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Abstract – Virtualization has enabled the commoditization of 
cloud computing, as the hardware resources have become 
available to run different environments and share computing 
resources amongst different enterprises. Two technology types are 
commonly used in virtualization of hardware, namely, hypervisor 
and container. The present paper concerns only container 
technologies.  

A comprehensive overview of the container technologies for 
virtualization and the dynamics of their popularity have not been 
available yet. Without such an overview, the informed fast choice 
of technologies is hindered. To fill this knowledge gap, a systemic 
literature review was conducted to reveal the most popular 
container technologies and the trends in their research. 

 
Keywords – Application virtualization, distributed computing, 

distributed processing.  
 

I. INTRODUCTION 

Virtualization has enabled the commoditization of cloud 
computing, as the hardware resources have become available to 
run different environments and share computing resources 
amongst different enterprises. As the adoption of cloud 
computing has become a norm on a large-scale enterprise 
level [1], the improvement of resource sharing is a logical next 
step. Container technology improves the sharing of hardware 
resources by eliminating one layer of the infrastructure 
configuration and setup. 

Running a virtual instance of a computer system in a layer 
abstracted from the physical hardware is the basic concept of 
virtualization. The applications which run on top of the 
virtualized machine operate without knowledge of any 
intermediary layer [2]. 

Two technologies are commonly used in virtualization of 
hardware, the hypervisor and the container. The hypervisor 
provides virtual machines (VM), which requires the 
provisioning of an operating system. Containers do not require 
the provisioning of an operating system; however, they can also 
run inside a VM. Both technologies support isolation and multi-
tenancy [3]. Linux containers share close concepts with virtual 
machines. However, their operational flow presents some 
differences. 

Container technologies, such as Docker [4], offer 
unprecedented agility in developing and running applications in 
a cloud environment, especially when combined with a 
microservice-style architecture [5]. It enables the design of 
multiple tenancy applications with less overhead when 
compared with the hypervisor. There are some security 
implications with the use of containers. Thus, the benefit does 
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not come without the side effects [6]. Docker is just one of the 
possible approaches for containers in virtualization; it offers the 
complete solution for a container platform. To see the spectrum 
of the container technology ecosystem, a systematic literature 
review has been conducted to obtain an overview of container 
platform components and their alternatives. 

II. RESEARCH METHODOLOGY 

The present paper aims at identifying technologies associated 
with container technology, summarising its adoption in cloud-
based environments, grouping and classifying key components 
of this technology and finally identifying research trends in this 
field. To achieve the goals mentioned previously, a systematic 
literature review has been conducted. 

Related work. As a first step for conducting a systematic 
review, a search for related literature has been performed. 

Research questions. The goal of this survey is to review 
existing research in order to assess the adoption of container 
technology and identify trends in this research field. To achieve 
the goals, the following research questions have to be answered: 

• What technologies are associated with the 
implementation, control, and monitoring of containers? 

• How is the research distributed in the field? 
1. Publishing entity. 
2. Chronologically. 
3. Geographically. 

Eligibility criteria. A list of criteria is derived in order to 
include or exclude certain articles that are found on the related 
subject. The word “container” has homographs and therefore 
must be searched in combination with lexicons to minimise 
unrelated papers appearing in the search results. 

Mandatory criteria for including the article are: 
• The study is published in English and available in 

Scopus [7]. 
• The study contains comprehensive conclusions of 

performed review or application of container technology. 
One of the following additional criteria must be met to 

include the article in the research scope: 
• The study considers the subject of Containers in the 

context of software systems. 
• The study considers the subject of Microservices 

Architecture and its underlying infrastructure. 
• The study considers the subject of DevOps and the 

adoption of container technology. 
Matching one of the following criteria results in the exclusion 

of article from the scope of the survey: 
• Studies were not peer-reviewed or published. 
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• Studies that did not answer the research question at least 
partially. 

• Studies that did not derive potential future improvements 
from the research conducted. 

Look-up concepts. Based on the questions that have to be 
answered during this survey and considering limitations 
proposed by the exclusion criteria, at the beginning of 
systematic review the domain related concepts and notions have 
been defined. These concepts have been used in the search: 

• ALL (“containers” AND “cloud”) AND (LIMIT-TO 
(SUBJAREA, “COMP”)); 

• TITLE-ABS-KEY (“microservices” AND (“infrastructure” 
OR “cluster”)). 

Look-up strategy. Systematic review guidelines suggest that 
searching in the title does not always result in all relevant 
publications. Therefore, the abstract or full-text of articles should 
also be considered. The search was restricted to the title and 
abstract of the studies. 

TABLE I 

SELECTED ARTICLES FOR REVIEW ON THE SCOPE OF THIS SURVEY 

 
Although applying the restrictions previously mentioned the 

number of articles available to conduct this survey was present in 
a large number, to further narrow the subject of study the authors 
used the number of citations as a parameter to sort and prioritize 
articles subject to review. 

The resulting list contains 16 articles that qualify according to 
the search criteria described previously (see Table I). 

III. CONTAINER TECHNOLOGY STACK 

Docker container platform has solutions for most layers of 
the container technology stack. The layers covered are 
container engine, scheduling, orchestration, image management 
and configuration management. Docker’s market share position 
and breadth of solutions make its name ubiquitous with 
container technology [32]. 
 

Fig. 1. Reference architecture of cloud containers. 

Containers are an abstraction at the application layer that 
packages code and dependencies. Containers provide OS-level 
virtualization by leveraging kernel features to isolate processes 
and define system usage limits for resources such as CPU, 
memory, disk I/O and network. Multiple containers can run on 
the same machine and share the operating system OS kernel 
with other containers, each running as isolated processes in user 
space. Containers take up less disk and memory space than 
VMs, containers are also considerably smaller in terms of 
storage space required, with a smaller energy consumption 
footprint [27], and start almost instantly. The container has all 
the dependencies it needs to run it: code, runtime, system tools, 
system libraries, settings. Available for both Linux and 
Windows-based apps, the containerized software will always 
run the same, regardless of the environment [5], [11]. Those 
who want to deploy applications with the least infrastructure 
will choose a simple container-to-OS approach. This is why 
container-based cloud vendors can claim improved performance 
when compared to hypervisor-based clouds [9], [10]. 

The layering composition illustrated in Fig. 1. depicts the 
underlying components present in cloud container solutions. In 
this section those layers and associated technologies, identified 
by the conducted research as the most prominent, are described 
further and classified accordingly. 

KVM [25] is situated in the Virtual Infrastructure layer  
(layer 2); this layer is optional when considering containers. 
KVM is a virtualization infrastructure for the Linux kernel that 
turns it into a hypervisor. Containers can run both, directly on 
host OS and on the guest OS that runs on virtualization 
technology, such as KVM. 

Citation Year Title 

[8] 2016  
Network Function Virtualization: State-of-the-Art and 
Research Challenges 

[9] 2015  
Large-Scale Cluster Management at Google with 
Borg 

[3] 
et al., 
2014 

Containers and Cloud: From LXC to Docker to 
Kubernetes 

[10] 
et al., 
2015  

Hypervisors vs. Lightweight Virtualization: A 
Performance Comparison 

[11] 
et al., 
2015  

Containerization and the PaaS Cloud 

[12] 
et al., 
2014  

Skyport – Container-Based Execution Environment 
Management for Multi-Cloud Scientific Workflows 

[13] 
et al., 
2015  

An Architecture for Self-Managing Microservices 

[14] 
et al., 
2014  

The Research and Implementation of Cloud 
Computing Platform Based on Docker 

[5] 
et al., 
2016  

Container and Microservice Driven Design for Cloud 
Infrastructure DevOps 

[15] 
et al., 
2015  

Distributed Systems of Microservices Using Docker 
and Serfnode 

[16] 
et al., 
2015  

Leveraging Linux Containers to Achieve High 
Availability for Cloud Services 

[17] 
et al., 
2015  

Cloud Services in the Guifi.net Community Network 

[18] 
et al., 
2015  

ROAR: A QoS-Oriented Modelling Framework For 
Automated Cloud Resource Allocation And 
Optimization 

[19] 
et al., 
2015  

Integrating Containers into Workflows: A Case Study 
Using Makeflow, Work Queue, and Docker 

[20] 
et al., 
2015  

A REST Service Framework for Fine-Grained 
Resource Management in Container- Based Cloud 

[21] 
et al., 
2015  

Docker Containers Across Multiple Clouds and Data 
Centres 
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Fig. 2. Virtualization as an optional layer for the container solution stack. 

The technologies identified in the Container Engine layer 
(layer 4) as illustrated in Fig. 1, are Linux containers (LXC), 
Docker (container and Docker engine), Rocket (rkt) and 
CoreOS. 

LXC [24] are similar to VMs in which they have a fully 
functional OS; data can be saved in a container or outside. LXC 
are filesystem neutral and by default store data in a stateful 
manner. It is possible to build loosely coupled or composite 
stacks. 

Docker [4] is a solution that brings an alternative philosophy 
in comparison to LXC. In the Docker containers are designed 
to support a single application as opposed to composite stacks. 
Containers are made up of read-only layers via AUFS/Device 
mapper, data written by the applications into the container is 
handled by the Copy-on-write resource management technique. 
Container instances are ephemeral, persistent data are stored in 
blind mounts to host or data volume containers [34]. Recent 
releases of Docker have introduced the Volumes feature, it 
presents the ability to store stateful data.  

Rocket (rkt) is a container engine technology developed by 
CoreOS as a lightweight and secure alternative to Docker [26].  

Earlier versions of Docker (<1.11) presented security issues 
by downloading container images, launching container 
processes and exposing a remote API, through a centralised 
process running as root. Although such a design flaw has been 
mitigated by higher versions, there is a fundamental difference 
in both container engine process models [33]. 

Different container engines presented the risk of lack of 
interoperability; this risk was removed when the Open 
Container Initiative (OCI) was established by Docker and other 
leaders in the container industry [35]. Two specifications 

guarantee interoperability between different container engines, 
the Runtime Specification (runtime-spec) and the Image 
Specification (image-spec). The Runtime Specification outlines 
how to run a “filesystem bundle” that is unpacked on disk. At a 
high level, an OCI implementation would download an OCI 
Image then unpack that image into an OCI Runtime filesystem 
bundle. At this point, the OCI Runtime Bundle would be run by 
an OCI Runtime. 

CoreOS Container Linux is designed to be managed and run 
at massive scale, with minimal operational overhead. 
Traditional Linux operating system distributions are built in 
accordance with their proposed usage.  

Convenience is one of the factors to consider when building 
Linux distributions; thus, the inclusion of preinstalled packages 
is possible for various applications. Containers, in contrast, are 
designed for lightweight virtualization to run many identical 
machines as possible with the least amount of overhead in terms 
of memory, disk and CPU. To cater for the low overhead 
requirements that provide faster spin-up time, vendors have 
developed container-optimized builds. The result is 
minimalistic distributions containing the minimum 
requirements for containers to run. 

Container Linux runs on nearly any platform whether 
physical, virtual, or private/public cloud. 

Scheduling (layer 5) and Orchestration (layer 6) as illustrated 
in Fig. 1 are comprised by the following technologies: 
Kubernetes, Apache Mesos, Swarm, Marathon, YARN and 
Omega yield by the research results.  

The orchestration and management complexity problems 
were solved by introducing orchestration and cluster 
management tools such as Kubernetes [22] and Apache 
Meso [23]. 

Kubernetes is an open source system for managing clusters 
of containers [3], [22]. It operates on the orchestration layer. It 
provides tools for deploying applications, scaling that 
application as needed, managing changes to existing 
containerized applications, and also plays a role in the 
optimization of the use of the underlying hardware beneath the 
containers. Kubernetes is designed to be extensible and fault-
tolerant by allowing application components to restart and 
move across systems as needed. 

Google has over a decade of experience running 
containerized workloads in production. Borg is the initial 
project responsible for Google’s internal container-oriented 
cluster-management system [9]. Kubernetes was born by taking 
the best ideas from Borg with additional improvements [36]. 

Google has donated Kubernetes to the Linux Foundation to 
form the Cloud Native Computing Foundation. The community 
support has defined it as powerful and more robust than other 
technologies that operate in the orchestration layer. In addition 
to Google, other major players in container technology have 
announced support for Kubernetes: AWS [37], Azure [38] and 
Docker [39]. Docker Swarm remains available for container 
orchestration; it can co-exist with Kubernetes on edge-case 
scenarios [40].   
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Apache Mesos is a cluster manager that provides efficient 
resource isolation and sharing across distributed applications or 
frameworks [23]. Apache Mesos is open source software 
originally developed at the University of California at Berkeley. 
It is best suited to deploy and manage applications in large-scale 
clustered environments in an efficient manner. Apache Mesos 
relies on containerizers, and Marathon is a container 
orchestration platform for Mesos and DC/OS [29], [12]. A 
containerizer is a Mesos agent component responsible for 
launching containers, within which you can run a service. 
Running services in containers offer a number of benefits, 
including the ability to isolate tasks from one another and 
control task resources programmatically. It is possible to use a 
Docker containerizer, which delegates container management 
to the Docker engine. In Mesos, resources are offered to 
application-level schedulers. This allows for custom, workload-
specific scheduling policies. 

Omega operates on the scheduler layer and approaches 
scheduling in a different manner [31]. It positions itself as a 
shared state scheduler and grants full access to the entire cluster 
resources by removing the central resource allocator. The state 
of the cluster is shared among all the schedulers. Supporting 
independent scheduler implementations and exposing the entire 
allocation state of the schedulers, the architecture can scale up 
to a large number of schedulers and works with different 
workloads with their own scheduling policies. Opposed to this 
approach, Docker Swarm is a monolithic scheduler with a 
single, centralised scheduling algorithm for all jobs. This type 
of schedulers is not suitable for running heterogeneous modern 
workloads and other long-running jobs. 

Apache Hadoop YARN [30] is used in conjunction with 
Kubernetes. YARN operates on the scheduling layer; it makes 
use of HDFS to enable common resource management across 
data centres and PaaS workloads in a seamless fashion. In this 
manner, hybrid cloud solutions are achieved with greater 
ease [13]. YARN has a two-level scheduler; it separates 
concerns of resource allocation and task placement. 

Containers have the ability to be managed collectively, thus 
forming a cluster. The complexity of implementing multiple 
microservices that rely on several clusters with interlinked 
dependencies creates a complex problem for the provision and 
management of container clusters [12], [13]. 

IV. RESULTS 

A. Technologies Applied in Container Technology 

The qualitative analysis of the selected articles shows that all 
articles mention Docker; and it is the most prominent 
technology for wrapping Linux containers and providing a 
minimal API for interaction. A full enumeration of technologies 
used is presented in the Table II below, depicting its reference 
and research article. 

 
 
 
 

TABLE II 

MOST PROMINENT TECHNOLOGIES 

Technology Articles 

Docker [4] 
[3], [5], [8], [9], [10], [11], [12], [13], [14], [15], [16], 

[17], [18], [19], [20], [21] 

LXC [24] [3], [5], [10], [11], [12], [14], [15], [16], [17] 

KVM [25] [5], [10], [12], [14], [16] 

CoreOS [26] [15], [19] 

Rocket [33] [5], [19] 

Kubernetes [22] [3], [5], [9], [11], [12], [13], [15], [19], [20], [21] 

Apache Mesos [23] [11], [12], [13], [15], [20], [21] 

Swarm [28] [5] 

Marathon [29]  [12] 

YARN [30]  [13] 

Omega [31]  [13] 

B. Trends in the Container Research Field 

The selected articles have also been subject to a quantitative 
analysis which aims at showing which journals have the most 
presence (Publishing Entity), the chronological distribution of 
the articles and finally the identification of global research 
clusters. 

Publishing entity. According to this criterion, the articles are 
grouped by publisher and listed in the Table III below. 

TABLE III 

GROUPING BY PUBLISHING ENTITY 

Publishing Entity Articles Total 

ACM [8], [13], [19] 3 

IEEE 
 [3], [5], [9], [10], [11], [12], [14], [15], 

[16], [20], [21] 
11 

Science Direct [17], [18] 2 

 
Chronological publication. According to this criterion, the 

articles are grouped by year of publication and mapped on the 
chart and shown in the Fig. 3 below. 

 

  

Fig. 3. Grouping by year of publication. 
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Geographical publication. According to this criterion, the 
articles are grouped by geographical publication and shown in 
the Fig. 4 below. The aim is to identify clusters of research. The 
authors of the researched articles were classified by their 
geographical location of research. In some articles, there is 
more than one author; thus, the sum is higher than the total 
number of research articles. 

 

Fig. 4. Research cluster, geographical grouping. 

To observe the trends for the technologies identified, the pool 
of articles was extended by maintaining the eligibility criteria 
from the research methodology. The look-up concepts used to 
retrieve results per technology are displayed in Table IV. For 
the look-up strategy previously defined, all restrictions were 
lifted to capture the full spectrum from 2014 to 2018. 

TABLE IV 

TECHNOLOGY LOOK-UP CONCEPTS 

Technology Look-up concepts 

Docker 

ALL (“docker” AND “container”) AND (LIMIT-TO 
(SUBJAREA , “COMP”)) AND (LIMIT-TO (DOCTYPE, 
“cp”) OR LIMIT-TO (DOCTYPE , “ar”)) AND (LIMIT-TO 
(PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR 
LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR, 
2015) OR LIMIT-TO (PUBYEAR, 2014)) 

LXC 

ALL (“LXC” AND “container”) AND (LIMIT-TO 
(SUBJAREA, “COMP”)) AND (LIMIT-TO (DOCTYPE, 
“cp”) OR LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO 
(PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR 
LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR, 
2015) OR LIMIT-TO (PUBYEAR, 2014)) 

KVM 

ALL (“KVM” AND “container”) AND (LIMIT-TO 
(SUBJAREA, “COMP”)) AND (LIMIT-TO (DOCTYPE, 
“cp”) OR LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO 
(PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR 
LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR, 
2015) OR LIMIT-TO (PUBYEAR, 2014)) 

CoreOS 

ALL (“coreOS” AND “container”) AND (LIMIT-TO 
(SUBJAREA, “COMP”)) AND (LIMIT-TO (PUBYEAR, 
2018) OR LIMIT-TO (PUBYEAR, 2017) OR LIMIT-TO 
(PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR, 2015) OR 
LIMIT-TO (PUBYEAR, 2014)) AND (LIMIT-TO 
(DOCTYPE, “cp”) OR LIMIT-TO (DOCTYPE, “ar”)) 

Rocket 
ALL ((“rocket” OR “rkt”) AND “container”) AND (LIMIT-
TO (SUBJAREA, “COMP”)) AND (LIMIT-TO (PUBYEAR, 
2018) OR LIMIT-TO (PUBYEAR, 2017) OR LIMIT-TO 

Technology Look-up concepts 

(PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR, 2015) OR 
LIMIT-TO (PUBYEAR, 2014)) AND (LIMIT-TO 
(DOCTYPE, “cp”) OR LIMIT-TO (DOCTYPE, “ar”)) 

Kubernetes 

ALL (“kubernetes” AND “container”) AND (LIMIT-TO 
(SUBJAREA, “COMP”)) AND (LIMIT-TO (DOCTYPE, 
“cp”) OR LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO 
(PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR 
LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR, 
2015) OR LIMIT-TO (PUBYEAR, 2014)) 

Apache 
Mesos 

ALL (“mesos” AND “container”) AND (LIMIT-TO 
(SUBJAREA, “COMP”)) AND (LIMIT-TO (DOCTYPE, 
“cp”) OR LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO 
(PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR 
LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR, 
2015) OR LIMIT-TO (PUBYEAR, 2014)) 

Swarm 

ALL (“docker” AND “swarm”) AND (LIMIT-TO 
(SUBJAREA, “COMP”)) AND (LIMIT-TO (DOCTYPE, 
“cp”) OR LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO 
(PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR 
LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR, 
2015) OR LIMIT-TO (PUBYEAR, 2014)) 

Marathon  

ALL (“marathon” AND “mesosphere” AND “container”) 
AND (LIMIT-TO (SUBJAREA, “COMP”)) AND (LIMIT-TO 
(DOCTYPE, “cp”) OR LIMIT-TO (DOCTYPE, “ar”)) AND 
(LIMIT-TO (PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 
2017) OR LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO 
(PUBYEAR, 2015) OR LIMIT-TO (PUBYEAR, 2014)) 

YARN  

ALL (“YARN” AND “container”) AND (LIMIT-TO 
(SUBJAREA, “COMP”)) AND (LIMIT-TO (DOCTYPE, 
“cp”) OR LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO 
(PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR 
LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR, 
2015) OR LIMIT-TO (PUBYEAR, 2014)) 

Omega  

ALL (“omega” AND “scheduler” AND “container”) AND 
(LIMIT-TO (SUBJAREA, “COMP”)) AND (LIMIT-TO 
(DOCTYPE, “cp”) OR LIMIT-TO (DOCTYPE, “ar”)) AND 
(LIMIT-TO (PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 
2017) OR LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO 
(PUBYEAR, 2015) OR LIMIT-TO (PUBYEAR, 2014)) 

 
The trends observed were grouped into container technology 

core and container technology scheduling and orchestration.  
 

 

Fig. 5. Container Technology Core – Layers 2, 3, and 4. 
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Docker is the preferred choice for the container engine layer 
due to its ease of use and popularity provided by its container 
platform. As it reaches increase maturity, the adoption has been 
increasing. 

Linux containers (LXC) which is a building block of the 
Docker engine has seen a modest increase in interest. 

CoreOS and Rocket (rkt) offer an alternative architecture and 
to the container engine, although its adoption has been modest 
compared with Docker. 

KVM virtualization has maintained a steady interest; there is 
promise of revival of virtualization with unikernels [41]. 

The Open Container Initiative has paved way for the 
standardisation of container engines. 

Alternatives to the core layers still have security 
improvements to make when compared with hypervisor based 
virtualization. In terms of the security, Rocket is ahead of 
Docker. 

There is a drop in 2018; the numbers are expected to change 
until the end of the current year. Nevertheless, they provide 
insight for the period between January and March. 

 

 

Fig. 6. Container technology core – Layers 5 and 6. 

Benefiting from many years of usage within production 
environment, Borg [9] was open-sourced giving life to 
Kubernetes. Kubernetes dominates the adoption on the 
scheduling and orchestration layers; it has monolithic 
scheduling properties. 

Docker Swarm is an offering from the Docker container 
platform. It is no match for Kubernetes in terms of ease of use 
and functionality. 

Other technologies have more modest interest and adoption; 
they are a better fit for more complex systems when two-level 
and share-state scheduling is required.  

V. CONCLUSION 

Docker is the most prominent technology in cloud containers 
and its use is widely adopted. This area of research is maturing 

and as expected, several production ready study cases have 
become available since 2014. 

With the Open Container Initiative [35] a standard was 
established for container engines to achieve interoperability. 

Kubernetes has dominance on the layers of scheduling and 
orchestration; it is offered by the major cloud providers 
including Docker. 

There are still many research opportunities, especially in the 
security area and in the orchestration, management, and control 
of distributed clusters [15], [19]. 

The adoption of containers is widespread; the next logical 
step for cloud service providers is to use container technology 
and abstract its implementation by providing serverless 
computing. The authors will carry out further research on this 
promising field. 
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