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ABSTRACT Containers emerged as a lightweight alternative to virtual machines (VMs) that offer better

microservice architecture support. The value of the container market is expected to reach $2.7 billion

in 2020 as compared to $762 million in 2016. Although they are considered the standardized method for

microservices deployment, playing an important role in cloud computing emerging fields such as service

meshes, market surveys show that container security is the main concern and adoption barrier for many

companies. In this paper, we survey the literature on container security and solutions. We have derived four

generalized use cases that should cover security requirements within the host-container threat landscape.

The use cases include: (I) protecting a container from applications inside it, (II) inter-container protection,

(III) protecting the host from containers, and (IV) protecting containers from a malicious or semi-honest

host. We found that the first three use cases utilize a software-based solutions that mainly rely on Linux

kernel features (e.g., namespaces, CGroups, capabilities, and seccomp) and Linux security modules (e.g.,

AppArmor). The last use case relies on hardware-based solutions such as trusted platform modules (TPMs)

and trusted platform support (e.g., Intel SGX). We hope that our analysis will help researchers understand

container security requirements and obtain a clearer picture of possible vulnerabilities and attacks. Finally,

we highlight open research problems and future research directions that may spawn further research in this

area.

INDEX TERMS Containers, Docker, Linux containers, OS level virtualization, lightweight virtualization,

security, survey.

I. INTRODUCTION

Virtual machines (VMs) provide excellent security. However,

their security isolation creates a bottleneck for the total num-

ber of VMs that can run on a server because each VM should

have its own copy of the operating system (OS), libraries,

dedicated resources, and applications. This has a detrimental

effect on performance (e.g., long startup time) and storage

size. The advent of DevOps software development practice

[1], [2] and microservices underscored the need for a faster

solution than VMs as it is not efficient to run each microser-

vice on a separate VM due to its long startup time and

increased resource usage.

Container-based virtualization emerged as a lightweight

alternative to VMs. Many containers can share the same OS

kernel instead of having a dedicated copy for each one as

in VMs. This greatly reduces startup time and the required

resources for each image. For example, a container can start in

50 milliseconds while a VMmight take as long as 30–40 sec-
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onds to start [3]. Many container technologies are available

such as LXC, OpenVZ, Linux-Vserver, with Docker being

the predominant one. Figure 1a shows a simple container’s

architecture while Figure 1b shows a simple VM’s architec-

ture. Containers are a more plausible option for microser-

vices than VMs due to numerous benefits such as being

lightweight, fast, easier to deploy, and allowing for better

resource utilization and version control. Containers are being

used for different applications such as Internet of Things

(IoT) services, smart cars, fog computing, service meshes,

and so on [3]–[8].

The introduction of microservice architectures helped

increase software agility, wherein software parts became

independent units of development, versioning, deployment,

and scaling [8]. Microservices are used by numerous orga-

nizations such as Amazon, Spotify, Netflix, and Twitter to

deliver their software [9]. Containers are considered the

standard to deploy microservices and applications to the

cloud [10]. Containers are also important for the future of

cloud computing and their market value is expected to reach

$2.7 billion by 2020 (was $762 million in 2016) [11], [12].
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FIGURE 1. Comparison between container and hypervisor. (a) Container. (b) Virtual machine.

However, containers are less secure than VMs [13]–[15].

Hence, security is the main barrier to widespread container

adoption [16].

Although there are several surveys that address VMs, they

do not focus on container security issues [17]–[19]. As con-

tainers are based on sharing the OS kernel among them while

each VM has its own kernel, container security is different

from its VMcounterpart since it is based on different architec-

tural support. Hence, understanding container security threats

and solutions is very important due to the lack of systematic

reviews about them in the literature. This is problematic

because each of the solutions presented pertains to a very

specific use case. For example, trusted platform support (e.g.,

Intel Software Guard Extensions (SGX)) is used primarily to

allow the running of containers on an untrusted host, thus

tracking those different use cases can be frustrating for the

reader.

In this work, we provide four general use cases that should

cover most use cases for the host-container level. This should

help readers better understand security issues about contain-

ers and the available mechanisms to secure them. The use

cases are: (I) protecting a container from applications inside

it, (II) inter-container protection, (III) protecting the host from

containers, and (IV) protecting containers from a malicious

or semi-honest host. We discuss the available software-based

solutions that are typically used for the first three use cases

and hardware-based solutions that are used for the last one.

Our threat model for the four use cases could be used by

researchers to enhance their understanding of possible vul-

nerabilities and attacks and to clearly illustrate what their

solutions provide. Finally, we highlight open problems and

future research directions in order to motivate further work in

this exciting area.

The rest of this paper is organized as follows. Section II

discusses background material, relevant resources, and selec-

tion criteria. In Section III, we present our threat model and

the proposed use cases. In Section IV, we present the software

and hardware protection mechanisms used to secure con-

tainers. In particular, Section IV-A presents software-based

mechanisms while Section IV-B presents hardware-based

ones. A discussion on container vulnerabilities, exploits, dis-

covery tools, and relevant standards is presented in Section V.

In Section VI, we discuss future research directions and open

issues. Finally, Section VII concludes this paper.

II. BACKGROUND

In this section, we present background material on contain-

ers as well as monolithic and microservice architectures.

Section II-A provides background details on containers while

Section II-B considers monolithic and microservice archi-

tectures. Section II-C presents our selected resources and

selection criteria.

A. CONTAINERS

Different names are used to refer to containers in the litera-

ture including OS level virtualization and lightweight virtu-

alization. Docker, LXC, and RKT are examples of container

managers. Many studies focus on Docker because it is the

predominant container runtime environment. Hardware vir-

tualization refers to traditional VMs and hypervisors.

Containers improve two main downsides of VMs [14]:

first, they share the same OS kernel and can share resources

while each VM needs its own copy. Second, containers can

be started and stopped almost instantly while VMs need

considerable time to start [3]. Containers have also proven

to be more efficient than VMs for some applications such as

microservices because they are lightweight and do not require

a full OS copy for each image. However, containers still

need a fully functional kernel that is shared among different

containers. Additionally, microservice design underscores the

importance of ephemeral state containers, wherein any data

persistence goes to another data store or service. Containers

are considered the standard way to deploy microservices to

the cloud [10].

Container as a Service (CaaS or CoaaS) creates a new

delivery model for cloud computing [3]. Many compa-

nies offer container services which allow a wide variety

of containerized applications for several marketplaces [20].

Although OS level virtualization is a promising technology

with many benefits, it faces a large number of challenges. For

example, host OS kernel sharing introduces many security

issues, which make them less secure than VMs [21].

Figure 1a shows a simple container’s architecture. The

bird’s eye view of a container’s stack is necessary because

deployment relies on various parts. Figure 2 shows con-

tainer stack components and realization technologies; it is

based on the architecture from [22] which was modified

to merge realization technologies and stack components

together. This figure shows that a container is a building block
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FIGURE 2. Container stack and realization technologies.

for a larger technology stack that can be used to facilitate

microservices deployment. Peinl et al. [23] presented a sur-

vey on the tools available for container management. They

classified different solutions in both the academic and indus-

try literature as well as mapping them to requirements based

on a case study they provided. Additionally, they identified

gaps in these tools and integration requirements and proposed

their own tools in order to overcome these deficiencies.

B. MONOLITHIC AND MICROSERVICES ARCHITECTURES

A monolithic application refers to software whose parts are

strongly coupled and cannot be executed independently [24].

Although monolithic applications can run inside a container,

it is highly recommended to use microservice architecture

when using containers [25]. Before the advent of Service Ori-

ented Architectures (SOAs), and specifically microservices,

most applications used to be monolithic. On the other hand,

microservices help build applications that consist of loosely

coupled parts that can be operated independently.

Microservice architectures have revolutionized how appli-

cations are built nowadays. They allow developers to be

more innovative and open to new technologies. For example,

if a company wants to experiment with a new program-

ming language, they can build a single microservice with

that language, which will have minimal effect on the whole

application, unlike using a monolithic architecture, which

requires rewriting all parts. Microservices and containers

are closely related subjects where containers are consid-

ered the standardized deployment option for microservices

[10]. Running each microservice in a separate VM is not

efficient because VMs are heavy compared to containers

[25]. Containers are important alternatives to VMs and they

have a number of benefits over them, especially in perfor-

mance and size. The advent of containers highlighted the

importance of microservice architectures over older mono-

lithic architectures. However, containers are afflicted with

numerous security issues that are the main barriers for

their adoption by companies. Dragoni et al. [24] presented

a recent study about the emergence of microservices and

how their development improved monolithic architecture

drawbacks.

C. LITERATURE REVIEW ON CONTAINER SECURITY

In this work, we have included papers from the proceedings

of top academic research venues, journals, and books. Occa-

sionally we relied on research that is unpublished or has been

published in non-commercial forms such as reports, policy

statements, etc. Such articles have been included because

research on containers is an inherently practical field that

is dominated by the industry and is published about in

different online sources. Our selection criteria focused on

the following areas related to containers: security features,

solutions, threats, vulnerabilities, exploits, tools, standards,

evaluation methodologies, applications, and container alter-

natives. We relied primarily on Google Scholar and mainly

used the following search keywords: ‘‘Containers security’’,

‘‘Docker security’’, ‘‘Linux containers’’. Then we removed

sources that were generic to containers and did not discuss
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TABLE 1. Threat model specifications for apps, containers, and host for the studied use cases. ‘Semi’ refers to semi-honest. Apps in
semi-honest/malicious containers can be semi-honest or malicious too.

FIGURE 3. Overview of security protection requirements in containers.

security issues. Finally, we used backward citations from

the selected resources to expand our search. Most of the

references were published between 2014 and 2018, including

21 papers in 2016, 45 papers in 2017, and 25 papers in 2018.

Container security research started gaining momentum in

2015.

III. THREAT MODEL

Many use cases can be derived to illustrate Linux container

security issues and solutions. We believe it would be inef-

fective to create an exhaustive list of all such use cases as

it would be frustrating for the reader to keep track of them.

Hence, we provided a new taxonomy for use cases for the

host-container level to better identify protection requirements

and possible solutions. Registry and orchestration are not the

primary focus of our research whose aim is to shed light on

the host and container levels that represent the primary focus

for container technologies.

We consider a hostH that has |C| (|.| denotes the cardinality

of a set) number of containers C = {c1, c2, . . . , cn}. Each

container ci ∈ C can run at least one application from a

set of applications Aci = {a1, a2, · · · , am}. Additionally,

we assume that the host H and each container (ci ∈ C)

have limited resources which makes them vulnerable to

availability-targeted attacks. We address four use cases, each

of which has its own adversarial model and security goals.

The threat model specification for applications, containers,

and hosts is shown in Table 1. A semi-honest adversary

is a passive adversary that could cooperate on information

gathering but will not deviate from the protocol execution.

A malicious adversary is an active adversary that might

deviate from the protocol specification in order to gather

information, cheat, or disrupt the system and target other

system’s components. The four cases are shown in Figure 3

and are described in the following sections.

1) USE CASE I: PROTECTING A CONTAINER

FROM APPLICATIONS INSIDE IT

In this use case, each application within a running container

ci ∈ C can be honest, semi-honest, or malicious. We assume

that applications cannot break access control policies if set.

Additionally, we assume that some applicationsmight require

root privileges (or parts of the full root access). We believe

this is a very important case because if an application could

gain control over the container manager it might be able

to target the host system and other containers within the

system. However, an attack application might take control of

a specific vulnerable container. Our goal is to minimize intra-

container attacks. Table 2 shows a list of possible attacks and

solutions for this use case.

2) USE CASE II: INTER-CONTAINER PROTECTION

In this use case, we assume that one or more of the containers

are semi-honest or malicious, i.e., ∃CM ⊆ C, |CM| ≥ 1

where CM denotes a set of semi-honest or malicious con-

tainers. These containers can be inside the host H or on

different hosts. Being on different hosts is important for the

emerging field of service meshes [8]. We assume that appli-

cations inside ci ∈ CM can be malicious or semi-honest, too.

Although an attacker application might take control of other

applications within a container, we assume that applications

in honest containers remain honest for this use case because

protecting applications from each other is not a container-

specific problem.

Following are some attacks that could be executed. A semi-

honest container could be able to access confidential data

of other containers, learn resource usage patterns, and target

the integrity of application information. Furthermore, a mali-

cious container can perform similar attacks to a semi-honest

container and can target another container’s availability. For

example, a malicious container can consume most for the
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TABLE 2. Possible attack scenarios for use case (I) (protecting a container from applications in it) and suggested solutions. (CVE stands for Common
Vulnerabilities and Exposure).

dedicated host resources to containers in which case it renders

other containers useless. Our goal here is to protect containers

from each other, a perfect case would be that containers do

not know anything about other containers (like VMs) unless

required (e.g., network communication). Protection require-

ments for this are not specific to containers.

One of the high-risk attacks that affect containers is Melt-

down. In [26], the authors successfully mounted an attack on

Docker, LXC, and OpenVZ. This attack allowed the adver-

sary to leak kernel information from the host OS and all other

containers running on the same system. This had a detrimen-

tal effect on cloud service providers, wherein a malicious user

could access information from all other containers hosted on

the system. Spectre [27] is another serious threat to contain-

ers, where it tricks other applications into accessing arbi-

trary locations in their memory. Both Spectre and Meltdown

attacks pose a serious threat to containers [26], [27]. Table 3

shows a list of possible attacks and solutions for this use

case.

3) USE CASE III: PROTECTING THE HOST (AND THE

APPLICATIONS INSIDE IT) FROM CONTAINERS

In this use case, we assume that at least one container is semi-

honest or malicious within the host H (CM ⊆ C, |CM| ≥ 1,

where CM denotes a set of semi-honest or malicious contain-

ers). We assume that applications that are inside ci ∈ CM,

as well as applications in honest containers, can be semi-

honest or malicious. A semi-honest container can have access

to confidential host information or even target its integrity.

A malicious container can target the host’s availability by

consuming its resources. Our goal here is to eliminate any

container’s ability to target the host components’ confiden-

tiality, integrity, and availability. A perfect scenario would be

to make containers act as VMs. (Recently, Intel merged its

clear containers project with kata containers and claims that

kata containers have similar isolation to VMs [28]). Table 4

shows a list of possible attacks and solutions for this use case.

One of the promising applications of containers is to

use them to limit resource drainage attacks of software
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TABLE 3. Possible attack scenarios for use case (II) (inter-container protection) and suggested solutions.

services. As an extension to their earlier work in [29],

Catuogno et al. [30] proposed a methodology to measure the

effectiveness of containers against resource drainage attacks

in which a host’s resources might be drained by a suspicious

service. Hence, they proposed running each service in a con-

tainer, wherein the constraints used on the containers help

shape their allowed resources. The authors used Docker to

protect against power drainage attacks which proved to be a

simple and effective technique.

4) USE CASE IV: PROTECTING CONTAINERS FROM THE

HOST

Running containers on untrusted hosts should be avoided,

especially with the advent of CaaS where containers can be

rented from a CaaS provider. In this use case, we assume

that containers are honest but the host is either semi-

honest or malicious. A semi-honest host can learn about

confidential container information because it controls net-

work devices, memory, storage, and processors. A malicious

host can also target the integrity of the container and its

application(s). Numerous passive and active attacks can be

launched from semi-honest and malicious hosts against con-

tainers in them. Examples of passive attacks include profiling

in-container application activities and unauthorized access

for container data. Active attacks can be more harmful since

a malicious host can change the application’s behavior.

IV. SOFTWARE AND HARDWARE

PROTECTION MECHANISMS

Figure 4 shows the use cases based on our taxonomy and

possible solutions. We used solution-based categorization

since the first three use cases (discussed in Section III) depend

on software-based solutions and the last one can be solved

with hardware-based solutions. Software-based solutions are

discussed in Section IV-A and hardware-based solutions are

discussed in Section IV-B.

A. SOFTWARE-BASED PROTECTION MECHANISMS

In this section, we discuss the available software-based

solutions that are used for container security (listed in

Figure 4). Container technology relies heavily on software-

based solutions that are either Linux Security Features (LSFs)

or Linux Security Modules (LSMs). In Section IV-A.1,

we discuss LSFs because most containers are based on

Linux and our scope is focused on Linux containers. First,

we present namespaces in Section IV-A.1.a and provide some

VOLUME 7, 2019 52981



S. Sultan et al.: Container Security: Issues, Challenges, and the Road Ahead

TABLE 4. Possible attack scenarios for use case (III) (protecting the host from containers) and suggested solutions.

examples of their usage. Second, CGroups are investigated

in Section IV-A.1.b. Third, capabilities are addressed in

Section IV-A.1.c. Finally, secure computation mode (sec-

comp) is addressed in Section IV-A.1.d. In Section IV-A.2,

we discuss LSMs and provide a list of most common LSMs.

1) LINUX KERNEL FEATURES

a: NAMESPACES

Namespaces perform the job of isolation and virtualization of

system resources for a collection of processes. Namespaces

operate as a divider of the identifier tables and other structures

linked with kernel global resources into isolated instances.

They partition the file systems, processes, users, hostnames,

and other components. Hence, each file system namespace

will have its private mount table and root directory. For every

container, a unique view of the resources can be seen. The

constrained view of resources for a process within a container

can be extended also to a child process [35]. Namespaces

are crucial building components to control what resources the

container can see.

Namespaces ensure the isolation of processes that are run-

ning in a container to blind them from seeing other processes

running in a different container [36]. However, one issue with

namespaces is that some resources are still not namespace-

aware such as devices [35]. There are numerous namespaces

available, each of which is responsible for specific resource

isolation. Table 5 shows a list of available namespaces and

what resource it is used to isolate [37].

Namespaces example: PID namespace

The PID namespace assures that a process will only see

processes that are within its own PID namespace (e.g., a con-

tainer will only see its processes). Figure 5 shows an example

of PID isolation for parent and child processes. In the host

machine, we notice that the init process has PID 1. However,

when the child process for a container starts, PID namespace

allows it to start numbering the PIDs from 1 inside the con-

tainer. This number will be mapped to a different PID in the

host machine. In this example, the PID 6 in the host will be

mapped to PID 1 in the machine. Similarly, PIDs 7, 8, and

9 will be mapped to 2, 3, and 4 respectively.

Inter-container Protection using Namespaces (Use case II)

As discussed earlier, namespaces are powerful Linux

features to isolate resources among different containers.

This helps prevent containers from accessing each other’s

resources, which increases their security. For instance, with-

out namespaces, a container can easily see another container’s

processes and interact with them (assuming it has sufficient

privileges). However, by using the PID namespaces a con-

tainer will only see its own processes. Other namespaces can

be applied to containers to isolate different resources.

Protecting the Host from Containers using Namespaces

(Use case III)

Similar to what we discussed in the previous section, if a

container can see the host’s processes then this can pose a

serious security risk. The same example of the PID names-

pace can be applied here as well. A compromised container

that managed to escalate to a root privilege can disrupt the

operation of the host’s processes. However, with PID names-

paces, isolating the container vision to its own processes helps

mitigate such risks.

Solutions that use namespaces

Jian and Chen [38] studied the container escape attack

for Docker. They presented a defense technique that tries

to solve the escape attack based on namespace status
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FIGURE 4. Protection requirements, use cases, and solutions.

TABLE 5. Linux provided namespaces.

inspection during process execution. This should help in

detecting anomalies and further prevent escape attacks. The

primary motivation of their work is that if an adversary pro-

gram gained root access, it will try to change the namespaces.

The proposed solution detects namespace status and flags any

changes that could indicate a compromised container.

Gao et al. [39] studied information leakage channels within

containers (this study was expanded later in [40]). They

address channels that could leak host information and allow

FIGURE 5. PID namespace isolation.

adversaries to launch advanced attacks against the cloud ser-

vice provider. The authors used Docker and LXC containers

as a testbed and verified the discovered information leakage

channels on five major cloud service providers. They showed

that those channels can increase the attack’s effect and reduce
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their cost. One of the important attacks that they analyzed

is power attacks, wherein an adversary can launch power-

intensive workloads when the system is already in high usage

based on the leaked information, which could negatively

affect the system’s performance. In addition to discussing the

root causes of information leakage in containers, the authors

proposed a two-stage defense mechanism. They implemented

a power-based namespace to provide fine-grained consump-

tion on the container level. Their evaluation showed that

this mechanism is effective at neutralizing power attacks.

However, Yu et al. [41] show that the solution presented in

[39] is not very efficient as it makes containers heavy, similar

to VMs.

b: CONTROL GROUPS (CGROUPS)

CGroups are Linux features that control the accountability

and limitation of resource usage such as central processing

unit (CPU) runtime, system memory, input/output (I/O), and

network bandwidth. In contrast to namespaces, CGroups limit

how many resources can be used while namespaces control

what resources a container can see (i.e., isolation). Addition-

ally, CGroups prevent containers from using all the available

resources and starving other processes. A CGroup is arranged

as a slice for each resource. Then a task set can be attached

to each specific CGroup. Thus, task groups are forced to use

their own part of the resources [35], [42].

Inter-container protection using CGroups (Use case II)

CGroups are vital for inter-container protection require-

ments. As discussed, CGroups circumscribe the allowed

resource usage, hence, a container cannot use more resources

than what is designated for it. This helps protect other

containers from numerous attacks such as Denial-of-

Service (DoS) attacks. For example, a container may use

so much of the host’s available RAM that other containers

cannot operate properly.

Protecting the host from containers using CGroups (Use

case III)

Similar to inter-container protection, CGroups force

resource usage limits on containers. This helps prevent the

container from performing a DoS attack on the host itself.

Additionally, CGroups give the host the power to not only

limit resource usage but also account for how much of the

resource is used. This could help in implementing usage

quotas which can be a very important factor in the emerging

cloud computing delivery model CaaS.

Solutions that use CGroups

Chen et al. [43] presented a real-time protection mecha-

nism against DoS attacks called ContainerDrone. First, CPU

DoS protection utilizes CGroups to assign a set of cores to

each task. It also uses Docker features to restrict a process

from raising its priority. Then, for memory DoS protection,

the authors demonstrated experimentally that CGroups are

not efficient because although they can restrict the allocated

memory bandwidth, malicious applications could still use

intensive access for that amount of memory. Hence, to protect

memory from DoS attacks they used a MemGuard kernel

module to prevent each CPU core from exceeding memory

access.

c: CAPABILITIES

Linux systems implement the binary option of root and non-

root dichotomy. In the context of containers, those binary

options can be troublesome. For example, a web server (e.g.,

Apache) needs to bind on a specific port (e.g., TCP port 80).

Without using capabilities, the web server process should

have root access to perform its task. This poses a great danger

because if it gets compromised, an attacker will be able to

control the entire system. Capabilities turn the root and non-

root dichotomy into fine-grained access control [36]. Hence,

containers (usually not the daemon or container manager)

will not need to have full root privilege (assuming there is an

available capability for the required tasks). There are thirty-

eight capabilities that cover a wide variety of tasks [44].

Capabilities are very important to protect a container from

running applications inside it (Use case I). For our previous

example about web servers, a container can assign the process

the CAP_NET_BIND_SERVICE capability. This allows the

container to run a version of that web server without requiring

full root access. Assuming the web server contains a vul-

nerability that has been exploited by an adversary, having

this capability in place will circumscribe the adversary to a

single root operation (i.e., binding ports). On the other hand,

if the capability was not set, the compromised or malicious

application can perform full root operations on the container.

In addition, capabilities are important for protecting the

host from containers (Use case III). In the previous example,

we saw that a container can limit its applications but what

happens if the container itself is malicious? This causes a

direct risk to the host. Thus, a set of capabilities can be

assigned to the container which could reduce the container’s

root operational threats.

d: SECURE COMPUTATION MODE (SECCOMP)

Seccomp is a Linux kernel feature that filters system calls to

the kernel. Secomp is more fine-grained than capabilities [45]

since different seccomp profiles can be applied to different

filters. This helps to decrease the number of system calls

coming from containers, which could further reduce possible

threats since most attacks leverage kernel exploits through

system calls.

Solutions that use Seccomp

Lei et al. [46] presented Split-Phase Execution of Applica-

tion Containers (SPEAKER) aiming to differentiate between

necessary and unnecessary system calls made by containers.

SPEAKER is based on Linux seccomp. The authors observed

that system calls are used in the container’s short-term boot-

ing phase, hence, they can be safely removed from the long-

term operation of containers. SPEAKER reduces the number

of system calls made by containers through differentiating

between such short- and long-term phases. They extended

Linux seccomp to automatically and dynamically update

available system calls for applications when they transit from
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the short-term booting phase to the long-term running phase.

They also evaluated SPEAKER on Docker hub images for

popular web servers and datastore containers and found a

reduction of system calls by more than 35% with an unim-

portant performance overhead.

Wan et al. [47] presented a solution to mine sandboxes

for containers based on automatic testing. During the testing

phase, the proposed solution extracts the used system calls by

the container. Using Seccomp, the solution creates a profile

for each application based on the seen system calls during the

testing phase and denies all other calls. There are two primary

issues with this solution. First, it takes a relatively long time

to create the profile (i.e., about 11 minutes). Second, a vul-

nerable or compromised container could access the needed

exploitable system calls during the testing phase. However,

assuming the container was safe during testing then the cre-

ated profile should reduce the attack surface considerably.

e: NAMESPACES, CGROUPS, SECCOMP, AND

CAPABILITIES USE IN DOCKER

Docker automatically generates a set of container namespaces

and control groups when the container is started with Docker

run [36]. Docker uses namespaces and CGroups to create

a safe virtual environment for its containers. For example,

to offer a separate network for each container, the network

namespace isolates some network resources like Internet pro-

tocol (IP) addresses [48].

Docker depends on CGroups to group processes running

in the container. CGroups reveal metrics about CPU and I/O

block usage along with managing the resources of Docker

such as CPU and memory. Docker resource configurations

are either with hard or soft limits. Hard limits are used

to specify a specific amount of resources to the container.

Soft limits give the container the necessary resources in the

machine [49].

The issue with capabilities as expressed by the Docker

team in [36] is that the default set of capabilities might not

provide complete security isolation. Docker default settings

use the capabilities listed in Table 6 [36], [50]. Docker adds

support for adding and removing capabilities. Additionally,

users can set their own profile.We should note here that as the

number of capabilities added to the container increases there

will be a higher security risk. This is because the container

will be able to perform more root privileged tasks.

The default seccomp profile of Docker blocks 44 out

of 300 available system calls [45]. However, Lei et al. [46]

claim that Docker cannot customize system calls for a specific

application.

2) LINUX SECURITY MODULES (LSMs)

Morris et al. [51] claimed that enhanced access control mech-

anisms are not acceptedwidely tomaintainOSs. This is due to

the fact that there is no consensus on the right solution within

the security community. LSMs allow a wide variety of secu-

rity models to be implemented on Linux kernel as loadable

modules [51]. This means that a user can select the preferred

TABLE 6. Docker default capabilities.

implementation rather than being forced to use the one that

came with the OS. LSMs focus on providing the needs for

implementing Mandatory Access Control (MAC) [52] with

minimal changes to the Kernel itself.

LSMs date back to the 2001 Linux Kernel Summit when

the U.S. National Security Agency (NSA) proposed to

include Security-Enhanced Linux (SELinux) in Linux 2.5

Kernel [53]. After that, the LSM project started and many

modules were developed to support various security models.

In case of not specifically selecting an LSM then the default

LSM will be the Linux capabilities system [54]. Currently,

there are numerous LSMs available as shown in Table 7.

Typically, LSMs are used for the first three use cases

as defined in Section III. Mattetti et al. [55] presented

the LiCShield framework that aims to secure Linux con-

tainers and workloads using automatic rules constructions.

LiCShield traces the image execution and generates profiles

for LSMs (mainly AppArmor), which reflects on the image

capabilities to increase host protection narrow container oper-

ations. The framework introduces a negligible performance

overhead. A downside of LiCShield is that it does not perform

vulnerability scanning for the images, which might enable

dormant threats to persist. LiCShield can help in use cases

I and III (protecting a container from applications in it and

protecting the host from containers).

Loukidis-Andreou et al. [56] presented an automated sys-

tem to enhance Docker container security that is based

on AppArmor LSM called Docker-sec. Docker-sec includes
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TABLE 7. Available Linux security modules (LSMs), with SELinux and AppArmor being the most used LSMs.

two primary mechanisms. First, when an image is created,

Docker-sec creates a static set of access rules according

to the image creation parameters. Second, during runtime,

the initial set is enhanced to further restrict the image’s

threats. According to the authors, Docker-sec can automat-

ically protect against zero-day vulnerabilities while having

minimal performance overhead. MP et al. [57] studied the

effect of different LSMs and LSFs on Docker containers.

They considered SELinux, AppArmor, and TOMOYO and

provided a proof of concept that those are effective in mit-

igating several risks such as malicious code and bugs in

namespaces code.

Bacis et al. [58] proposed a solution to bind SELinux poli-

cies with Docker container images to enhance their security.

They claim that a major threat to containers comes from

malicious (or compromised) containers that target other con-

tainers on the same host. A downside of their work is that they

can only prevent essential kernel vulnerabilities. However,

this can still be of help in use cases I, II, and III (protecting

a container from applications in it, inter-container protection,

and protecting the host from containers).

One of the primary issues with LSMs is that they are shared

by all containers, wherein a single container cannot use a

specific LSM [59]. To ameliorate this issue, Sun et al. [60]

presented a novel approach to enable LSMs for containers.

They presented security namespaces to enable containers to

have autonomous control over their security and allow each

container to have its own security profile. They also presented

a routing mechanism to make sure that decisions made by a

specific container cannot affect the host or other containers.

To test their method, they developed a namespace abstraction

for AppArmor LSM. Their results show that security names-

paces protect against several security issues within containers

with < 0.7% increased latency.

B. HARDWARE-BASED PROTECTION MECHANISMS

This section addresses solutions to protect containers from

a semi-honest or malicious host as well as other contain-

ers. These solutions target use case IV, protecting containers

from the host (as defined in Section III). We address two

available mechanisms: The use of Virtual Trusted Platform

Modules (vTPMs) and the use of Intel SGX as a trusted

platform support mechanism.

1) VIRTUAL TRUSTED PLATFORM MODULES (vTPM)

One commonly used technique in trusted computing is

Trusted Platform Modules (TPMs) which is hardware that

is intended to be used as a cryptographic processor. TPMs

provide hardware support for attestation, sealing data, secure

boot, and algorithm acceleration [61], [62]. Martin [63] pre-

sented detailed information about trusted computing and

TPMs. With the advent of cloud computing and virtualiza-

tion, researchers started to look for alternatives to hardware

TPMs in order to be more suitable for the hypervisor. This

is because the hypervisor needs to make the TPM available,

at the same time, to a plethora of VMs [64]. Software TPMs,

also known as Virtual TPMs (vTPMs) were created to match

these needs [64], [65].

vTPMs have been studied bymany researchers in hardware

virtualization [65]–[68]. Wan et al. [69] examined trusted

cloud computing by using vTPMs and analyzed existing

solutions that use vTPMs to better understand the security of

different implementations. We should note here that vTPMs

(or software TPMs) are not as secure as hardware TPMs as

they suffer from numerous vulnerabilities and they cannot

support protection levels as the hardware TPMs do [70], [71].

Hosseinzadeh et al. [64] presented the first study that

implements vTPMs for containers. The two proposed imple-

mentations are discussed in the following sections (Sec-

tions IV-B.1.a and IV-B.1.b). Souppaya et al. [31] rec-

ommended the following pattern for attestation: start with

secured/measured boot; provide a verified system platform;

build a chain of trust in the rooted hardware; extend the

chain of trust to the boot loader, OS kernel, system images,

container runtime, and finally container images.

a: vTPM IN HOST OS KERNEL

The first implementation proposed byHosseinzadeh et al. [64]

was to place the vTPM in the host OS Kernel. This allows

the TPM to be available to different containers. To assign a

vTPM to a new container, the container manager asks the

host OS kernel to create a new vTPM and then assigns it

to the new container. Figure 6 shows the architecture of this

type. However, the level of protection is still less than that of

the full hypervisor approach [64]. Two possible scenarios are

available for security assurance requirements [35]:
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FIGURE 6. vTPM implementation in kernel.

FIGURE 7. vTPM implementation in a dedicated container.

1) Fully Trusted Host OS: Trust can be established by

extending the root of trust using TPM. Thus, the host

OS will be considered trusted and any generated vTPM

can be trusted as well. Hence, containers can attest their

state by utilizing the hash extend feature implemented

in the vTPM.

2) Semi-trusted Host OS: This requires placing trust

in the vTPM that is generated by the host. In this

case, the TPM provides an endorsement key that will

be extended by giving vTPMs its own instance and

deploying protocols for signing the endorsement keys

of vTPMs using TPM.

b: vTPM IN A DEDICATED CONTAINER

Figure 7 shows the architecture of this implementation. The

vTPM allows accessing the physical TPM differently. A sin-

gle interface is used for managing the vTPM, where each

container in this interface will need a software adapter.

The container that hosts the vTPM will process incoming

requests from other containers through a specific commu-

nication channel (e.g., inter-process communication). This

alleviates the burden of multiple kernel modules as in the

former implementation (Section IV-B.1.a).

2) INTEL SGX

In 2015, Intel created SGX which is compatible with

their CPUs. Intel SGX is a set of extensions that allows

Intel architecture hardware to provide confidentiality and

integrity guarantees when the underlying privileged software

(e.g., hypervisor, kernel) is potentially malicious [72]. Intel

SGX seamlessly protects containers from underlying layers

(e.g., cloud provider, or host machine). It supports secure

enclaves [73] which help shield application data from other

applications including higher-privileged software.

Arnautov et al. [74] presented Secure Linux Containers

with Intel SGX (SCONE) to protect containers from attacks.

The design of SCONE provides a smaller trust base, low

performance overhead, and supports asynchronous system

calls and user-level threading. As we discussed earlier, typ-

ically, container protections employ software mechanisms

to protect containers from unauthorized access. This might

protect containers from other containers and outside attacks.

However, containers also need to be protected from a privi-

leged system such as the OS kernel or hypervisor [74]. This

is because adversaries usually target vulnerabilities not in

the container itself but in the virtualized privileged system/

administration [74], [75].

Hunt et al. [76] presented Ryoan which utilizes Intel

SGX to provide a distributed sandbox. It uses enclaves to

protect sandbox instances from malicious computing plat-

forms and allows it to process secret data while preventing

leaking secret data. The authors evaluated Ryoan on some

problems such as email filtering, health analysis, image pro-

cessing, and machine translation. Hardware limitations of

SGX should be taken into consideration, such as not being

able to run unmodified applications. Recently, researchers

started exploring solutions to allow SGX to run unmodified

applications [77]. Running unmodified applications is not

efficient and introduces a considerable overhead. Modifying

applications, on the other hand, might not be and easy task in

most cases, which will limit the overall use of SGX among

developers.

Vaucher et al. [10] presented another solution to help

developers run their containers on an untrusted cloud service

provider. They proposed integrating SGX inside Kubernetes

orchestrator. This is very important for CaaS providers. They

tested their proposed solution on a private cluster using

Google Borg traces. The authors found that the challenge

is primarily in scheduling containers to SGX machines in

priority. They observed that performance degrades when the

memory capacity of SGX enclaves is exhausted. The authors

claim that no orchestrators currently offer native support for

information usage statistics about resources utilized by con-

tainers that use SGX. They extended the Linux SGX driver

to gather information about the SGX runtime and direct them

to the orchestrator. More studies on the practicality of SGX

and/or similar technologies (e.g., ARM Trust Zone, AMD

SEV, IBM SecureBlue++) are needed.

SGX is used widely to protect containers and other

applications running on untrusted hosts. However, there

are several attacks that target SGX that may affect con-

tainer solutions using this technology. Examples of the

most prominent attacks against SGX are: Controlled-

channel attacks [78], stealthy page-table-based attacks [79],

branch shadowing [80], BranchScope [81], last-level cache
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TABLE 8. Summary of studies on Docker hub image vulnerabilities. These studies focus on image and registry risks, see Table 9 for risk types.

attacks [82], L1 cache attacks without hyperthreading [83],

L1 cache attacks with hyperthreading [84], and translation

lookaside buffer (TLB)-based attacks [85]. Intel Transac-

tion Synchronization Extensions SGX (T-SGX) [86] pro-

vide better defense against traditional SGX [87]. However,

the effectiveness of such approaches is not yet verified for

container-specific applications.

V. OTHER ASPECTS OF CONTAINERS SECURITY

Previously we discussed software- and hardware-based solu-

tions. There are two other important aspects to maintain

container security: vulnerabilities management and standard

guidelines. In Section V-A, we discuss studies about con-

tainer vulnerabilities, exploits, and related tools. We did not

use the proposed use cases for this aspect because vulner-

abilities do not, in general, target a specific use case. For

example, some vulnerabilities could allow inter-container

attacks (e.g., meltdown), others could be used to enable hosts

to attack containers (e.g., controlled-channel attacks). Then,

in Section V-B, we consider the next important aspect in

evaluating container security which deals with efforts towards

evaluation methodologies and standardization methods for

secure container deployment.

A. VULNERABILITIES, EXPLOITS, AND TOOLS

Some researchers show that a large number of container

images suffer from security vulnerabilities. The number of

vulnerabilities is increasing with time, which highlights an

issue in remediation processes for container vulnerabilities.

For example, in 2015, Gummaraju et al. [88] showed that

30+% of official Docker images contained high impact secu-

rity vulnerabilities. Henriksson and Falk [89] scanned the

top 1000 Docker images, in 2017, and showed that 70% of

the images suffered from high severity issues and 54% had

critical severity issues. This shows an increase in vulner-

abilities for Docker images compared to the former study

in 2015 [88]. Furthermore, Shu et al. [90] studied vulner-

abilities that exist in Docker hub images and proposed the

Docker Image Vulnerability Analysis (DIVA) framework to

automate the process of analyzing Docker images. They

scanned 356,218 images and concluded that community and

official images contain 180 vulnerabilities on average, and

showed that 90% of the images suffered from high severity

vulnerabilities. Table 8 summarizes those studies along with

their strengths and weaknesses. We believe DIVA can play an

important role in discovering image vulnerabilities automat-

ically, in which case it could help users to make sure that the

downloaded image is not vulnerable before using it.

While the works above focused on discovering vul-

nerabilities, other researchers showed the actual effect of

vulnerability exploitations. Martin et al. [91] presented a

vulnerability analysis for the Docker ecosystem. The authors

detailed some real-world scenarios for the vulnerabilities and

how they could be exploited and proposed possible fixes.

Lin et al. [92] created a dataset of 223 exploits that are

effective on container platforms. Then, they evaluated the

security of different Linux containers using a subset of those

exploits. The authors discovered that 56.8% of these exploits
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are successful against the default container configurations.

Similarly, Kabbe [93] presented a security analysis of Docker

containers. The author focused on showing how vulner-

abilities can be exploited in a production environment

against exploits such as DirtyCow (CVE-2016-5195), Shell-

shock (CVE-2014-6271), Heartbleed (CVE-2014-0160), and

Fork-bomb.

Luo et al. [94] identified possible covert channels that tar-

get Docker. These side channels can leak information among

containers or between a container and its host, reaching a

capacity larger than 700b/s. Mohallel et al. [95] assessed the

attack surface difference between a web server installed in

a container and another one installed on a base OS. They

installed Apache, Nginx, and MySQL on three different

containers provided on Docker hub, using a Debian server

for the base OS. They assessed the security of each web

server using a local network vulnerability scanner. The results

concluded that Docker containers increased the attack surface

due to Docker image vulnerabilities. Lu and Chen [96] high-

lighted the importance of penetration testing to assure con-

tainer security. They first analyzed one of the top container

managers (i.e., Docker) and compared it against traditional

virtualization. Then penetration testing was further evaluated

for specific attacks such as DoS, container escape, and side

channels.

All these studies show that vulnerabilities constitute a seri-

ous threat to container security. To mitigate this threat, Barlev

et al. [97] presented Starlight, a centralized system protection

tool which intercepts and analyzes events to determine if the

system administrator needs to be alerted. Starlight’s down-

sides might include lacking the ability to discover dormant

threats because it does not perform scanning nor does it

have quarantine feature for compromised containers. These

two issues were addressed by Bila et al. [98] who proposed

an automated threat mitigation technique (similar to [55])

using a server-less architecture based on OpenWhisk and

Kubernetes. Themain advantage of this tool is that it performs

image vulnerability scanning and provides quarantine for

compromised containers.

B. ON STANDARDS, EVALUATION METHODOLOGIES,

AND RECOMMENDATIONS

In this section, we discuss efforts towards container secu-

rity standardization, evaluation methodologies, and imple-

mentation guidelines. Several researchers ([99], [100]) agree

that there are no clear evaluation strategies and no system-

atic ways to define, study, and verify container security.

Abbott’s [14] findings are similar to the previous two works

as the claim is made that there are no evaluation methodolo-

gies or standards for container security.

Towards this end Abbott [14] proposed a newmethodology

for assessing the security of container images, focusing on

actions to be carried out by the user to assess the secu-

rity of a container image. The author tested four popular

container images: nginx, redis, google/cadvisor, mbabineau/

cfn-bootstrap. The results showed security issues in each

of the tested images and provided ways to resolve each

issue. Reference [101] discussed, compared, and evaluated

different container security features. Additionally, the author

discussed the threats, attack surfaces, and hardening tips to

enhance container security. Goyal [102] presented a com-

prehensive benchmark that provides guidelines for securing

Docker (using Docker CE 17.06 or later) through a step-by-

step checklist.

Efforts towards container security standardization have

been realized since late 2017. In September 2017, the

National Institute of Standards and Technology (NIST)

presented the first special publication about container

application security guidelines [31]. It discussed security

threats, recommendations, and countermeasures. To imple-

ment these generalized recommendations and countermea-

sures one (or more) solutions are required. We summarized

the NIST standard in Table 9, considered some other threats

that were not covered in the standard and added studies that

addressed each threat type. Efforts towards standardization

have been realized by the Linux Foundation, which led to

the birth of the OCI in June 2015, with its main goal to

create industry standards for container format and runtime.

In September 2017, the OCI published v.1.0.0 for runtime

specifications of container image format. In October 2017,

NIST presented another special publication ( [35]) focus-

ing on assurance requirements for container deployments

and provided deployment solutions for the recommendations

made in the previous special publication ([31]).

NIST did not address container security from a research

point-of-view as it is more targeted towards industrial uses.

Additionally, they did not address the body of research

behind container security which might limit the benefits to

researchers. Furthermore, they did not provide open research

issues and future research directions. Our work answers the

aforementioned concerns and highlights other risks that are

not addressed, such as the Meltdown attack, that puts all

containers at risk. We believe that standards are important to

provide guidelines to overcome security issues in containers.

However, as we saw in this survey, several security needs and

issues are not addressed or well understood (e.g., container

specific namespaces, container specific LSMs, and Melt-

down). Hence, we believe earlier works on standardization

require more investigation.

Table 10 shows a summary of selected studies addressed

herein and the use cases that can be applied to them.

VI. OPEN ISSUES AND FUTURE RESEARCH DIRECTIONS

Research on container technologies is still in a formative

stage and needs more experimental evaluation [113]. This

section provides several future research directions based on

our review and other researchers’ recommendations.

A. MELTDOWN AND SPECTRE ATTACKS

Meltdown exploits the out-of-order execution in mod-

ern processors to extract information about the OS and

other containers. Containers are based on the concept of
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TABLE 9. Summary of container threats and studies addressed in each category.
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TABLE 10. Summary of selected studies and applicable use cases.
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sharing the same kernel. Recently, Lipp et al. [26] showed

that a malicious container can leak information about other

containers on the same host. This poses a serious threat to

all cloud service providers that provide CaaS. Spectre [27] is

another serious threat to containers, as it tricks other applica-

tions into accessing arbitrary locations in their memory. Both

attacks target use case II (as defined in Section III). Those

issues need to be addressed because they pose a serious threat

to all containerization systems and can cause big damage to

cloud providers.

B. STANDARDS FOR CONTAINER SECURITY

Further investigation for standardization of container deploy-

ment, communication protocols, and assessment method-

ologies is required. Similar recommendations have been

proposed by many researchers [14], [100], [108]. The pro-

posed unified models and standards should take into con-

sideration different application requirements and platforms,

usability aspects, practicality, automation, simplicity, and

ease of adoption.

C. DIGITAL FORENSICS FOR CONTAINERS

Digital forensics is used to analyze security incidents. As the

world is moving towards microservices that use containers,

digital forensic techniques should be able to analyze security

incidents related to them. According to Dewald et al. [114],

Docker’s container forensics have not yet been addressed

(as of 2018). Their study can motivate further work in this

area as they provided details on the new evidence introduced

by using containers and how current investigation methods

could be changed to commensurate containers.

Digital forensics research should answer whether the cur-

rent investigation methods are sufficient for containers and

what new methods are possibly required in this domain.

D. USABILITY OF VULNERABILITIES ASSESSMENT TOOLS

Several researchers showed that Docker images contain

many high-risk vulnerabilities that range from 30% to

90% [88]–[90], indicating a real issue with such images.

As many vulnerability assessment tools are available for

Docker images, the question we are raising here is about

the usability of such tools in the production environment

and if their use could hinder the deployment process or not.

We believe that more work is needed to study and con-

trast available container vulnerability scanners with respect

to performance, usability, automation, and integration with

current deployment and orchestration tools. This would pro-

vide tremendous help for developers and companies need-

ing to know the risks they are facing before, during, and

after deploying a specific image. We also recommend further

examination of the feasibility of automatically mitigating the

discovered container vulnerabilities by applying the required

solutions automatically.

E. CONTAINER ALTERNATIVES

De Lucia [115] presented a review, in May 2017, on secu-

rity isolation of VMs, containers, and unikernels. The study

shows that VMs and unikernels provide good isolation com-

pared to containers. However, VMs are inefficient because

they are large, unikernels are not optimal because they

lack privilege levels (which help separate kernel code from

application code), and containers do not provide as good

isolation as VMs or unikernels. The study concludes that

there is no optimal solution that has been developed as

of yet. It further states that an optimal solution should

combine the good characteristics of VMs, containers, and

unikernels.

In December 2017, clear containers merged with Kata

containers which Intel claims have the same security level as

VMs [28]. Further analysis is required on VMs, containers,

unikernels, and hybrids. As suggested by De Lucia [115],

studies on hybrid combination’s feasibility, benefits, and

security are necessary. This would help identify the best

technology for different scenarios.

F. CONTAINER SECURITY AND PRIVACY

FOR IoT APPLICATIONS

Symantec’s recent report (published March 2018) shows an

overall increase of 600% in attacks targeting IoT for 2017.

Recently, containers are used in IoT applications because they

are lighter than VMs [3]–[7]. Celesti et al. [5] underscored the

importance of containers to enhance IoT cloud service provi-

sioning. The authors studied performance issues and possible

advantages when containers are used for IoT cloud services.

Results showed that containers introduced acceptable perfor-

mance overhead in real scenarios. Morabito et al. [6] further

showed that security issues arise when using containers for

IoT because of resource sharing.

Morabito et al. [116] analyzed containers and unikernels

scalability, privacy, security, and performance for numer-

ous IoT applications. The authors underscored some open

issues for integrating containers and unikernels with IoT

applications such as orchestrations and monitoring, security

and privacy, standards and regulations, management frame-

works and applications, portability, data storage, and telecom

industry readiness and perspectives. For security and privacy,

the authors highlighted the challenge of certification of appli-

cations and the need for validation mechanisms to identify

tampered images. Morabito [117] encouraged the develop-

ment of security mechanisms that are related to IoT appli-

cations such as [118]. Haritha and Lavanya [119] presented a

survey on IoT security issues and provided a set of open issues

and challenges. Hence, we re-emphasize the importance of

studying container security, privacy, and standardization tech-

nologies for different IoT applications such as smart grids,

smart vehicles, augmented reality, smart sensor networks,

E-Health, and network function virtualization (NFV).
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G. BLOCKCHAIN FOR CONTAINER VERIFICATION

As we have seen earlier, many of the security issues in

containers arise from using unverified images. For example,

Docker default installation does not check for image authen-

ticity [104]. Towards this end, Notary can be used to verify

Docker images’ authenticity, however, is a centralized solu-

tion. A better solution is to use a decentralized verification

that could use a blockchain. Xu et al. [104] proposed a solu-

tion for Docker images verification using blockchain called

Decentralized Docker Trust (DDT). We believe further inves-

tigation is required for the applicability and effectiveness of

decentralized attestation for container images.

H. CONTAINER SPECIFIC LSMs

One issue with LSMs is that they are shared by all con-

tainers, in which a single container cannot use a specific

LSM [59]. As we discussed earlier in Section IV-A.2, LSMs

play a pivotal role in providing security for Linux systems in

general. However, sharing LSMs among different containers

can be crippling as different containers might have differ-

ent protection requirements. Hence, we recommend further

research towards container specific LSMs to enhance and

facilitate container security. Johansen and Schaufer’s [120]

work focuses on making LSMs available to containers and

as they mention ‘‘To date containers access to the LSM has

been limited but there has been work to change the situa-

tion’’. The way to achieve this according to the authors is

by virtualizing the LSMs. Recently, Sun et al. [60] presented

a study where they provided container specific LSMs (for

AppArmor). Further investigation is required on this topic,

especially addressing profile creation for container images

and their applicability using current orchestration tools.

VII. CONCLUSIONS

Containers are important for the future of cloud computing.

Microservices and containers are closely related, where con-

tainers are considered the standardized way for microservice

deployment. Containers are important for the emerging field

of service meshes that relies on microservices, too. However,

one of the primary adoption barriers to container widespread

deployment is the security issues they face. To the best of our

knowledge, there are no comprehensive surveys on container

security; our work attempted to fill this gap by looking at

the literature and identifying the main threats which are due

to image, registry, orchestration, container, side channels,

and host OS risks. We thus proposed four use cases for the

host-container level to elucidate how current solutions can

be used to enhance container security. The use cases are:

(I) protecting a container from applications inside it, (II) inter-

container protection, (III) protecting the from containers, and

(IV) protecting containers from a malicious or semi-honest

host. Available solutions for the four use cases can be either

(i) software solutions such as Linux namespaces, CGroups,

capabilities, seccomp, and LSMs, or (ii) hardware solutions

such as using vTPMs and utilizing trusted platform support

(e.g., Intel SGX).

We further identified some open challenges and research

directions for containers. The directions are focused on

the importance of enhanced vulnerability management,

digital investigation, container alternatives, and container-

specific LSMs.We hope our work can shed light on the power

and limitations of container technologies, stimulate interac-

tions between practitioners, and spawn further research in the

area.
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