
Applied Computer Systems

21

ISSN 2255-8691 (online)
ISSN 2255-8683 (print)
May 2018, vol. 23, no. 1, pp. 21–27
doi: 10.2478/acss-2018-0003
https://www.degruyter.com/view/j/acss

©2018 Vitor Goncalves da Silva, Marite Kirikova, Gundars Alksnis.
This is an open access article licensed under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), in the manner agreed with De Gruyter Open.

Containers for Virtualization: An Overview
Vitor Goncalves da Silva1*, Marite Kirikova2, Gundars Alksnis3

1–3 Riga Technical University, Riga, Latvia

Abstract – Virtualization has enabled the commoditization of
cloud computing, as the hardware resources have become
available to run different environments and share computing
resources amongst different enterprises. Two technology types are
commonly used in virtualization of hardware, namely, hypervisor
and container. The present paper concerns only container
technologies.

A comprehensive overview of the container technologies for
virtualization and the dynamics of their popularity have not been
available yet. Without such an overview, the informed fast choice
of technologies is hindered. To fill this knowledge gap, a systemic
literature review was conducted to reveal the most popular
container technologies and the trends in their research.

Keywords – Application virtualization, distributed computing,

distributed processing.

I. INTRODUCTION

Virtualization has enabled the commoditization of cloud
computing, as the hardware resources have become available to
run different environments and share computing resources
amongst different enterprises. As the adoption of cloud
computing has become a norm on a large-scale enterprise
level [1], the improvement of resource sharing is a logical next
step. Container technology improves the sharing of hardware
resources by eliminating one layer of the infrastructure
configuration and setup.

Running a virtual instance of a computer system in a layer
abstracted from the physical hardware is the basic concept of
virtualization. The applications which run on top of the
virtualized machine operate without knowledge of any
intermediary layer [2].

Two technologies are commonly used in virtualization of
hardware, the hypervisor and the container. The hypervisor
provides virtual machines (VM), which requires the
provisioning of an operating system. Containers do not require
the provisioning of an operating system; however, they can also
run inside a VM. Both technologies support isolation and multi-
tenancy [3]. Linux containers share close concepts with virtual
machines. However, their operational flow presents some
differences.

Container technologies, such as Docker [4], offer
unprecedented agility in developing and running applications in
a cloud environment, especially when combined with a
microservice-style architecture [5]. It enables the design of
multiple tenancy applications with less overhead when
compared with the hypervisor. There are some security
implications with the use of containers. Thus, the benefit does

* Corresponding author’s e-mail: vitor.goncalves-da-silva@edu.rtu.lv

not come without the side effects [6]. Docker is just one of the
possible approaches for containers in virtualization; it offers the
complete solution for a container platform. To see the spectrum
of the container technology ecosystem, a systematic literature
review has been conducted to obtain an overview of container
platform components and their alternatives.

II. RESEARCH METHODOLOGY

The present paper aims at identifying technologies associated
with container technology, summarising its adoption in cloud-
based environments, grouping and classifying key components
of this technology and finally identifying research trends in this
field. To achieve the goals mentioned previously, a systematic
literature review has been conducted.

Related work. As a first step for conducting a systematic
review, a search for related literature has been performed.

Research questions. The goal of this survey is to review
existing research in order to assess the adoption of container
technology and identify trends in this research field. To achieve
the goals, the following research questions have to be answered:

• What technologies are associated with the
implementation, control, and monitoring of containers?

• How is the research distributed in the field?
1. Publishing entity.
2. Chronologically.
3. Geographically.

Eligibility criteria. A list of criteria is derived in order to
include or exclude certain articles that are found on the related
subject. The word “container” has homographs and therefore
must be searched in combination with lexicons to minimise
unrelated papers appearing in the search results.

Mandatory criteria for including the article are:
• The study is published in English and available in

Scopus [7].
• The study contains comprehensive conclusions of

performed review or application of container technology.
One of the following additional criteria must be met to

include the article in the research scope:
• The study considers the subject of Containers in the

context of software systems.
• The study considers the subject of Microservices

Architecture and its underlying infrastructure.
• The study considers the subject of DevOps and the

adoption of container technology.
Matching one of the following criteria results in the exclusion

of article from the scope of the survey:
• Studies were not peer-reviewed or published.

Applied Computer Systems

__ 2018/23

22

• Studies that did not answer the research question at least
partially.

• Studies that did not derive potential future improvements
from the research conducted.

Look-up concepts. Based on the questions that have to be
answered during this survey and considering limitations
proposed by the exclusion criteria, at the beginning of
systematic review the domain related concepts and notions have
been defined. These concepts have been used in the search:

• ALL (“containers” AND “cloud”) AND (LIMIT-TO
(SUBJAREA, “COMP”));

• TITLE-ABS-KEY (“microservices” AND (“infrastructure”
OR “cluster”)).

Look-up strategy. Systematic review guidelines suggest that
searching in the title does not always result in all relevant
publications. Therefore, the abstract or full-text of articles should
also be considered. The search was restricted to the title and
abstract of the studies.

TABLE I

SELECTED ARTICLES FOR REVIEW ON THE SCOPE OF THIS SURVEY

Although applying the restrictions previously mentioned the

number of articles available to conduct this survey was present in
a large number, to further narrow the subject of study the authors
used the number of citations as a parameter to sort and prioritize
articles subject to review.

The resulting list contains 16 articles that qualify according to
the search criteria described previously (see Table I).

III. CONTAINER TECHNOLOGY STACK

Docker container platform has solutions for most layers of
the container technology stack. The layers covered are
container engine, scheduling, orchestration, image management
and configuration management. Docker’s market share position
and breadth of solutions make its name ubiquitous with
container technology [32].

Fig. 1. Reference architecture of cloud containers.

Containers are an abstraction at the application layer that
packages code and dependencies. Containers provide OS-level
virtualization by leveraging kernel features to isolate processes
and define system usage limits for resources such as CPU,
memory, disk I/O and network. Multiple containers can run on
the same machine and share the operating system OS kernel
with other containers, each running as isolated processes in user
space. Containers take up less disk and memory space than
VMs, containers are also considerably smaller in terms of
storage space required, with a smaller energy consumption
footprint [27], and start almost instantly. The container has all
the dependencies it needs to run it: code, runtime, system tools,
system libraries, settings. Available for both Linux and
Windows-based apps, the containerized software will always
run the same, regardless of the environment [5], [11]. Those
who want to deploy applications with the least infrastructure
will choose a simple container-to-OS approach. This is why
container-based cloud vendors can claim improved performance
when compared to hypervisor-based clouds [9], [10].

The layering composition illustrated in Fig. 1. depicts the
underlying components present in cloud container solutions. In
this section those layers and associated technologies, identified
by the conducted research as the most prominent, are described
further and classified accordingly.

KVM [25] is situated in the Virtual Infrastructure layer
(layer 2); this layer is optional when considering containers.
KVM is a virtualization infrastructure for the Linux kernel that
turns it into a hypervisor. Containers can run both, directly on
host OS and on the guest OS that runs on virtualization
technology, such as KVM.

Citation Year Title

[8] 2016
Network Function Virtualization: State-of-the-Art and
Research Challenges

[9] 2015
Large-Scale Cluster Management at Google with
Borg

[3]
et al.,
2014

Containers and Cloud: From LXC to Docker to
Kubernetes

[10]
et al.,
2015

Hypervisors vs. Lightweight Virtualization: A
Performance Comparison

[11]
et al.,
2015

Containerization and the PaaS Cloud

[12]
et al.,
2014

Skyport – Container-Based Execution Environment
Management for Multi-Cloud Scientific Workflows

[13]
et al.,
2015

An Architecture for Self-Managing Microservices

[14]
et al.,
2014

The Research and Implementation of Cloud
Computing Platform Based on Docker

[5]
et al.,
2016

Container and Microservice Driven Design for Cloud
Infrastructure DevOps

[15]
et al.,
2015

Distributed Systems of Microservices Using Docker
and Serfnode

[16]
et al.,
2015

Leveraging Linux Containers to Achieve High
Availability for Cloud Services

[17]
et al.,
2015

Cloud Services in the Guifi.net Community Network

[18]
et al.,
2015

ROAR: A QoS-Oriented Modelling Framework For
Automated Cloud Resource Allocation And
Optimization

[19]
et al.,
2015

Integrating Containers into Workflows: A Case Study
Using Makeflow, Work Queue, and Docker

[20]
et al.,
2015

A REST Service Framework for Fine-Grained
Resource Management in Container- Based Cloud

[21]
et al.,
2015

Docker Containers Across Multiple Clouds and Data
Centres

Applied Computer Systems

__ 2018/23

23

Fig. 2. Virtualization as an optional layer for the container solution stack.

The technologies identified in the Container Engine layer
(layer 4) as illustrated in Fig. 1, are Linux containers (LXC),
Docker (container and Docker engine), Rocket (rkt) and
CoreOS.

LXC [24] are similar to VMs in which they have a fully
functional OS; data can be saved in a container or outside. LXC
are filesystem neutral and by default store data in a stateful
manner. It is possible to build loosely coupled or composite
stacks.

Docker [4] is a solution that brings an alternative philosophy
in comparison to LXC. In the Docker containers are designed
to support a single application as opposed to composite stacks.
Containers are made up of read-only layers via AUFS/Device
mapper, data written by the applications into the container is
handled by the Copy-on-write resource management technique.
Container instances are ephemeral, persistent data are stored in
blind mounts to host or data volume containers [34]. Recent
releases of Docker have introduced the Volumes feature, it
presents the ability to store stateful data.

Rocket (rkt) is a container engine technology developed by
CoreOS as a lightweight and secure alternative to Docker [26].

Earlier versions of Docker (<1.11) presented security issues
by downloading container images, launching container
processes and exposing a remote API, through a centralised
process running as root. Although such a design flaw has been
mitigated by higher versions, there is a fundamental difference
in both container engine process models [33].

Different container engines presented the risk of lack of
interoperability; this risk was removed when the Open
Container Initiative (OCI) was established by Docker and other
leaders in the container industry [35]. Two specifications

guarantee interoperability between different container engines,
the Runtime Specification (runtime-spec) and the Image
Specification (image-spec). The Runtime Specification outlines
how to run a “filesystem bundle” that is unpacked on disk. At a
high level, an OCI implementation would download an OCI
Image then unpack that image into an OCI Runtime filesystem
bundle. At this point, the OCI Runtime Bundle would be run by
an OCI Runtime.

CoreOS Container Linux is designed to be managed and run
at massive scale, with minimal operational overhead.
Traditional Linux operating system distributions are built in
accordance with their proposed usage.

Convenience is one of the factors to consider when building
Linux distributions; thus, the inclusion of preinstalled packages
is possible for various applications. Containers, in contrast, are
designed for lightweight virtualization to run many identical
machines as possible with the least amount of overhead in terms
of memory, disk and CPU. To cater for the low overhead
requirements that provide faster spin-up time, vendors have
developed container-optimized builds. The result is
minimalistic distributions containing the minimum
requirements for containers to run.

Container Linux runs on nearly any platform whether
physical, virtual, or private/public cloud.

Scheduling (layer 5) and Orchestration (layer 6) as illustrated
in Fig. 1 are comprised by the following technologies:
Kubernetes, Apache Mesos, Swarm, Marathon, YARN and
Omega yield by the research results.

The orchestration and management complexity problems
were solved by introducing orchestration and cluster
management tools such as Kubernetes [22] and Apache
Meso [23].

Kubernetes is an open source system for managing clusters
of containers [3], [22]. It operates on the orchestration layer. It
provides tools for deploying applications, scaling that
application as needed, managing changes to existing
containerized applications, and also plays a role in the
optimization of the use of the underlying hardware beneath the
containers. Kubernetes is designed to be extensible and fault-
tolerant by allowing application components to restart and
move across systems as needed.

Google has over a decade of experience running
containerized workloads in production. Borg is the initial
project responsible for Google’s internal container-oriented
cluster-management system [9]. Kubernetes was born by taking
the best ideas from Borg with additional improvements [36].

Google has donated Kubernetes to the Linux Foundation to
form the Cloud Native Computing Foundation. The community
support has defined it as powerful and more robust than other
technologies that operate in the orchestration layer. In addition
to Google, other major players in container technology have
announced support for Kubernetes: AWS [37], Azure [38] and
Docker [39]. Docker Swarm remains available for container
orchestration; it can co-exist with Kubernetes on edge-case
scenarios [40].

Applied Computer Systems

__ 2018/23

24

Apache Mesos is a cluster manager that provides efficient
resource isolation and sharing across distributed applications or
frameworks [23]. Apache Mesos is open source software
originally developed at the University of California at Berkeley.
It is best suited to deploy and manage applications in large-scale
clustered environments in an efficient manner. Apache Mesos
relies on containerizers, and Marathon is a container
orchestration platform for Mesos and DC/OS [29], [12]. A
containerizer is a Mesos agent component responsible for
launching containers, within which you can run a service.
Running services in containers offer a number of benefits,
including the ability to isolate tasks from one another and
control task resources programmatically. It is possible to use a
Docker containerizer, which delegates container management
to the Docker engine. In Mesos, resources are offered to
application-level schedulers. This allows for custom, workload-
specific scheduling policies.

Omega operates on the scheduler layer and approaches
scheduling in a different manner [31]. It positions itself as a
shared state scheduler and grants full access to the entire cluster
resources by removing the central resource allocator. The state
of the cluster is shared among all the schedulers. Supporting
independent scheduler implementations and exposing the entire
allocation state of the schedulers, the architecture can scale up
to a large number of schedulers and works with different
workloads with their own scheduling policies. Opposed to this
approach, Docker Swarm is a monolithic scheduler with a
single, centralised scheduling algorithm for all jobs. This type
of schedulers is not suitable for running heterogeneous modern
workloads and other long-running jobs.

Apache Hadoop YARN [30] is used in conjunction with
Kubernetes. YARN operates on the scheduling layer; it makes
use of HDFS to enable common resource management across
data centres and PaaS workloads in a seamless fashion. In this
manner, hybrid cloud solutions are achieved with greater
ease [13]. YARN has a two-level scheduler; it separates
concerns of resource allocation and task placement.

Containers have the ability to be managed collectively, thus
forming a cluster. The complexity of implementing multiple
microservices that rely on several clusters with interlinked
dependencies creates a complex problem for the provision and
management of container clusters [12], [13].

IV. RESULTS

A. Technologies Applied in Container Technology

The qualitative analysis of the selected articles shows that all
articles mention Docker; and it is the most prominent
technology for wrapping Linux containers and providing a
minimal API for interaction. A full enumeration of technologies
used is presented in the Table II below, depicting its reference
and research article.

TABLE II

MOST PROMINENT TECHNOLOGIES

Technology Articles

Docker [4]
[3], [5], [8], [9], [10], [11], [12], [13], [14], [15], [16],

[17], [18], [19], [20], [21]

LXC [24] [3], [5], [10], [11], [12], [14], [15], [16], [17]

KVM [25] [5], [10], [12], [14], [16]

CoreOS [26] [15], [19]

Rocket [33] [5], [19]

Kubernetes [22] [3], [5], [9], [11], [12], [13], [15], [19], [20], [21]

Apache Mesos [23] [11], [12], [13], [15], [20], [21]

Swarm [28] [5]

Marathon [29] [12]

YARN [30] [13]

Omega [31] [13]

B. Trends in the Container Research Field

The selected articles have also been subject to a quantitative
analysis which aims at showing which journals have the most
presence (Publishing Entity), the chronological distribution of
the articles and finally the identification of global research
clusters.

Publishing entity. According to this criterion, the articles are
grouped by publisher and listed in the Table III below.

TABLE III

GROUPING BY PUBLISHING ENTITY

Publishing Entity Articles Total

ACM [8], [13], [19] 3

IEEE
 [3], [5], [9], [10], [11], [12], [14], [15],

[16], [20], [21]
11

Science Direct [17], [18] 2

Chronological publication. According to this criterion, the

articles are grouped by year of publication and mapped on the
chart and shown in the Fig. 3 below.

Fig. 3. Grouping by year of publication.

0

2

4

6

8

10

12

N
um

be
r

of
pu

bl
ic

at
io

ns

Year

Publications Distribution

2014

2015

2016

Applied Computer Systems

__ 2018/23

25

Geographical publication. According to this criterion, the
articles are grouped by geographical publication and shown in
the Fig. 4 below. The aim is to identify clusters of research. The
authors of the researched articles were classified by their
geographical location of research. In some articles, there is
more than one author; thus, the sum is higher than the total
number of research articles.

Fig. 4. Research cluster, geographical grouping.

To observe the trends for the technologies identified, the pool
of articles was extended by maintaining the eligibility criteria
from the research methodology. The look-up concepts used to
retrieve results per technology are displayed in Table IV. For
the look-up strategy previously defined, all restrictions were
lifted to capture the full spectrum from 2014 to 2018.

TABLE IV

TECHNOLOGY LOOK-UP CONCEPTS

Technology Look-up concepts

Docker

ALL (“docker” AND “container”) AND (LIMIT-TO
(SUBJAREA , “COMP”)) AND (LIMIT-TO (DOCTYPE,
“cp”) OR LIMIT-TO (DOCTYPE , “ar”)) AND (LIMIT-TO
(PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR
LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR,
2015) OR LIMIT-TO (PUBYEAR, 2014))

LXC

ALL (“LXC” AND “container”) AND (LIMIT-TO
(SUBJAREA, “COMP”)) AND (LIMIT-TO (DOCTYPE,
“cp”) OR LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO
(PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR
LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR,
2015) OR LIMIT-TO (PUBYEAR, 2014))

KVM

ALL (“KVM” AND “container”) AND (LIMIT-TO
(SUBJAREA, “COMP”)) AND (LIMIT-TO (DOCTYPE,
“cp”) OR LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO
(PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR
LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR,
2015) OR LIMIT-TO (PUBYEAR, 2014))

CoreOS

ALL (“coreOS” AND “container”) AND (LIMIT-TO
(SUBJAREA, “COMP”)) AND (LIMIT-TO (PUBYEAR,
2018) OR LIMIT-TO (PUBYEAR, 2017) OR LIMIT-TO
(PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR, 2015) OR
LIMIT-TO (PUBYEAR, 2014)) AND (LIMIT-TO
(DOCTYPE, “cp”) OR LIMIT-TO (DOCTYPE, “ar”))

Rocket
ALL ((“rocket” OR “rkt”) AND “container”) AND (LIMIT-
TO (SUBJAREA, “COMP”)) AND (LIMIT-TO (PUBYEAR,
2018) OR LIMIT-TO (PUBYEAR, 2017) OR LIMIT-TO

Technology Look-up concepts

(PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR, 2015) OR
LIMIT-TO (PUBYEAR, 2014)) AND (LIMIT-TO
(DOCTYPE, “cp”) OR LIMIT-TO (DOCTYPE, “ar”))

Kubernetes

ALL (“kubernetes” AND “container”) AND (LIMIT-TO
(SUBJAREA, “COMP”)) AND (LIMIT-TO (DOCTYPE,
“cp”) OR LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO
(PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR
LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR,
2015) OR LIMIT-TO (PUBYEAR, 2014))

Apache
Mesos

ALL (“mesos” AND “container”) AND (LIMIT-TO
(SUBJAREA, “COMP”)) AND (LIMIT-TO (DOCTYPE,
“cp”) OR LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO
(PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR
LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR,
2015) OR LIMIT-TO (PUBYEAR, 2014))

Swarm

ALL (“docker” AND “swarm”) AND (LIMIT-TO
(SUBJAREA, “COMP”)) AND (LIMIT-TO (DOCTYPE,
“cp”) OR LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO
(PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR
LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR,
2015) OR LIMIT-TO (PUBYEAR, 2014))

Marathon

ALL (“marathon” AND “mesosphere” AND “container”)
AND (LIMIT-TO (SUBJAREA, “COMP”)) AND (LIMIT-TO
(DOCTYPE, “cp”) OR LIMIT-TO (DOCTYPE, “ar”)) AND
(LIMIT-TO (PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR,
2017) OR LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO
(PUBYEAR, 2015) OR LIMIT-TO (PUBYEAR, 2014))

YARN

ALL (“YARN” AND “container”) AND (LIMIT-TO
(SUBJAREA, “COMP”)) AND (LIMIT-TO (DOCTYPE,
“cp”) OR LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO
(PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR
LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR,
2015) OR LIMIT-TO (PUBYEAR, 2014))

Omega

ALL (“omega” AND “scheduler” AND “container”) AND
(LIMIT-TO (SUBJAREA, “COMP”)) AND (LIMIT-TO
(DOCTYPE, “cp”) OR LIMIT-TO (DOCTYPE, “ar”)) AND
(LIMIT-TO (PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR,
2017) OR LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO
(PUBYEAR, 2015) OR LIMIT-TO (PUBYEAR, 2014))

The trends observed were grouped into container technology

core and container technology scheduling and orchestration.

Fig. 5. Container Technology Core – Layers 2, 3, and 4.

0

100

200

300

400

500

2014 2015 2016 2017 2018N
um

be
r

of
pu

bl
ic

at
io

ns

Year

Container Technology Core

docker LXC KVM

CoreOS Rocket

50%

17%

5%

5%

5%

6%
6% 6%

Research Clusters

USA Spain Canada China

Finland Germany Ireland Switzerland

Applied Computer Systems

__ 2018/23

26

Docker is the preferred choice for the container engine layer
due to its ease of use and popularity provided by its container
platform. As it reaches increase maturity, the adoption has been
increasing.

Linux containers (LXC) which is a building block of the
Docker engine has seen a modest increase in interest.

CoreOS and Rocket (rkt) offer an alternative architecture and
to the container engine, although its adoption has been modest
compared with Docker.

KVM virtualization has maintained a steady interest; there is
promise of revival of virtualization with unikernels [41].

The Open Container Initiative has paved way for the
standardisation of container engines.

Alternatives to the core layers still have security
improvements to make when compared with hypervisor based
virtualization. In terms of the security, Rocket is ahead of
Docker.

There is a drop in 2018; the numbers are expected to change
until the end of the current year. Nevertheless, they provide
insight for the period between January and March.

Fig. 6. Container technology core – Layers 5 and 6.

Benefiting from many years of usage within production
environment, Borg [9] was open-sourced giving life to
Kubernetes. Kubernetes dominates the adoption on the
scheduling and orchestration layers; it has monolithic
scheduling properties.

Docker Swarm is an offering from the Docker container
platform. It is no match for Kubernetes in terms of ease of use
and functionality.

Other technologies have more modest interest and adoption;
they are a better fit for more complex systems when two-level
and share-state scheduling is required.

V. CONCLUSION

Docker is the most prominent technology in cloud containers
and its use is widely adopted. This area of research is maturing

and as expected, several production ready study cases have
become available since 2014.

With the Open Container Initiative [35] a standard was
established for container engines to achieve interoperability.

Kubernetes has dominance on the layers of scheduling and
orchestration; it is offered by the major cloud providers
including Docker.

There are still many research opportunities, especially in the
security area and in the orchestration, management, and control
of distributed clusters [15], [19].

The adoption of containers is widespread; the next logical
step for cloud service providers is to use container technology
and abstract its implementation by providing serverless
computing. The authors will carry out further research on this
promising field.

REFERENCES
[1] A. Khajeh-Hosseini, D. Greenwood, and I. Sommerville, “Cloud

Migration: A Case Study of Migrating an Enterprise It System to IaaS,”
in 2010 IEEE 3rd International Conference on Cloud Computing,
pp. 450–457. https://doi.org/10.1109/cloud.2010.37

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,”
in SIGOPS Oper. Syst. Rev., 2003, vol. 37, pp. 164–177.
https://doi.org/10.1145/1165389.945462

[3] D. Bernstein, “Containers and Cloud: From LXC to Docker to
Kubernetes,” IEEE Cloud Computing, vol. 1, issue 3, pp. 81–84, 2014.
https://doi.org/10.1109/mcc.2014.51

[4] Build, Ship, and Run Any App, Anywhere. [Online]. Available:
https://www.docker.com/what-docker [Accessed: 10 Dec. 2017].

[5] H. Kang, M. Le, and S. Tao, “Container and Microservice Driven Design
for Cloud Infrastructure DevOps,” in 2016 IEEE International
Conference on Cloud Engineering (IC2E), pp. 202–211.
https://doi.org/10.1109/ic2e.2016.26

[6] L. Rodero-Merino, L. M. Vaquero, E. Caron, A. Muresan, and F. Desprez,
“Building Safe PaaS Clouds: A Survey on Security in Multitenant
Software Platforms,” Computers Security, vol. 31, issue 1, pp. 96–108,
2012. https://doi.org/10.1016/j.cose.2011.10.006

[7] Scopus: The Largest Abstract and Citation Database of Peer-Reviewed
Literature: Scientific Journals, Books and Conference Proceedings.
[Online]. Available: https://www.elsevier.com/solutions/scopus
[Accessed: October. 18, 2017].

[8] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck, and
R. Boutaba, “Network Function Virtualization: State-of-the-Art and
Research Challenges,” IEEE Communications Surveys and Tutorials,
vol. 18, issue 1, pp. 236–262, 2016.
https://doi.org/10.1109/comst.2015.2477041

[9] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-Scale Cluster Management at Google With Borg,” in
Proc. Tenth European Conference on Computer Systems, EuroSys ’15,
ACM, New York, NY, USA, 2015.
https://doi.org/10.1145/2741948.2741964

[10] R. Morabito, J. Kjallman, and M. Komu, “Hypervisors vs. Lightweight
Virtualization: A Performance Comparison,” in 2015 IEEE International
Conference on Cloud Engineering, pp. 386–393.
https://doi.org/10.1109/ic2e.2015.74

[11] C. Pahl, “Containerization and the PaaS Cloud,” IEEE Cloud Computing,
vol. 2, issue 3, pp. 24–31, 2015. https://doi.org/10.1109/mcc.2015.51

[12] W. Gerlach, W. Tang, K. Keegan, T. Harrison, A. Wilke, J. Bischof, M.
DSouza, S. Devoid, D. Murphy-Olson, N. Desai, and F. Meyer,
“Skyport – Container-Based Execution Environment Management for
Multi-Cloud Scientific Workflows,” in 2014 5th International Workshop
on Data-Intensive Computing in the Clouds, pp. 25–32.
https://doi.org/10.1109/datacloud.2014.6

[13] G. Toffetti, S. Brunner, M. Blӧchlinger, F. Dudouet, and A. Edmonds,
“An Architecture for Self-Managing Microservices,” in Proc. 1st
International Workshop on Automated Incident Management in Cloud –
AIMC ’15, ACM, New York, NY, USA, 2015, pp. 19–24.
https://doi.org/10.1145/2747470.2747474

0
20
40
60
80

100
120
140

2014 2015 2016 2017 2018N
um

be
r

of
pu

bl
ic

at
io

ns

Year

Container Technology Scheduling
and Orchestration

Kubernetes Mesos Swarm

Marathon YARN Omega

Applied Computer Systems

__ 2018/23

27

[14] D. Liu and L. Zhao, “The Research and Implementation of Cloud
Computing Platform Based on Docker,” in 2014 11th International
Computer Conference on Wavelet Actiev Media Technology and
Information Processing (ICCWAMTIP), pp. 475–478.
https://doi.org/10.1109/iccwamtip.2014.7073453

[15] J. Stubbs, W. Moreira and R. Dooley, “Distributed Systems of
Microservices Using Docker and Serfnode,” in 2015 7th International
Workshop on Science Gateways, pp. 34–39.
https://doi.org/10.1109/iwsg.2015.16

[16] W. Li, A. Kanso, and A. Gherbi, “Leveraging Linux Containers to
Achieve High Availability for Cloud Services,” in 2015 IEEE
International Conference on Cloud Engineering, pp. 76–83.
https://doi.org/10.1109/ic2e.2015.17

[17] M. Selimi, A. M. Khan, E. Dimogerontakis, F. Freitag and R. P. Centelles,
“Cloud Services in the Guifi.net Community Network,” Computer
Networks, vol. 93, pp. 373–388, 2015.
https://doi.org/10.1016/j.comnet.2015.09.007

[18] Y. Sun, J. White, S. Eade, and D. C. Schmidt, “ROAR: A QoS-Oriented
Modeling Framework for Automated Cloud Resource Allocation and
Optimization,” Journal of Systems and Software, vol. 116, pp. 146–161,
2016. https://doi.org/10.1016/j.jss.2015.08.006

[19] C. Zheng and D. Thain, “Integrating Containers Into Workflows: A Case
Study Using Makeflow, Work Queue, and Docker,” in Proc. 8th
International Workshop on Virtualization Technologies in Distributed
Computing - VTDC ’15, ACM, New York, NY, USA, 2015, pp. 31–38.
https://doi.org/10.1145/2755979.2755984

[20] L. Li, T. Tang and W. Chou, “A REST Service Framework for Fine-
Grained Resource Management in Container-Based Cloud,” in 2015 IEEE
8th International Conference on Cloud Computing, pp. 645–652.
https://doi.org/10.1109/cloud.2015.91

[21] M. Abdelbaky, J. Diaz-Montes, M. Parashar, M. Unuvar, and M. Steinder,
“Docker Containers Across Multiple Clouds and Data Centers,” in 2015
IEEE/ACM 8th International Conference on Utility and Cloud Computing
(UCC), pp. 368–371.

[22] Kubernetes: Open-Source System for Automating Deployment, Scaling,
and Management of Containerized Applications. [Online]. Available:
https://kubernetes.io, [Accessed: 20 Oct. 2017].

[23] Apache Mesos: A Distributed Systems Kernel. [Online]. Available:
https://mesos.apache.org [Accessed: 20 Oct. 2017].

[24] What’s LXC?. [Online]. Available:
https://linuxcontainers.org/lxc/introduction/ [Accessed: Oct. 20, 2017].

[25] A. Shah, “Ten Years of KVM,” 2016. [Online]. Available:
https://lwn.net/Articles/705160/ [Accessed: 19 Mar. 2018].

[26] CoreOS powers the world’s container infrastructure. [Online]. Available:
https://coreos.com/why [Accessed: 19 Mar. 2018].

[27] R. Morabito, “Power Consumption of Virtualization Technologies: An
Empirical Investigation,” in 2015 IEEE/ACM 8th International
Conference on Utility and Cloud Computing (UCC), Limassol, 2015,
pp. 522–527.

[28] Swarm Mode Overview. [Online] Available:
https://docs.docker.com/engine/swarm [Accessed: 19 Mar. 2018].

[29] Marathon: A container orchestration platform for Mesos and DC/OS.
[Online]. Available: https://mesosphere.github.io/marathon/ [Accessed:
19 Mar. 2018].

[30] Apache Hadoop YARN. [Online]. Available:
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-
site/YARN.html [Accessed: 20 Oct. 2017].

[31] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: Flexible, Scalable Schedulers for Large Compute Clusters,” in
Proc. 8th ACM European Conference on Computer Systems (EuroSys ’13),
ACM, New York, NY, USA, 2013, pp. 351–364.
https://doi.org/10.1145/2465351.2465386

[32] State of the Cloud Report. [Online].
Available: https://assets.rightscale.com/uploads/pdfs/RightScale-2017-
State-of-the-Cloud-Report.pdf [Accessed: 18 Mar. 2018].

[33] rkt vs other projects. [Online]. Available:
https://coreos.com/rkt/docs/latest/rkt-vs-other-projects.html [Accessed:
19 Mar. 2018].

[34] A. Fulay “Containers Deep Dive – LXC vs DockerG,” Jan. 2017.
[Online]. Available: https://robinsystems.com/blog/containers-deep-dive-
lxc-vs-docker-comparison/
[Accessed: 18 Mar. 2018].

[35] Open Container Initiative. [Online]. Available:
https://www.opencontainers.org/ [Accessed: 19 Mar. 2018].

[36] Borg: The Predecessor to Kubernetes. [Online]. Available:
http://blog.kubernetes.io/2015/04/borg-predecessor-to-kubernetes.html
[Accessed: 19 Mar. 2018].

[37] Amazon AKS. [Online]. Available: https://aws.amazon.com/eks/
[Accessed: 19 Mar. 2018].

[38] Azure Container Service (AKS). [Online]. Available:
https://azure.microsoft.com/en-us/services/container-service/ [Accessed:
19 Mar. 2018].

[39] Docker Support for Kubernetes. [Online]. Available:
https://www.docker.com/kubernetes [Accessed: 19 Mar. 2018].

[40] B. Stewart, “Why Kubernetes vs. Swarm is the Wrong Question,” 2017.
[Online]. Available: https://www.wintellect.com/kubernetes-vs-swarm-
wrong-question/ [Accessed: 19 Mar. 2018].

[41] R. Morabito, V. Cozzolino, A. Y. Ding, N. Beijar, and J. Ott, “Consolidate
IoT Edge Computing with Lightweight Virtualization,” IEEE Network,
vol. 32, no. 1, pp. 102–111, Jan. 2018.
https://doi.org/10.1109/mnet.2018.1700175

Vitor Goncalves da Silva is a second-year
Master student majoring in Business Informatics,
Riga Technical University, Latvia (2016–2018).
At present, he is a Sr. Software Engineer at
Intexsys. Fields of interests include cloud
computing, software design and systems
development.
E-mail: vitor.goncalves-da-silva@edu.rtu.lv

Marite Kirikova, Dr. sc. ing., is a Professor in
Information Systems Design at the Department
of Artificial Intelligence and Systems
Engineering, Faculty of Computer Science and
Information Technology, Riga Technical
University, Latvia. She has more than 150
publications on the topics of requirements
engineering, business process modelling,
knowledge management, and systems
development. She has done fieldwork at
Stockholm University and Royal Institute of

Technology, Sweden, Copenhagen University, Denmark, and Boise University,
USA. In her research, currently she focuses on continuous information systems
engineering in the context of agile and viable systems approaches.
E-mail: marite.kirikova@gmail.com

Gundars Alksnis received Dr. sc. ing. in
information technologies (system analysis,
modelling and design) from Riga Technical
University, Latvia, in 2008. He is an Assistant
Professor and Researcher at the Department of
Applied Computer Science, Riga Technical
University. His research interests include
modelling in the context of model-driven software
development and IT security.
E-mail: gundars.alksnis@rtu.lv

