customisation, such as deployment of different

software defined network or storage solutions. It sup-

ports various Big-Data frameworks (e.g. Hadoop MapRe-

duce [34], Apache Spark [35] and Kafka [36]) and can

be connected with Ansible [37] which is a widely-used

software orchestration tool in Cloud clusters. Kubernetes

includes a powerful set of tools to control the life cycle of

applications, e.g. parameterised redeployment in case of

failures, state management, etc. Furthermore, Kubernetes

incorporates an advanced scheduling system which can

even specify different schedulers for each job. Kubernetes

supports software defined infrastructures1 and resource

disaggregation [38] by leveraging container-based deploy-

ment and particular drivers (e.g. Container Network

Interface driver) based on standardised interfaces. These

interfaces enable the definition of abstractions for fine-

grain control of computation, states and communication

in multi-tenant Cloud environment along with optimal

usage of the underlying hardware resources.

Related work
This paper extends our work-in-progress study [39]

that has briefly described the preliminary design of

the Torque-Operator and platform architecture, which

enables the convergence of HPC and Cloud systems. In

[39], a simple testing case was also given to illustrate

validation of the implementation. We herein extend the

1Software-defined infrastructure (SDI) is the definition of technical
computing infrastructure entirely under the control of software with no
operator or human intervention. It operates independent of any
hardware-specific dependencies and is programmatically extensible.

Zhou et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:16 Page 5 of 14

description of the platform architecture and the structure

of Torque-Operator. Furthermore, performance evalua-

tion is demonstrated by three ML use cases.

A few studies [1, 40, 41] have been carried out on con-

tainer orchestration for HPC clusters, since HPC systems

are just starting to adopt the containerisation technology.

Some works [39, 42, 43] have been performed on the gen-

eral issues of bridging the gap between conventional HPC

and service-oriented infrastructures. Nevertheless, litera-

ture has shown numerous works [31, 44–46] on container

orchestration for Cloud clusters, though this is out of the

scope for this paper.

Liu et al. [42] showed how to dynamically migrate com-

puting resources between HPC and OpenStack clusters

based on demand. At a higher level, IBM has demon-

strated the ability to run Kubernetes pods on Spectrum

LSF (an HPC workload manager).

Piras et al. [43] implemented a method that expanded

Kubernetes clusters onto HPC clusters through Grid

Engine (an HPC workload manager). Contrary to our

work, submission is performed by the PBS job to launch

Kubernetes jobs. Therefore, HPC nodes are added to

Kubernetes clusters by installing Kubernetes core com-

ponents (i.e. kubeadm, Kubelet) and Docker container

runtime on HPC nodes. On HPC, especially HPC produc-

tion systems, it is difficult to add new software packages

as this can cause security concerns and alter working

environment for current users.

Khan et al. [1] proposed to containerise HPC workloads

and install Mesos [47] and Marathon on HPC clusters

for resource management and container orchestration. Its

orchestration system can obtain the appropriate resources

satisfying the needs of requested services within defined

Quality-of-Service (QoS) parameters, which is considered

to be self-organised and self-managed meaning that users

do not need to specifically request resource reservation.

Nevertheless, this study has not shown insight into novel

strategies of container orchestration for HPC systems.

Julian et al. [40] proposed their prototype for container

orchestration in an HPC environment. A PBS-based HPC

cluster that can automatically scale up and down as load

demands by launching Docker containers using Moab

scheduler. Three containers serve as front-end system,

scheduler (it runs workload manager inside) and com-

pute node (launches pbs_mom daemon). More compute

node containers are scheduled when there are no suffi-

cient number of physical nodes. Unused containers are

destroyed via external Python scripts when jobs com-

plete. Similarly, an early study [41] described two models

that can orchestrate Docker containers using an HPC

resourcemanager. The formermodel launches a container

to mimic one compute node which holds all the pro-

cesses assigned to, whilst the latter boots a container per

process. However this work seems to be less appealing

to HPC systems. MPI applications dominate HPC pro-

grams, which can be automatically scaled with Singularity

runtime support.

Wrede et al. [48] performed their experiments on HPC

clusters using Docker Swarm as the container orchestra-

tor for automatic node scaling and using C++ algorithmic

skeleton library Muesli [49] for load balance. Neverthe-

less, its proposed working environment is targeted for

Cloud clusters. Usage of Docker cannot be easily extended

to HPC infrastructures especially to HPC production sys-

tems due to the security concerns.

Architecture and tool description
Traditional HPC workload managers lack efficiencies in

container scheduling and management, and often do not

provide integrated support for environment provision-

ing (i.e. infrastructure, configuration and dependency).

Table 1 compares the main differences between HPC

workload managers and container orchestrators.

Cloud clusters demonstrate flexibility in environment

customisation. The corresponding container orchestra-

tors, such as Kubernetes, show their advantages in con-

tainer management. In this section, we propose a plat-

form architecture that bridges Cloud and HPC clusters,

where users can customise the execution environment

on the Cloud cluster to develop and deploy their ser-

vice programs, meanwhile the compute-intensive or data-

intensive jobs can be scheduled to HPC clusters where

their performance could be significantly enhanced. The

jobs are co-scheduled and co-managed by both Kuber-

netes and TORQUE. More specifically, on the first-

level, the jobs are scheduled by Kubernetes and then by

TORQUE on the second level.

Architecture and the testbed setting

The platform consists of an HPC cluster with TORQUE

as its workload manager and a Cloud cluster with

Table 1 Comparison of HPC workload managers and container
orchestrators

HPC workload manager Container orchestrator

Deployment Batch queue (queueing
time from seconds to
days)

Often immediate

Workload type Binary Container, pod

Resource unit Bare-metal nodes Pods, VM nodes

Application
execution length

Run to completion Continuously running

Application
specifics

Distributed memory jobs
(e.g. MPI jobs)

Cloud micro services

DevOps
environment
provision

No Yes

Zhou et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:16 Page 6 of 14

Fig. 4 Platform architecture. The login node belongs to both the Kubernetes and TORQUE clusters. The HPC cluster encompasses only one queue in
the figure. The virtual node (inside the login node structure) on the right figure corresponds to the TORQUE queue on the left figure. Multiple virtual
nodes can be generated when multiple TORQUE queues exist

Kubernetes as its container orchestrator. Its architecture

is illustrated in Fig. 4 on the left. For simplicity, Fig. 4

shows a limited number of nodes and a single TORQUE

queue. However, the architecture is not limited to this

node number and can be extended to support more nodes

and TORQUE queues. The only requirement here is the

existence of one or more shared login nodes.

The HPC cluster is composed of a head node, com-

pute nodes (execute workload) and login nodes. The login

node highlighted in Fig. 4 plays the indispensable role of

bridging the TORQUE and Kubernetes clusters. It is a VM

node that serves as one of the worker nodes in the Kuber-

netes cluster (the Cloud cluster), meanwhile, it acts as a

login node for TORQUE. The login node only submits the

TORQUE job to the HPC cluster and is not included in the

TORQUE compute node list. Job submission on the HPC

cluster side will not be scheduled to this login node. The

Kubernetes cluster incorporates amaster node that sched-

ules the jobs to the worker nodes. The work nodes deliver

the services or perform computation. This architecture

brings the following merits:

• Provide a unified interface for users to access the

Cloud and the HPC clusters. Jobs are submitted in

the form of yaml ;
• Except Singularity, no additional software packages

are needed to be installed in the HPC system. Hence

it gives little impact on the working environment of

existing HPC users;
• Users have flexibility to run containerised and

non-containerised applications (on the HPC side);
• The performance of compute-intensive or

data-intensive applications can be significantly

improved via execution on the HPC cluster;

• Containers scheduled by Kubernetes to HPC clusters

can take advantage of the container scheduling

strategies of Kubernetes, where TORQUE lacks its

efficiency.

Architecture of torque-operator

We developed a tool named Torque-Operator that bridges

Kubernetes and TORQUE. Torque-Operator is an exten-

sion of WLM-Operator [50]. It connects with Kuber-

netes by creating a deployment called torque-operator on

the Kubernetes cluster as shown in Fig. 5. The tool is

written in the Golang programming language. A virtual

node (named torque-sycri-k8s-2-batch in Fig. 6) is cre-

ated, which corresponds to one TORQUE queue. Figure 6

shows the virtual node information. Virtual node is a con-

cept in Kubernetes. It is not a real worker node, however, it

contains the information of its corresponding HPC queue

(e.g. the number of nodes per queue) and can schedule

the jobs to real worker nodes. The virtual node connects

Kubernetes to other APIs and allows developers to deploy

pods and containers with their own APIs. The number of

virtual nodes can be multiple when more than one queue

exists on the TORQUE cluster. The services provided

by the deployment are carried out by four Singularity

containers which:

Fig. 5 The deployment of Torque-Operator. The deployment has been
running continuously to provide services

Zhou et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:16 Page 7 of 14

Fig. 6 The virtual node generated by Torque-Operator. Only one node label is displayed and the rest is omitted in the figure for simplicity

• generate the virtual node;
• fetch the queue information of the TORQUE cluster

and add the information to the virtual node as its node
label. A node label indicates the restrictions of a node.

The jobs that meet such restrictions can be scheduled

to the node. For example, the label of the virtual node

(wlm.sylabs.io/nodes = 2 in Fig. 6) denotes that the

TORQUE cluster contains 2 compute nodes, thus a

Kubernetes job which requests more than 2 compute

nodes will be in a pending status;
• launch TORQUE jobs to the Kubernetes cluster by

pods ;
• transfer the TORQUE jobs to the TORQUE cluster

and return the results obtained on the TORQUE

cluster to the directory which is specified in the yaml
file submitted by users as indicated in Fig. 7 Line 20.

Besides the four containers, Torque-Operator also

includes a Linux service program named red-box run-

ning on the login node as shown already in Fig. 4. Red-

box builds a Unix socket which allows data exchange

among the Kubernetes and TORQUE processes. Torque-

Operator introduces a new Kubernetes object kind i.e.

Torquejob. As users can use kubectl get pods to dis-

play the pod information, they can perform kubectl

get torquejob to show the status of jobs submitted

to TORQUE. Users can also view the status of TORQUE

jobs using the PBS commands qstat on the login node

(marked in red dashed line in Fig. 4).

Fig. 7 An example of the Kubernetes yaml script. The script encloses a
PBS script. Submission is performed as a normal yaml job submission,
i.e. $kubectl apply -f $HOME/cow_job.yaml

The PBS job script is encapsulated into a Kubernetes

yaml job script. The yaml script is submitted from

the login node. An example of the yaml script named

cow_job.yaml is illustrated in Fig. 7. The PBS job is

included from Line 7 to Line 14. More precisely, the job

requests 30 minutes walltime and one compute node. It

executes a Singularity image called lolcow.sif located

in the home directory, which is pulled from Syslab reg-

istry. Its results and error messages will be written in

low.out and low.err, respectively. Line 12 sets the

necessary PATH environment variable to find the Singu-

larity executable located in /usr/local/bin on the

HPC system.

The TORQUE job script part is abstracted by Toque-

Operator. A Kubernetes pod is generated to transfer

the PBS job specification to a scheduling queue of the

HPC cluster (e.g. waiting queue or test queue as in

TORQUE job scheduler, while the concept of queue

in Fig. 4 is the partition of nodes). Torque-Operator

invokes the TORQUE binary qsub that submits the job

to the TORQUE cluster. When the job completes, Torque-

Operator creates a Kubernetes pod which redirects the

results to the directory that the user specifies.

The yaml job submitted from the Kubernetes login node

is scheduled by the Kubernetes master node to the vir-

tual node. The virtual node transfers the abstracted jobs

to the TORQUE queue through the login node. Figure 8

illustrates the main procedures of container job submis-

sion and execution from the Kubernetes cluster to the

TORQUE cluster.

User permission management

With WLM-Operator [50], all submitted jobs will be exe-

cuted on the HPC cluster on behalf of a single user. This

gives performance limitation and causes security con-

cern especially in an HPC production system, as multiple

users may submit jobs simultaneously and their data con-

fidentiality cannot be guaranteed. Furthermore, we need

multi-user support in order to enable individual monitor-

ing, accounting, fair-share scheduling and other features

per single user or per group of users which are supported

by default on TORQUE. This is achieved in Torque-

Operator by providing a dynamic adaptation of the user

context through automatically reconfiguring the Kuber-

netes virtual node along with the corresponding red-box

socket (see Fig. 4) to use the right user privileges. The cur-

rent reconfiguration mechanism [51] brings multi-user

support that addresses the confidentiality issues, though

Zhou et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:16 Page 8 of 14

Fig. 8 The workflow of job execution procedure

it still lacks the capability of concurrent submissions from

multiple users. We propose to add this feature to a future

release of Torque-Operator.

Use cases
The proposed architecture and tool herein are imple-

mented in the testbed of the EU research project

CYBELE2. We present two use cases from the CYBELE

project for functionality validation and performance eval-

uation. The two use cases herein are named Pilot Wheat

Ear andPilot Soybean Farming, respectively. In addition,

we give the performance evaluation on an open-source

MPI benchmark: BPMF 3 (“Pilot and benchmark descrip-

tion” section). All the three applications are containerised

in Singularity. Table 2 lists the key software packages and

their dependencies encapsulated in Singlarity images for

the three applications.

It is straightforward to build a Singularity image which

is as easy as installing software packages in a Linux sys-

tem. We illustrate a snapshot of the Singularity build

script for Pilot Soybean Farming in Fig. 9 as an exam-

ple. The other two scripts carry the same principle. In

Fig. 9, the image is based on Ubuntu image version 18.04

as indicated in Line 2. Line 4 (%environment) starts

the section on definition of the environment variables that

will be set at runtime (from Line 5 to Line 8). Commands

in the %post (Line 10) section are executed after the base

OS (i.e. Ubuntu 18.04) has been installed at build time,

2CYBELE: Fostering Precision Agriculture and Livestock Farming through
Secure Access to Large-Scale HPC-Enabled Virtual Industrial
Experimentation Environment Empowering Scalable Big Data Analytics.
https://www.cybele-project.eu/
3https://github.com/ExaScience/bpmf/

Table 2 The key software packages and their dependencies
packed in Singularity images for each application

Use cases Software packages and dependencies

Pilot Wheat Ear Pytorch, Python,libjpeg,libpng-dev,libnccl2,
libibverbs,libnuma,librdmacm,libmlx4,libmlx5

Pilot Soybean Farming Python, Numpy, Pandas, gdal, scipy, scikit-
learn, openpyxl, xlrd

BPMF Open MPI

Software versions are omitted in the table

more specifically, from Line 11, all the necessary software

packages and dependencies are installed.

Pilot and benchmark description

Pilot Wheat Ear is targeted for provisioning of

autonomous robotic systems within arable frameworks.

More specifically, the application provides a framework

Fig. 9 A snapshopt of the Singularity build script for Pilot Soybean
Farming

https://www.cybele-project.eu/
https://github.com/ExaScience/bpmf/

Zhou et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:16 Page 9 of 14

for automatic identification and count of wheat ears in

fields from the data collected by sensors on ground so

that it enables crop yield prediction at early stages and

can suggest decisions for sales planning. The application

trains a DL algorithm written in Python on Fastai/Pytorch

[52][13] framework based on a series of RGB images (138

images, 95 MB in total). An example of the images is

illustrated in Fig. 10a.

Pilot Soybean Farming focuses on the application of

ML in soybean farming. Its goal is to develop a predic-

tion algorithm that is able to infer hidden dependencies

between the input parameters and the yield. The ML

algorithm, more specifically the Random Forest algorithm

[53], is implemented in Python’s Scikit learn library [54].

The training dataset consists of two Sentinel-2 [55] images

(the total size of images: 4.9 GB) with 13 spectral bands,

at a resolution of 10m and yield monitor data (total

size: 569 MB) from Austrian soybean farms. The pipeline

includes modules for image stacking, cropping to the field

Fig. 10 Examples of Pilot images. The Sentinel-2 image deliver
information of three key stages of soya growth

boundaries, yield map interpolation from point measure-

ments and a Random Forest module for yield prediction.

An example of the Sentinel-2 image (only a single band of

the image is displayed) is shown in Fig. 10b.

The aforementioned pilots are in developing stage and

are not yet publicly accessible. The former can only

scale on the cores of one single node while the latter

only executes on a single core of one node. To demon-

strate the performance improvement that the HPC cluster

can bring and illustrate that the approaches introduced

herein can be applied in more general cases, we present

performance evaluation on an MPI benchmark BPMF

[56, 57]. The BPMF benchmark adopts the ML algo-

rithm, i.e. the Bayesian Probabilistic Matrix Factorization

(BPMF)method, to predict compound-on-protein activity

using Markov Chain Monte Carlo. It uses a Gibbs sam-

pler and works with MPI and Eigen library handling the

linear algebra and related algorithms. Each sampling iter-

ation consists of two distinct regions on compounds and

protein activities. The number of sampling iterations is

set to be 100 in this experiment. MPI [29, 58] applica-

tions as the conventional parallel programs for HPC are

well designed to scale on multiple or many cores. Table 3

summarises the descriptions of the two pilots and theMPI

benchmark.

Two approaches are often used to execute MPI applica-

tions using Singularity, i.e. hybrid model and bind model.

The former compiles MPI binaries, libraries and the MPI

application into a Singularity image. The latter binds the

container on a host location where the container utilises

the MPI libraries and binaries on the host HPC sys-

tems. The latter model has smaller image size since it

does not include compiled MPI libraries and binaries

in the container image. However, the latter has some

drawbacks:

• The MPI version that is used to compile the

application in the container must be compatible with

the version of MPI available on the host;
• Users must know where the host MPI is installed;
• User must ensure that binding the directory where

the host MPI is installed is possible.

Table 3 Descriptions of the pilots and BPMF

Names Description ML applications

Pilot Wheat Ear Provision of autonomous
robotic systems within
arable frameworks

Yes

Pliot Soybean Farming Yield prediction for
soybean farming

Yes

BPMF MPI bechmark: predict
compound-on-protein
activity

Yes

Zhou et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:16 Page 10 of 14

Table 4 Technical Specifications of the testbed

Cluster name HPC cluster
(bare-metal)

VM cluster

Total number of
nodes

3 (2 compute
nodes)

4 (3 worker
nodes)

Number of cores
per node

20 (10 cores per
CPU, 2 CPU per
node)

2

RAM per node
(NUMA)

128 GB 7.79 GB

CPU frequency Intel(R)Xeon(R)
CPU E5-2630 v4,
2.20GHz

Intel i7 9xx
(Nehalem Core i7,
IBRS) 2.79GHz

Operating
System

Ubuntu 18.04.3
LTS

Ubuntu 18.04.3
LTS

VM type - QEMU 2.11.1,
KVM 2.11.1

We chose the hybrid model as mounting storage volumes

on the host as in the bind model can require privileged

operations. In the hybrid model, the MPI launcher of the

host system invokes Singularity container and Singularity

launches theMPI application within the container.We use

Open MPI [59] with version v4.0.4 as the MPI library.

Performance evaluation

Performance evaluation is carried out on the testbed with

the technical specifications indicated in Table 4. Singular-

ity is the container runtime of our choice, as it provides a

secure means to capture and distribute software and their

environments. Kubernetes supports Docker by default,

though it can be adjusted to support services for Singular-

ity by adding Singularity-CRI 4 [60]. Table 5 concludes the

list of core applications to be installed on the testbed. In

general, Kubernetes cluster can support both the Singu-

larity runtime and the Docker runtime. Ideally the worker

nodes which run Docker containers should not be linked

to HPC clusters. Romana is deployed as the network

model for the container network interface (CNI) of Kuber-

netes. Without this additional network model, the pods

located on different hosts could not establish communi-

cation with each other. Romana [61] is an open source

network and security automation solution that enables

deployment of Kubernetes without an overlay network. It

supports Kubernetes Network Policy to provide isolation

across network namespaces.

Figure 11 compares the performance difference forPilot

Wheat Ear, Pilot Soybean Farming and BPMF runing

on the Cloud cluster (VM) and HPC cluster. On the VM

cluster, the applications only execute with 2 processes as

it is the maximal number of the VM cores on one node.

The performance ranges from execution with 2 processes

4Singularity-CRI: it is Singularity-specific implementation of Kubernetes CRI
(CRI: Container Runtime Interface).

Table 5 The list of core applications for the testbed

Cluster types Cloud cluster HPC cluster

Orchestrator Kubernetes Torque

Container
runtime &
interface

Singularity,
Singulairy-CRI

Singularity

Plugin Torque-Operator,
Romana

-

Compiler Golang compiler Golang compiler

to 20 processes as the maximal number of the cores on

one HPC node. We only present the results of Pilot soy-

bean Farming running on one core as it is a sequential

program. The performance details are given in Table 6.

The results are stable, which are the average of three exe-

cutions. The variances of execution time are shown in

the table in brackets. Figure 11 indicates that the per-

formance of the three applications has been significantly

improved when running on the HPC cluster comparing

with that on the VM node (by 64.06%, 48.45% and 38.20%

running on two cores). Execution time of Pilot Wheat

Ear and BPMF on the HPC cluster are further shortened

with incrementing core numbers. The time spent in job

scheduling from Cloud to HPC is negligible compared to

the total execution time. The potential immense gain for

the out-of-the-box performance is one major reason for

levaraging HPC to AI applications, while usage of contain-

ers make deployment of AI applications portable on HPC

clusters.

Discussion

It is difficult to migrate applications from Cloud to HPC

clusters. Although containerising applications can meet

the portability requirements, their performance is not

always satisfying. HPC clusters demonstrate their advan-

tages by running applications concurrently on many cores

and nodes. Obviously the performance of applications on

bare-metal HPC nodes surpasses that on VM nodes, even

though VM nodes are configured with more powerful

CPU in the testbed. However, the programs which do not

scale benefit less from running on HPC systems, as this is

the case for Pilot Soybean Farming that is a sequential

program.

HPC applications tend to scale on many cores. This

article intends to propose a methodology which can pro-

vide a common interface between HPC and Cloud clus-

ters enabling container orchestration on HPC systems.

This structure is particularly important for AI applica-

tions that tend to be compute-intensive or data-intensive,

thereby, can benefit immensely from HPC clusters. Scal-

ability of AI applications on HPC nodes should be taken

into account. This can be addressed by containeris-

ing the DL Framework Horovod [62] (Horovod adopts

Zhou et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:16 Page 11 of 14

Fig. 11 Time comparison for the two pilots and BPMF running on
the Cloud node and HPC node

Table 6 Execution time on the Cloud and HPC cluster for 3 use
cases on a single node (unit: minutes)

Cores (on 1
node)

Pilot Wheat Ear Pilot Soybean
Farming

BPMF

Cloud (VM) 1 core - 28.79 (1.87) -

Cloud (VM) 2
cores

1337.13 (0.00) - 41.78 (0.03)

HPC (bare-metal)
1 core

- 14.84 (0.02) -

HPC (bare-metal)
2 cores

480.50 (4.97) - 25.82 (0.01)

HPC (bare-metal)
4 cores

282.39 (0.28) - 13.90 (0.00)

HPC (bare-metal)
8 cores

179.54 (1.02) - 7.99 (0.00)

HPC (bare-metal)
16 cores

144.76 (0.12) - 5.03 (0.00)

HPC (bare-metal)
20 cores

134.99 (0.55) - 4.84 (0.01)

The numbers in the brackets are the mathematical variances. Execution time of the
two Pilots can vary from minutes to days depending on the amount of input data
sets that are used for processing

MPI concepts, which enables massive HPC node scal-

ing) into Singularity images. Alternatively, Spark Engine

(Spark provides data parallelism) can be encapsulated into

Singularity. In this case, Spark jobs will be scheduled by

HPC workload managers such as TORQUE or Slurm in

preference to big-data schedulers, e.g. Apache Hadoop

YARN [63] or Mesos. However, it is out of scope of

this paper to discuss parallelisation for containerised AI

applications.

It is worth noting that our proposed architecture (Fig. 4)

can be flexible, i.e. job submission is not restricted to

the login node. Users can submit their jobs from the rest

of the Kubernetes nodes which are connected with this

login node in the same Kubernetes cluster. The master

node will schedule the submission to the login node and

the TORQUE job will be transferred to the HPC cluster.

On our architecture, the login node which connects the

Cloud and HPC systems are located in the two network

domains: the domains of HPC cluster and Cloud clus-

ter. On an HPC production system, a more portable and

secure approach is to connect the login node remotely to

the HPC cluster via ssh, although this could cause perfor-

mance degradation when there is a large amount of data

transmission.

Conclusion and future work
This article described an architecture and the struc-

ture of Torque-Operator. The architecture creates a syn-

ergy between HPC and Cloud. It provides users with

flexibility to run containerised and non-containerised

Zhou et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:16 Page 12 of 14

jobs with the same submission interface. Compute-

intensive or data-intensive jobs can gain higher per-

formance by scheduling from the Cloud cluster to the

HPC cluster with the scheduling performed by both

Kubernetes and TORQUE. Two use cases of the EU

research project CYBELE are presented to demon-

strate the merits of our design. Nevertheless, the pro-

posed architecture is not limited to the usages of our

project pilots. We generalised its application by show-

casing an open-source MPI benchmark containerised in

Singularity.

In future work, it could be interesting to compare effi-

ciency of container orchestration of our hybrid architec-

ture with container scheduling performed by TORQUE

only. This will hugely depend on the development of

the AI use cases of the CYBELE project. Currently, con-

tainer orchestration policies rely on Kubernetes. The next

steps can be carried out on improvement of the container

scheduling of TORQUE. In addition, the login node can

accept the regular Kubernetes yaml file instead of embed-

ding a TORQUE PBS script within it, and the orchestrator

is able to analyse the job size so that it can determine

whether to submit jobs to HPC clusters or schedule them

to the Cloud clusters. In the latter case, the embedded

PBS yaml will be automatically generated for HPC job

submission.

Abbreviations

HPC: High performance computing; VM: Virtual machine; WLM: Workload
manager; TORQUE: Terascale open-source resource and QUEue manager; OS:
Operating system; PBS: Portable batch system; FIFO: First in first out; BPMF:
Bayesian probabilistic matrix factorization

Acknowledgements

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement NO.825355.

Yield monitor data in Pilot Soybean Farming have been generously granted by
Donau Soya association from farms across the Lower Austria region, through
CYBELE project and are subject to NDA.

The authors would like to express the gratitude to Dr. Joseph Schuchart for
proof-reading the contents.

Authors’ contributions

All authors read and approved the final manuscript.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Availability of data andmaterials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details
1High Performance Computing Center Stuttgart (HLRS), University of Stuttgart,
Stuttgart, Germany. 2Ryax Technologies, Lyon, France. 3 Institute of Bioorganic
Chemistry of the Polish Academy of Sciences, Poznan Supercomputing and
Networking Center (PSNC), Poznan, Poland. 4BioSense Institute, University of
Novi Sad, Novi Sad, Serbia.

Received: 16 October 2020 Accepted: 27 January 2021

References

1. Khan M, Becker T, Kuppuudaiyar P, Elster AC (2018) Container-Based
Virtualization for Heterogeneous HPC Clouds: Insights from the EU H2020
CloudLightning Project. In: 2018 IEEE International Conference on Cloud
Engineering (IC2E). IEEE, Piscataway. pp 392–397

2. Rodriguez MA, Buyya R (2019) Container-based cluster orchestration
systems: A taxonomy and future directions. Softw Pract Experience
49(5):698–719. https://doi.org/10.1002/spe.2660

3. Abdollahi Vayghan L, Saied MA, Toeroe M, Khendek F (2018) Deploying
Microservice Based Applications with Kubernetes: Experiments and
Lessons Learned. In: 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD). IEEE, Piscataway. pp 970–973

4. Casalicchio E (2017) Autonomic Orchestration of Containers: Problem
Definition and Research Challenges. In: Proceedings of the 10th EAI
International Conference on Performance Evaluation Methodologies and
Tools on 10th EAI International Conference on Performance Evaluation
Methodologies and Tools. VALUETOOLS16. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering),
Brussels, BEL. pp 287–290. https://doi.org/10.4108/eai.25-10-2016.
2266649

5. Hovestadt M, Kao O, Keller A, Streit A (2003) Scheduling in HPC Resource
Management Systems: Queuing vs. Planning. In: Feitelson D, Rudolph L,
Schwiegelshohn U (eds). Job Scheduling Strategies for Parallel
Processing. Springer Berlin Heidelberg, Berlin. pp 1–20

6. Klusáček D, Chlumský V, Rudová H (2015) Planning and Optimization in
TORQUE Resource Manager. In: Proceedings of the 24th International
Symposium on High-Performance Parallel and Distributed Computing.
Association for Computing Machinery, New York. https://doi.org/10.1145/
2749246.2749266

7. Jette MA, Yoo AB, Grondona M (2002) SLURM: Simple Linux Utility for
Resource Management. In: In Lecture Notes in Computer Science:
Proceedings of Job Scheduling Strategies for Parallel Processing (JSSPP)
2003. Springer-Verlag, Berlin. pp 44–60

8. Staples G (2006) TORQUE Resource Manager. In: Proceedings of the 2006
ACM/IEEE Conference on Supercomputing. Association for Computing
Machinery, New York. https://doi.org/10.1145/1188455.1188464

9. Moab HPC Suite. https://support.adaptivecomputing.com/wp-content/
uploads/2019/06/Moab-HPC-Suite_datasheet_20190611.pdf. Accessed
08 July 2020

10. Mateescu G, Gentzsch W, Ribbens CJ (2011) Hybrid Computing-Where
HPC Meets Grid and Cloud Computing. Future Gener Comput Syst
27(5):440–453. https://doi.org/10.1016/j.future.2010.11.003

11. Mayer R, Jacobsen HA (2020) Scalable Deep Learning on Distributed
Infrastructures: Challenges, Techniques, and Tools. ACM Comput Surv
53(1). https://doi.org/10.1145/3363554

12. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. (2016)
TensorFlow: A System for Large-scale Machine Learning. In: Proceedings
of the 12th USENIX Conference on Operating Systems Design and
Implementation. OSDI’16. USENIX Association, Berkeley. pp 265–283.
http://dl.acm.org/citation.cfm?id=3026877.3026899

13. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. (2019)
PyTorch: An Imperative Style, High-Performance Deep Learning Library.
In: Wallach HM, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox EB,
Garnett R (eds). Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, 8-14 December 2019, Vancouver. pp 8024–8035.
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7
f92f2bfa9f7012727740-Abstract.html

14. Brayford D, Vallecorsa S, Atanasov A, Baruffa F, Riviera W (2019) Deploying
AI Frameworks on Secure HPC Systems with Containers. In: 2019 IEEE
High Performance Extreme Computing Conference (HPEC). IEEE,
Piscataway. pp 1–6

15. Hale JS, Li L, Richardson CN, Wells GN (2017) Containers for Portable,
Productive, and Performant Scientific Computing. Comput Sci Eng
19(6):40–50

16. Felter W, Ferreira A, Rajamony R, Rubio J (2015) An updated performance
comparison of virtual machines and Linux containers. In: 2015 IEEE

https://doi.org/10.1002/spe.2660
https://doi.org/10.4108/eai.25-10-2016.2266649
https://doi.org/10.4108/eai.25-10-2016.2266649
https://doi.org/10.1145/2749246.2749266
https://doi.org/10.1145/2749246.2749266
https://doi.org/10.1145/1188455.1188464
https://support.adaptivecomputing.com/wp-content/uploads/2019/06/Moab-HPC-Suite_datasheet_20190611.pdf
https://support.adaptivecomputing.com/wp-content/uploads/2019/06/Moab-HPC-Suite_datasheet_20190611.pdf
https://doi.org/10.1016/j.future.2010.11.003
https://doi.org/10.1145/3363554
http://dl.acm.org/citation.cfm?id=3026877.3026899
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html

Zhou et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:16 Page 13 of 14

International Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE, Piscataway. pp 171–172

17. Bernstein D (2014) Containers and Cloud: From LXC to Docker to
Kubernetes. IEEE Cloud Comput 1(3):81–84

18. Martin JP, Kandasamy A, Chandrasekaran K (2018) Exploring the Support
for High Performance Applications in the Container Runtime
Environment. Hum-Centric Comput Inf Sci 8(1). https://doi.org/10.1186/
s13673-017-0124-3

19. Plauth M, Feinbube L, Polze A (2017) A Performance Survey of
Lightweight Virtualization Techniques. In: De Paoli F, Schulte S,
Broch Johnsen E (eds). Service-Oriented and Cloud Computing. Springer
International Publishing, Cham. pp 34–48

20. Zhang J, Lu X, Panda DK (2017) Is Singularity-Based Container Technology
Ready for Running MPI Applications on HPC Clouds? In: Proceedings of
The10th International Conference on Utility and Cloud Computing. UCC
17. Association for Computing Machinery, New York. https://doi.org/10.
1145/3147213.3147231

21. Hu G, Zhang Y, Chen W (2019) Exploring the Performance of Singularity
for High Performance Computing Scenarios. In: 2019 IEEE 21st
International Conference on High Performance Computing and
Communications; IEEE 17th International Conference on Smart City; IEEE
5th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS). IEEE, Piscataway. pp 2587–2593

22. Younge AJ, Pedretti K, Grant RE, Brightwell R (2017) A Tale of Two Systems:
Using Containers to Deploy HPC Applications on Supercomputers and
Clouds. In: 2017 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom). IEEE, Piscataway. pp 74–81

23. VMWare (2018) Containers on Virtual Machines or Bare Metals?. VMware,
Inc., Palo Alto. https://assets.contentstack.io/v3/assets/
blt58b49a8a0e43b5ff/blta366cfae83d85681/
5c742ba62617ffd7604a143c/vmwwp-containers-on-vms.pdf

24. Merkel D (2014) Docker: Lightweight Linux Containers for Consistent
Development and Deployment. Linux J 2014(239):76–90

25. Kurtzer GM, Sochat VV, Bauer M (2017) Singularity: Scientific containers for
mobility of compute. In: PloS one. PLOS, San Francisco

26. Gerhardt L, Bhimji W, Canon S, Fasel M, Jacobsen D, Mustafa M, et al.
(2017) Shifter: Containers for HPC. J Phys Conf Ser 898:082021. https://doi.
org/10.1088%2F1742-6596%2F898%2F8%2F082021

27. Priedhorsky R, Randles T (2017) Charliecloud: Unprivileged Containers for
User-Defined Software Stacks in HPC. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. SC 17. Association for Computing Machinery, New York. https://
doi.org/10.1145/3126908.3126925

28. S SK (2017) Practical LXC and LXD: Linux Containers for Virtualization and
Orchestration. 1st ed. Apress, USA

29. Gropp W, Lusk E, Skjellum A (1994) Using MPI: Portable Parallel
Programming with the Message-passing Interface. MIT Press, Cambridge

30. Xavier MG, Neves MV, Rossi FD, Ferreto TC, Lange T, De Rose CAF (2013)
Performance Evaluation of Container-Based Virtualization for High
Performance Computing Environments. In: 2013 21st Euromicro
International Conference on Parallel, Distributed, and Network-Based
Processing. IEEE, Piscataway. pp 233–240

31. Casalicchio E (2019) Container Orchestration: A Survey. In: Puliafito A (ed).
Systems Modeling: Methodologies and Tools. Springer International
Publishing, Cham. pp 221–235. https://doi.org/10.1007/978-3-319-
92378-9_14

32. Hightower K, Burns B, Beda J (2017) Kubernetes: Up and Running Dive
into the Future of Infrastructure. 1st ed. OReilly Media, Inc., Sebastopol

33. Casalicchio E, Iannucci S (2019) The state-of-the-art in container
technologies: Application, orchestration and security. Concurrency
Comput Pract Experience 32(17):e5668. https://onlinelibrary.wiley.com/
doi/abs/10.1002/cpe.5668

34. Pandey S, Tokekar V (2014) Prominence of MapReduce in Big Data
Processing. In: 2014 Fourth International Conference on Communication
Systems and Network Technologies. IEEE, Piscataway. pp 555–560

35. Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, et al. (2016)
Apache Spark: A Unified Engine for Big Data Processing. Commun ACM
59(11):56–65. http://doi.acm.org/10.1145/2934664

36. Narkhede N, Shapira G, Palino T (2017) Kafka: The Definitive Guide
Real-Time Data and Stream Processing at Scale. 1st ed. O’Reilly Media, Inc.,
Sebastopol

37. Sammons G (2016) Exploring Ansible 2: Fast and Easy Guide. CreateSpace
Independent Publishing Platform, North Charleston

38. Gao PX, Narayan A, Karandikar S, Carreira J, Han S, Agarwal R, et al. (2016)
Network Requirements for Resource Disaggregation. In: Proceedings of
the 12th USENIX Conference on Operating Systems Design and
Implementation. OSDI|16. USENIX Association, USA. pp 249–264

39. Zhou N, Georgiou Y, Zhong L, Zhou H, Pospieszny M (2020) Container
Orchestration on HPC Systems. In: 2020 IEEE International Conference on
Cloud Computing (CLOUD). IEEE, Piscataway

40. Julian S, Shuey M, Cook S (2016) Containers in Research: Initial
Experiences with Lightweight Infrastructure. In: Proceedings of the
XSEDE16 Conference on Diversity, Big Data, and Science at Scale.
XSEDE16. Association for Computing Machinery, New York. https://doi.
org/10.1145/2949550.2949562

41. Higgins J, Holmes V, Venters C (2015) Orchestrating Docker Containers in
the HPC Environment. In: Kunkel JM, Ludwig T (eds). High Performance
Computing. Springer International Publishing, Cham. pp 506–513

42. Liu F, Keahey K, Riteau P, Weissman J (2018) Dynamically Negotiating
Capacity between On-Demand and Batch Clusters. In: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage, and Analysis. SC 18. IEEE Press, Piscataway

43. Piras ME, Pireddu L, Moro M, Zanetti G (2019) Container Orchestration on
HPC Clusters. In: Weiland M, Juckeland G, Alam S, Jagode H (eds). High
Performance Computing. Springer International Publishing, Cham.
pp 25–35

44. Fernandez GP, Brito A (2019) Secure Container Orchestration in the
Cloud: Policies and Implementation. In: Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing. SAC 19. Association for
Computing Machinery, New York. pp 138–145. https://doi.org/10.1145/
3297280.3297296

45. Maenhaut PJ, Volckaert B, Ongenae V, De Turck F (2019) Resource
Management in a Containerized Cloud: Status and Challenges. J Netw
Syst Manag 28:197–246

46. Buyya R, Srirama SN (2019) A Lightweight Container Middleware for Edge
Cloud Architectures. Wiley Telecom. https://ieeexplore.ieee.org/
document/8654087

47. Hindman B, Konwinski A, Zaharia M, Ghodsi A, Joseph AD, Katz R, et al.
(2011) Mesos: A Platform for Fine-Grained Resource Sharing in the Data
Center. In: Proceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation. NSDI 11. USENIX Association, USA.
pp 295–308

48. Wrede F, von Hof V (2017) Enabling Efficient Use of Algorithmic Skeletons
in Cloud Environments: Container-Based Virtualization for Hybrid
CPU-GPU Execution of Data-Parallel Skeletons. In: Proceedings of the
Symposium on Applied Computing. SAC 17. Association for Computing
Machinery, New York. pp 1593–1596. https://doi.org/10.1145/3019612.
3019894

49. Ciechanowicz P, Poldner M, Kuchen H (2009) The Münster Skeleton
Library Muesli: A comprehensive overview. University of Münster,
European Research Center for Information Systems (ERCIS). Available
from: https://www.ercis.org/sites/www.ercis.org/files/pages/research/
ercis-working-papers/ercis_wp_07.pdf

50. Pisaruk V, Yakovtseva S WLM-operator. Gitlab. https://github.com/sylabs/
wlm-operator. Accessed 13 Feb 2020

51. Georgiou Y, Zhou N, Zhong L, Hoppe D, Pospieszny M, Papadopoulou N,
et al. (2020) Converging HPC, Big Data and Cloud technologies for
precision agriculture data analytics on supercomputers. In: 15th
Workshop on Virtualization in High-Performance Cloud Computing
(VHPC’20). Springer International Publishing, Cham

52. Howard J, Gugger S (2020) Fastai: A Layered API for Deep Learning.
Information 11(2):108. https://doi.org/10.3390/info11020108

53. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

54. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
(2011) Scikit-Learn: Machine Learning in Python. J Mach Learn Res
12:2825–2830

55. Drusch M, Bello UD, Carlier S, Colin O, Fernandez V, Gascon F, et al. (2012)
Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational
Services. Remote Sens Environ 120:25–36. The Sentinel Missions - New
Opportunities for Science. http://www.sciencedirect.com/science/article/
pii/S0034425712000636

https://doi.org/10.1186/s13673-017-0124-3
https://doi.org/10.1186/s13673-017-0124-3
https://doi.org/10.1145/3147213.3147231
https://doi.org/10.1145/3147213.3147231
https://assets.contentstack.io/v3/assets/blt58b49a8a0e43b5ff/blta366cfae83d85681/5c742ba62617ffd7604a143c/vmwwp- containers-on-vms.pdf
https://assets.contentstack.io/v3/assets/blt58b49a8a0e43b5ff/blta366cfae83d85681/5c742ba62617ffd7604a143c/vmwwp- containers-on-vms.pdf
https://assets.contentstack.io/v3/assets/blt58b49a8a0e43b5ff/blta366cfae83d85681/5c742ba62617ffd7604a143c/vmwwp- containers-on-vms.pdf
https://doi.org/10.1088%2F1742-6596%2F898%2F8%2F082021
https://doi.org/10.1088%2F1742-6596%2F898%2F8%2F082021
https://doi.org/10.1145/3126908.3126925
https://doi.org/10.1145/3126908.3126925
https://doi.org/10.1007/978-3-319-92378-9_14
https://doi.org/10.1007/978-3-319-92378-9_14
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5668
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5668
http://doi.acm.org/10.1145/2934664
https://doi.org/10.1145/2949550.2949562
https://doi.org/10.1145/2949550.2949562
https://doi.org/10.1145/3297280.3297296
https://doi.org/10.1145/3297280.3297296
https://ieeexplore.ieee.org/document/8654087
https://ieeexplore.ieee.org/document/8654087
https://doi.org/10.1145/3019612.3019894
https://doi.org/10.1145/3019612.3019894
https://www.ercis.org/sites/www.ercis.org/files/pages/research/ercis-working-papers/ercis_wp_07.pdf
https://www.ercis.org/sites/www.ercis.org/files/pages/research/ercis-working-papers/ercis_wp_07.pdf
https://github.com/sylabs/wlm-operator
https://github.com/sylabs/wlm-operator
https://doi.org/10.3390/info11020108
http://www.sciencedirect.com/science/article/pii/S0034425712000636
http://www.sciencedirect.com/science/article/pii/S0034425712000636

Zhou et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:16 Page 14 of 14

56. Salakhutdinov R, Mnih A (2008) Bayesian probabilistic matrix factorization
using Markov chain Monte Carlo. In: Proceedings of the International
Conference on Machine Learning. vol. 25. Association for Computing
Machinery, New York

57. Aa TV, Chakroun I, Haber T (2016) Distributed Bayesian probabilistic matrix
factorization. In: CLUSTER. IEEE Computer Society, Piscataway. pp 346–349

58. MPI: A Message-Passing Interface Standard. https://www.mpi-forum.org/
docs/mpi-3.1/mpi31-report.pdf. Accessed 26 Jan 2021

59. Graham RL, Woodall TS, Squyres JM (2005) Open MPI: A Flexible High
Performance MPI. In: Proceedings of the 6th International Conference on
Parallel Processing and Applied Mathematics. PPAM 05. Springer-Verlag,
Berlin. pp 228–239. https://doi.org/10.1007/11752578_29

60. Sylabs Singularity-CRI. https://sylabs.io/guides/cri/1.0/user-guide/k8s.
html. Accessed 03 Mar 2020

61. Romana. https://romana.io/. Accessed 21 May 2020
62. Sergeev A, Balso MD (2018) Horovod: fast and easy distributed deep

learning in TensorFlow. CoRR. abs/1802.05799. Available from: https://
arxiv.org/abs/1802.05799

63. Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar M, Evans R, et al.
(2013) Apache Hadoop YARN: Yet Another Resource Negotiator. In:
Proceedings of the 4th Annual Symposium on Cloud Computing. SOCC
’13. Association for Computing Machinery, New York. https://doi.org/10.
1145/2523616.2523633

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://doi.org/10.1007/11752578_29
https://sylabs.io/guides/cri/1.0/user-guide/k8s.html
https://sylabs.io/guides/cri/1.0/user-guide/k8s.html
https://romana.io/
https://arxiv.org/abs/1802.05799
https://arxiv.org/abs/1802.05799
https://doi.org/10.1145/2523616.2523633
https://doi.org/10.1145/2523616.2523633

	Abstract
	Keywords

	Introduction
	Background
	Workload managers for HPC
	TORQUE
	Slurm

	Implementation of AI in HPC
	Containerisation
	Container orchestration for cloud clusters

	Related work
	Architecture and tool description
	Architecture and the testbed setting
	Architecture of torque-operator
	User permission management

	Use cases
	Pilot and benchmark description
	Performance evaluation
	Discussion

	Conclusion and future work
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

