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Abstract

In this paper, the problem of driving a collection of mobitdots to a given target destination is studied.
In particular, we are interested in achieving this trangfiean orderly manner so as to ensure that the
agents remain in the convex polytope spanned by the leapgents while the remaining agents, only
employ local interaction rules. To this aim we exploit thedhy of partial difference equations and
propose hybrid control schemes based on stop-go rules éoletider-agents. Non-Zenoness, liveness

and convergence of the resluting system are also analyzed.

I. INTRODUCTION

This paper investigates a particular subarea of multi-agentrol, namely the so-called
containmentproblem where a collection of autonomous, mobile agentstaree driven to a
given target location while guaranteeing that their mosatisfies certain geometric constraints.
These constraints are there to ensure that the agents aenashin a particular area during
their transportation. Such issues arise for example whail@ction of autonomous robots are to
secure and then remove hazardous materials. This remowlbrausecure in the sense that the
robots should not venture into populated areas or in othgswantaminate their surroundings.

We approach this problem from a leader-follower point-ww [1], [2], [3]. In particular, we
will let the agents move autonomously based on local, cangehike interaction rules, commonly

found in the literature under the banner of algebraic gralony [4], [5], [6]. However, we will
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augment this control structure with the addition of leadlgents or anchor nodes [7]. These
leaders are to define vertices in a convex polytope (the tgqamigtope) and they are to move
in such a way that the target area is reached while ensuriagttie follower-agents stay in

the convex polytope spanned by the leaders, up to a giveratme. As such, the followers

movements are calculated in a decentralized manner aogotdia fixed interaction topology,

while the leaders are assumed to be able to detect if any dbllogvers violate the containment

property.

For the leaders, we will use a hybrid Stop-Go policy [8], [B], which the leaders move
according to a decentralized formation control strategy time containment property is about
to be violated. At this point, they stop and let the followsedtle back into the leader-polytope
before they start moving again. For such a strategy to beesstud, a number of results are
needed, including a guarantee that the Laplacian-baséaviatcontrol will in fact drive the
followers back into the leader-polytope. Moreover, we maisio ensure that such a control
strategy is feasible in the sense of non-Zeno, live in theseear not staying in the Stop mode
indefinitely, and convergent in the sense that the target mren fact reached. This approach
can also be generalized to hierarchial networks, as wastrifited by our preliminary work in
[10].

[I. BACKGROUND AND MATHEMATICAL PRELIMINARIES

In this section we will present the basic mathematical fraor& and some enabling results
in multi-agent control.

We start with basic notions of graph theory. For more detadsrefer the reader to [11]. An
undirected graplt: is defined by a seNy = {1,... N} of nodesand a se€; C Ny x Ng of
edgesWe will also usd | for denoting the cardinality ol. Two nodest andy areneighbors
if (z,y) € &. The neighboring relation is indicated with~ y andP(z) = {y € Ng : y ~ x}
collects all neighbors to the node A path zox; ...z is a finite sequence of nodes such that
xi1 ~x;, i =1,..., L. A graph G is connectedf there is a path connecting every pair of
distinct nodes.

Definition 1 Let S = (Ng, Es) be an undirected host graph ands, C ANs. The subgrapht’
associated withV: is the pair (Ns/, Es) whereEs = {(x,y) € Es: v € Ngr,y € Ny}
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Definition 1 allows basic operations in set theory to be edéghto graphs. For instance, 3§
and.S, are two subgraphs of the graph thenS; U S,, S1NSy , S1\ S, are the graphs associated
with Ns, U Ng,, Ng, N Ng,, and Ns,\Ns,, respectively. For our purposes, we will often use

graphs with a boundary.

Definition 2 Let S be a subgraph ofs. The boundary of is the subgrapl®S C G associated
with Nps = {y € No \Ns : 3z € Ng : = ~y}. The closure ofS is S = dS U S.

Note that the definition of the boundary of a graph dependsiupe host graphG. This
implies that if one considers three grap$isC S C G, the boundaries of’ in S and inG may
differ.

In the context of multi-agent systems, the nodes of the hoesplhgGG represent agents and
the edges are communication links. In particular, an agehas access to the states of all its
neighbors and can use this piece of information to compsateantrol law. Although a complete
graph is not necessary for a distributed control algorittva ,always assume that the host graph
is connected.

In order to model the collective behavior of the agents we mgk functionsf : Ny — R?
defined over a graplir [12]. The partial derivativeof f is defined as), f(z) = f(y) — f(z)
and the Laplacian of is given by

Af(e)=—= > &f@) =+ Y 9,f(), (1)

yeNG,y~x yeNG,y~x
where the last identity follows from the fact tha}f(z) = —9,f(z) . The integral and the
average off are defined, respectively, as

- NER
/Gfdx=2f<x>, <f>—WG|/Gfd. @)

reNG
Let L?(G|RY) be the Hilbert space composed by all functighs AV; — R? endowed with
the norm| f||3. = [.|IfI|>. We will use the shorthand notatiai¥ when there is no ambiguity
on the underlying domain and range of the functions.
Let S be a subgraph aoff and9S be its boundary inz. We assume that UdS = G. As in
[12], we also consider the Hilbert spaég}(S) = {f € L*(G) : fios = 0} (see [12] for the
definition of a suitable norm o/}(S)). Note that a functionf € H}(S) is defined onS and

possibly non null only ornS.
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The next theorem, proved in [12], characterize the eigaosire of the Laplacian operator
defined onH{(S).

Theorem 1 Let G be a connected graph anfl a proper subgraph of7. Then, the operator
A HYS|RY) — L2(S|R9) has|Ns|d strictly negative eigenvalues. Moreover, the correspogdi
eigenfunctions form a basis fdi} (S|R?).

IIl. M ULTIPLE STATIONARY LEADERS

In this section we use PdEs for modelling and analyzing a grofuagents with multiple
leaders. A leader is just an agent that moves toward a predefjoal, and whose control policy
is independent of the motion of all the followers. Howevet/dwers that are neighbors to the
leader can use the leader state in order to compute theirotamputs.

Let »(x,t) be the position of the agent at timet > 0, wheré r € L?. The communication
network is represented by the undirected and connected grag-or distinguishing between
leaders and followers, we consider two subgraghsand .S;, of G and assume that;, = 0S5
and Sr U S, = G, where the subscripts denote "Leaders” and "Followerspeetively. Note
that we assume that all agents are either designated asdead®llowers.

As already mentioned in the introduction, we will assume tha followers obey the simple
dynamicsr(z,t) = u(z,t), where

u(x,t) = Ar(z,t) €))

is the Laplacian control law. Let7(z,t), x € Ng, be the trajectory of the leaders. Then, the

collective dynamics is represented by the model
r(z,t) = Ar(z,t) z € Ns, (4a)
r(z,t) = 7(x,t) r e Ng, (4b)

endowed with the initial conditions(-,0) = 7 € L?(Sp).
Model (4) is an example of a continuous-time Partial diffeee Equation (PdE) with non-
homogeneous Dirichlet boundary conditions. We refer theedee to [12], [13], [14] for an

introduction to PdEs.

'For sake of conciseness, for a functigtiz, t) : Ng x RT — R% we will often write f € L? instead off(-,t) € L.
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The main results on Laplacian control available in the ditere and specialized to model (4)

are:

. in the leaderless case (i.&; = ), the Laplacian control solves the rendezvous problem, i.e
r(z,t) — r* € RY Vo € Ng ast — +oo. Moreover, the agents converge exponentially to
r* = (r) thus achievin@verageconsensus. These results have been established in [1b], [16
through the joint use of tools in control theory and algebgaaph theory. A formal analysis
of the PdE (4a) has been conducted in [17], [13], [14] shovargmplete accordance with
results available within the theory of the heat equatior];[18
. in the case of a single leader (.8, = {z.}) with fixed position (i.e#(z;,t) = 7 € RY),
Laplacian control solves the rendezvous problem with= 7 [15]. This property has also
been shown in [13], [14] within the PdE framework, thus highting the profound links
between model (4) and the heat equation with Dirichlet bampaonditions [18].
The first attempt of this paper is to characterize the asytieptehavior of the followers
in the presence of multiple leaders with fixed positions. fAig &nd, for the remainder of this
section, we will assume that(z,t) = 7(x) € L*(SL). The equilibria of (4) are then given by
the solutions to the PdE

Ah(z) =0  z€Ns, (5a)
h(z) = 7(z) z € Ng, (5b)

and they have been studied in [12]. In particular, [12, ThaoB.5] shows that i; is connected
andANs, # () then, the PdE (5) has a unique solufidgiiz). By analogy with the jargon of Partial
Differential Equations}, is termed theharmonic extension of the boundary conditions

Our next aim is to verify that — h ast — +oo. Let us consider the decomposition
r(z,t) = ro(z,t) + h(z), 1o € Hy(Sk) (6)

Sinceh does not depend upon time afxh = 0, Vx € Ns,., the PdE (4) is equivalent to the

2[12, Theorem 3.5] assumes that the subgrapts induced (see [12] for the definition of induced subgraphs). Howewer,
careful examination of the proof, reveals that this assionps unnecessary.
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following one
ro(x,t) = Arg(w,t) r € N, (7a)
ro(z,t) =0 reNg, (7b)

From (6), it is apparent that the problem of checking ¥ h ast — +oo can be recast into
the problem of studying the convergence to zero of the smigtio the PdE (7). The fact that
ro — 0 ast — +oo follows from Theorem 1 and it can be shown by proceeding éxas in
the proof of [17, Theorem 5]

The next Theorem, proved in [19], highlights a key geomatrieature ofh(z). For a setX
of points inR?, Co(X) will denote its convex hull. Moreover, the s@, is the convex hull of

leaders positions, i.€2;, = Co({7(y), y € Ns, }).

Theorem 2 Let S; be a nonempty connected subgraphSef and 05, be its boundary inG.
Then,Vz € Ng, it holds

h(z) € Co({h(y), y € Nos, })- (8)

Moreover, one has thdi(z) € Q;, i.e. that the position of each follower lies in the conveX hu
of the leaders positions. Finally, i, is full-dimensiond, theni(z) € Q\0Qy, Vz € N,..

Another geometrical feature which we need is the following:

Theorem 3 Suppose thaf);, is full-dimensional and that(z,t) is evolving according td4).
Suppose that, at a given time= ¢, there is an agent: € Ns, such thatr(z,t) € 9Q;, and

r(y,t) € Qp, Yy € P(x). Then, two situations may occur:

1) there exists an (affine) hyperplanesuch that
r(z,t) € xNOQp,andr(y,t) € x NI Vy € P(x).
Then:

Ja>0 : r(zt) +ar(x,t) e xNOQy, 9)

SActually, [17, Theorem 5] proves a stronger property, namibht the origin of (7) is “exponentially stable on the space
H{(S)”. The definition of stability of equilibria on subspaces ioyided in [17].
“The setQ;, c R? is full-dimensional if the dimension of the affine hull geatrd by, is d (see [20]).
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2) otherwise,
Ja>0 : r(zt)+ ar(z,t) € Qp\ 0. (10)

Note that (9) means that the velocity ofwill be along the hyperplang (in other words, the
agent may slide on the bounda®¥l;), whereas (10) means that the velocityaofs pointing
inside the polytopé&);. While Theorem 2 and the fact that— h ast — +oo guarantee that
followers asymptotically entef2;, Theorem 3 ensures that once all followers arein they
cannot exit from this set and therefore containment will bgen violated.
Proof: (Theorem 3)
Sincer(x,t) obeys to (4), by rearranging terms we obtain:
o, 1) = —[P@)lr(@ D)+ Y r(y.0).
yeP(x)
Then, settingy = |P(z)|~}, it holds:
r(z,) + ar(z,f) = [P@)[ D r(y.D),
yEP(x)
i.e.,r(x,t)+ar(z,t) is the barycentel(), ) of the polytope), = Co({r(y,t), y € P(x)}). Note
that, if (y,t) € Qp, Yy € P(x) one hag), € Q. Moreover, thanks to convexity, the barycenter
of ), lies in the relative interior of),. Thus, if ally € P(x) verify thatr(y,t) € x N0, then
V. C xNoQ, and so does(),), i.e. b(V,) € x NIQ; otherwiseb(),) € Qp \ Q. [ |

IV. LEADER-FOLLOWER CONTAINMENT CONTROL

Containment of all the followers is achieved in the case afistieaders in the last section.
However, if the leaders are moving, this property might belated. In order to prevent the
followers from leaving the polytope spanned by the lead@ppropriate control strategies need
to be designed for the leaders to guarantee the containriremthat follows, we propose a
hybrid strategy for this purpose and analyze liveness aadhability of the resluting closed-

loop system.

A. Hybrid Control Strategy

For the sake of containment, we define two distinctly différ@ntrol modes for the evolution

of the leaders. The first of the two control modes is ##0 P mode that corresponds to the
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leaders halting their movements altogether in order to ipibh break in the containment:
STOP : (4a), (4b) and*(z,t) =0, z € N, (11)

It is clear that in order to execute this mode, no informatsoneeded for the leaders whatsoever.
The second control mode under consideration is@d¢ mode, in which the leaders move

toward a given target formation. A number of different cohtiaws can be defined for this,

but, for the sake of conceptual unification, we let tH& mode be given by a Laplacian-based

control strategy as well.
GO : (4a), (4b) andi(z,t) = Ag, (7#(z,t) — ro(z)), = € N, (12)

wherery(z), = € Ng, denotes the desired target position of leadeand Ag, denotes the
Laplacian operator defined solely over the subgréphi.e.
As,f(r)=— ) Of(w).
y~z, yeNs,

Under the assumption th&t, is connected, and by exactly the same reasoning as for the
standard rendezvous problem, under the influence af’thenode alone the leaders will converge
exponentially tor,(x) = (r(-,0) —r¢(-)) + ro(z), i.e. Ik > 0,7 > 0 such that||7(-,¢) —
ro(x)||zz < ke ™||7(-,0) — rp(z)||z2. In other words, no convergence to a predefined point is
achieved. Rather, this control law ensures that the leagienge at a translationally invariant
target formation.

Note that the details of the leaders’ motion is not cruciadl &émis particular choice is but
one of many possibilities. However, this choice is appeglm that it makes the information
flow explicit, and the leaders only need access to the pasitl@and target locations) of their
neighboring leaders in order to compute their motion. Adighe decentralized character of the
algorithm is maintained.

In order to fully specify the hybrid Stop-Go leader policgrisition rules are needed as well.
As before, let2;, denote the leader-polytope and &, €2;) denote the signed distance

d(p, Q) = Co, () min [[p — x|, (13)
A2, 959
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where|| - ||» denotes the Euclidean 2-norm, and whése(n) = —1if © € Q and +1 otherwise.

Using this distance measure we let the two guards, i.e.itr@msonditions, be given by

GO2STOP :Fy € Ns,. | d(r(y,t),Qr) > 07 (14a)
STOP2GO :d(r(y,t),Qr) < —e Yy € Ng,.? (14b)

where a transition fronGO to STOP triggers when the conditions iI6O2STOP are met,
and similarly forSTOPT2G0O, and where: > 0 is a threshold.

Note that the guardT’OP2GO is crossed only if the following assumptions are verified:

Assumption 1 Let i(-,t) be the solution td5) for 7(-) = #(-,t), V¢ > 0 and consider the set
Q5 (1) = {y € Qut) : d(y, 92, (1)) < —c}. Then

1) Q5 (¢) is nonemptyyt > 0;

2) Co({h(z,t),2 € Ng,}) C Q5(1).

Note that, for a given time > 0, the uniqueness oii(-,t) follows from the uniqueness of the
solution to (5). In particular, Assumption 1 implies thfat must be full-dimensional at all times
and “sufficiently fat” along every direction (see conditidjh Conditions relating property 2 of
Assumption 1 to the graph topology are currently under itigason. A few comments must
be made about the computation and communication requirtsntiesit these guards give rise to.
If two leaders are located at the end-points of the same faée, pthen they must be able to
determine if any of the followers are in fact on this face.sTtan be achieved through a number
of range sensing devices, such as ultrasonic, infra-rethsar-based range-sensors. Moreover,
in order for all leaders to transition between modes in umislbey must communicate between
them, which means that eith8y, is a complete graph, or that multi-hop strategies are nedded
either way, a minimal requirement for these mode transstionbe able to occur synchronously,
without having to rely on information flow across followegemts, is thatS;, must be connected.

The hysteresis threshold> 0 in the STOP2GO guard and the next assumption are needed
in order to avoid Zeno behaviors. Lgh, denote the supremum of the diameter(tf during

an execution.

Assumption 2 3M < oo such thatpg, < M.
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It is easy to check that Assumption (2) is verified when Laplacontrol governs the leaders’
motion in theGO mode as in (12). Indeed, the exponential convergencgaaft) to r.(z) =
(r(-,0) —rr(-)) +rr(x) implies thatr(z, t) is bounded at all times. However, Laplacian control
is but one of many possible control strategies and can baaeglby other control schemes (e.g.
plan-based leader control laws) without generating Zerez@ons as long as Assumption 2 is

verified.

Theorem 4 Under Assumptions 2 and 1, the hybrid automaton definef(lLby (12) and (14)

iS non-Zeno.

Proof: Let the system be in th8§7OP mode. Under Assumption 2 we have

l#(z, ) = Ar(, Ol < Y I19,r(@)| <) pa, < Npa,, Vo € N, (15)

y~z Yy~

From Assumption 1, in order for the system to leave ##¥0OP mode, at least one follower

agent must have travelled at least a distasjaghich in turn implies that the system will always

stay for a time greater than or equaldVpq, in the STOP mode. In order for the system to

exhibit Zeno executions, a necessary condition is that iffiereince between the transition times

must approach zero [21]. Since this is not the case here,dh€Zano property is established.
[

B. Liveness and Reachability

As already mentioned, the proposed solution is non-Zenweler, as it is currently defined,
the Stop-Go policy may be blocking in the sense that the sysiever leaves th8§7 0O P mode.
One remedy to this problem is to allow the containment to lghdy less tight. In other words,

we can select different guards, e.g.
GO2STOP 3y € Ns,. | d(r(t,y), Q) > 257 (16a)
STOP2GO :d(r(t,y), Q) <0 Yy € Ng,.? (16b)

whered > 0. What this means is that we do not enter $iEO P mode until a follower 124
outside);. Let us define
Qrs={y eR: d(y, Q) < 6}

September 3, 2007 DRAFT



11

Note that, one haQ, C 1 ;. The next Theorem summarizes the main properties of thétiregu
hybrid automaton. A remarkable feature of the guards (1@8has Assumption 1 is no longer

needed in order to guarantee liveness.

Theorem 5 Under Assumption 2, the hybrid automaton(iag), (12) and (16) is non-Zeno, live,

in the sense of always leaving th&'O P mode eventually, and convergent in the sense that
P, t) = (F(-,0) = re () + rr(x).

Proof: We first prove liveness. Assume that the system is in&ih® P mode. From Theorem
2 we have that, € Q. SinceVz € Sp, r(x,t) — h, and ), C Qg every follower will
eventually get back if2; s in finite time (recall that the leaders are stationary in $€O P
mode) hence triggering a transition to t6& mode.

Under Assumption 2, it hold4r(x,t)|| < N(pa, + 26) and we can repeat the non-Zeno
argument in the proof of Theorem 4 in order to see that theesysilways stays in thé&O
mode for a time greater than or equalda N (pq, + 29)).

As a result, in a non-blocking system the leaders will be miwdinitely many opportunities
to move during a finite (bounded away from zero) time horiashich implies convergence to
the target location as long as the leaders would in fact endtupe target location under the

influence of theGO mode alone. [ |

V. CONCLUSIONS

In this paper we presented a hybrid Stop-Go control policytlie leaders in a multi-agent
containment scenario. In particular, the control strataigws us to transport a collection of
follower-agents to a target area while ensuring that thay st the convex polytope spanned by
the leaders. The enabling results needed in order to ackieves that, for stationary leaders,
the followers in a connected interaction graph will alwapserge to locations in the leader-
polytope. Extensions to the proposed control strategy asecover given in order to ensure

certain liveness properties.
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