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Containment Control in Mobile Networks

M. Ji†, G. Ferrari-Trecate‡,⋆, M. Egerstedt†, and A. Buffa◦

Abstract

In this paper, the problem of driving a collection of mobile robots to a given target destination is studied.

In particular, we are interested in achieving this transferin an orderly manner so as to ensure that the

agents remain in the convex polytope spanned by the leader-agents, while the remaining agents, only

employ local interaction rules. To this aim we exploit the theory of partial difference equations and

propose hybrid control schemes based on stop-go rules for the leader-agents. Non-Zenoness, liveness

and convergence of the resluting system are also analyzed.

I. INTRODUCTION

This paper investigates a particular subarea of multi-agent control, namely the so-called

containmentproblem where a collection of autonomous, mobile agents areto be driven to a

given target location while guaranteeing that their motionsatisfies certain geometric constraints.

These constraints are there to ensure that the agents are contained in a particular area during

their transportation. Such issues arise for example when a collection of autonomous robots are to

secure and then remove hazardous materials. This removal must be secure in the sense that the

robots should not venture into populated areas or in other ways contaminate their surroundings.

We approach this problem from a leader-follower point-of-view [1], [2], [3]. In particular, we

will let the agents move autonomously based on local, consensus-like interaction rules, commonly

found in the literature under the banner of algebraic graph theory [4], [5], [6]. However, we will
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augment this control structure with the addition of leader-agents or anchor nodes [7]. These

leaders are to define vertices in a convex polytope (the leader-polytope) and they are to move

in such a way that the target area is reached while ensuring that the follower-agents stay in

the convex polytope spanned by the leaders, up to a given tolerance. As such, the followers

movements are calculated in a decentralized manner according to a fixed interaction topology,

while the leaders are assumed to be able to detect if any of thefollowers violate the containment

property.

For the leaders, we will use a hybrid Stop-Go policy [8], [9],in which the leaders move

according to a decentralized formation control strategy until the containment property is about

to be violated. At this point, they stop and let the followerssettle back into the leader-polytope

before they start moving again. For such a strategy to be successful, a number of results are

needed, including a guarantee that the Laplacian-based follower-control will in fact drive the

followers back into the leader-polytope. Moreover, we mustalso ensure that such a control

strategy is feasible in the sense of non-Zeno, live in the sense of not staying in the Stop mode

indefinitely, and convergent in the sense that the target area is in fact reached. This approach

can also be generalized to hierarchial networks, as was illustrated by our preliminary work in

[10].

II. BACKGROUND AND MATHEMATICAL PRELIMINARIES

In this section we will present the basic mathematical framework and some enabling results

in multi-agent control.

We start with basic notions of graph theory. For more detailswe refer the reader to [11]. An

undirected graphG is defined by a setNG = {1, . . . N} of nodesand a setEG ⊂ NG ×NG of

edges. We will also use|NG| for denoting the cardinality ofNG. Two nodesx andy areneighbors

if (x, y) ∈ EG. The neighboring relation is indicated withx ∼ y andP(x) = {y ∈ NG : y ∼ x}

collects all neighbors to the nodex. A path x0x1 . . . xL is a finite sequence of nodes such that

xi−1 ∼ xi, i = 1, . . . , L. A graph G is connectedif there is a path connecting every pair of

distinct nodes.

Definition 1 Let S = (NS, ES) be an undirected host graph andNS′ ⊂ NS. The subgraphS ′

associated withNS′ is the pair (NS′, ES′) whereES′ = {(x, y) ∈ ES : x ∈ NS′, y ∈ NS′}
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Definition 1 allows basic operations in set theory to be extended to graphs. For instance, ifS1

andS2 are two subgraphs of the graphS, thenS1∪S2, S1∩S2 , S1\S2 are the graphs associated

with NS1
∪ NS2

, NS1
∩ NS2

, andNS1
\NS2

, respectively. For our purposes, we will often use

graphs with a boundary.

Definition 2 Let S be a subgraph ofG. The boundary ofS is the subgraph∂S ⊂ G associated

with N∂S
.
= {y ∈ NG \ NS : ∃x ∈ NS : x ∼ y}. The closure ofS is S̄ = ∂S ∪ S.

Note that the definition of the boundary of a graph depends upon the host graphG. This

implies that if one considers three graphsS ′ ⊂ S ⊂ G, the boundaries ofS ′ in S and inG may

differ.

In the context of multi-agent systems, the nodes of the host graph G represent agents and

the edges are communication links. In particular, an agentx has access to the states of all its

neighbors and can use this piece of information to compute its control law. Although a complete

graph is not necessary for a distributed control algorithm,we always assume that the host graph

is connected.

In order to model the collective behavior of the agents we will use functionsf : NG 7→ R
d

defined over a graphG [12]. The partial derivativeof f is defined as∂yf(x)
.
= f(y) − f(x)

and the Laplacian off is given by

∆f(x)
.
= −

∑
y∈NG,y∼x

∂2
yf(x) = +

∑
y∈NG,y∼x

∂yf(x), (1)

where the last identity follows from the fact that∂2
yf(x) = −∂yf(x) . The integral and the

average off are defined, respectively, as∫
G

f dx
.
=

∑
x∈NG

f(x), 〈f〉
.
=

1

|NG|

∫
G

f dx. (2)

Let L2(G|Rd) be the Hilbert space composed by all functionsf : NG 7→ R
d endowed with

the norm‖f‖2
L2 =

∫
G
‖f‖2. We will use the shorthand notationL2 when there is no ambiguity

on the underlying domain and range of the functions.

Let S be a subgraph ofG and∂S be its boundary inG. We assume thatS ∪ ∂S = G. As in

[12], we also consider the Hilbert spaceH1
0 (S) = {f ∈ L2(G) : f|∂S = 0} (see [12] for the

definition of a suitable norm onH1
0(S)). Note that a functionf ∈ H1

0 (S) is defined onS̄ and

possibly non null only onS.
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The next theorem, proved in [12], characterize the eigenstructure of the Laplacian operator

defined onH1
0 (S).

Theorem 1 Let G be a connected graph andS a proper subgraph ofG. Then, the operator

∆ : H1
0 (S|Rd) 7→ L2(S̄|Rd) has|NS|d strictly negative eigenvalues. Moreover, the corresponding

eigenfunctions form a basis forH1
0 (S|Rd).

III. M ULTIPLE STATIONARY LEADERS

In this section we use PdEs for modelling and analyzing a group of agents with multiple

leaders. A leader is just an agent that moves toward a predefined goal, and whose control policy

is independent of the motion of all the followers. However, followers that are neighbors to the

leader can use the leader state in order to compute their control inputs.

Let r(x, t) be the position of the agentx at time t ≥ 0, where1 r ∈ L2. The communication

network is represented by the undirected and connected graph G. For distinguishing between

leaders and followers, we consider two subgraphsSF andSL of G and assume thatSL = ∂SF

and SF ∪ SL = G, where the subscripts denote ”Leaders” and ”Followers” respectively. Note

that we assume that all agents are either designated as leaders or followers.

As already mentioned in the introduction, we will assume that the followers obey the simple

dynamicsṙ(x, t) = u(x, t), where

u(x, t)
.
= ∆r(x, t) (3)

is the Laplacian control law. Let r̂(x, t), x ∈ NSL
be the trajectory of the leaders. Then, the

collective dynamics is represented by the model

ṙ(x, t) = ∆r(x, t) x ∈ NSF
(4a)

r(x, t) = r̂(x, t) x ∈ NSL
(4b)

endowed with the initial conditionsr(·, 0) = r̃ ∈ L2(SF ).

Model (4) is an example of a continuous-time Partial difference Equation (PdE) with non-

homogeneous Dirichlet boundary conditions. We refer the reader to [12], [13], [14] for an

introduction to PdEs.

1For sake of conciseness, for a functionf(x, t) : NG × R
+ → R

d we will often write f ∈ L2 instead off(·, t) ∈ L2.
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The main results on Laplacian control available in the literature and specialized to model (4)

are:

• in the leaderless case (i.e.SL = ∅), the Laplacian control solves the rendezvous problem, i.e.

r(x, t) → r∗ ∈ R
d, ∀x ∈ NG as t → +∞. Moreover, the agents converge exponentially to

r∗ = 〈r̃〉 thus achievingaverageconsensus. These results have been established in [15], [16]

through the joint use of tools in control theory and algebraic graph theory. A formal analysis

of the PdE (4a) has been conducted in [17], [13], [14] showinga complete accordance with

results available within the theory of the heat equation [18];

• in the case of a single leader (i.e.NSL
= {xL}) with fixed position (i.e.̂r(xL, t) = r̄ ∈ R

d),

Laplacian control solves the rendezvous problem withr∗ = r̄ [15]. This property has also

been shown in [13], [14] within the PdE framework, thus highlighting the profound links

between model (4) and the heat equation with Dirichlet boundary conditions [18].

The first attempt of this paper is to characterize the asymptotic behavior of the followers

in the presence of multiple leaders with fixed positions. To this end, for the remainder of this

section, we will assume that̂r(x, t) = r̄(x) ∈ L2(SL). The equilibria of (4) are then given by

the solutions to the PdE

∆h(x) = 0 x ∈ NSF
(5a)

h(x) = r̄(x) x ∈ NSL
(5b)

and they have been studied in [12]. In particular, [12, Theorem 3.5] shows that ifG is connected

andNSL
6= ∅ then, the PdE (5) has a unique solution2 h(x). By analogy with the jargon of Partial

Differential Equations,h is termed theharmonic extension of the boundary conditionsr̄.

Our next aim is to verify thatr → h as t → +∞. Let us consider the decomposition

r(x, t) = r0(x, t) + h(x), r0 ∈ H1
0 (SF ) (6)

Sinceh does not depend upon time and∆h = 0, ∀x ∈ NSF
, the PdE (4) is equivalent to the

2[12, Theorem 3.5] assumes that the subgraphS is induced(see [12] for the definition of induced subgraphs). However,a

careful examination of the proof, reveals that this assumption is unnecessary.
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following one

ṙ0(x, t) = ∆r0(x, t) x ∈ NSF
(7a)

r0(x, t) = 0 x ∈ NSL
(7b)

From (6), it is apparent that the problem of checking ifr → h as t → +∞ can be recast into

the problem of studying the convergence to zero of the solutions to the PdE (7). The fact that

r0 → 0 as t → +∞ follows from Theorem 1 and it can be shown by proceeding exactly as in

the proof of [17, Theorem 5]3.

The next Theorem, proved in [19], highlights a key geometrical feature ofh(x). For a setX

of points inR
d, Co(X) will denote its convex hull. Moreover, the setΩL is the convex hull of

leaders positions, i.e.ΩL
.
= Co({r̄(y), y ∈ NSL

}).

Theorem 2 Let S1 be a nonempty connected subgraph ofSF and ∂S1 be its boundary inG.

Then,∀x ∈ NS1
it holds

h(x) ∈ Co({h(y), y ∈ N∂S1
}). (8)

Moreover, one has thath(x) ∈ ΩL, i.e. that the position of each follower lies in the convex hull

of the leaders positions. Finally, ifΩL is full-dimensional4, thenh(x) ∈ ΩL\∂ΩL, ∀x ∈ NSF
.

Another geometrical feature which we need is the following:

Theorem 3 Suppose thatΩL is full-dimensional and thatr(x, t) is evolving according to(4).

Suppose that, at a given timet = t, there is an agentx ∈ NSF
such thatr(x, t) ∈ ∂ΩL and

r(y, t) ∈ ΩL, ∀y ∈ P(x). Then, two situations may occur:

1) there exists an (affine) hyperplaneχ such that

r(x, t) ∈ χ ∩ ∂ΩL, and r(y, t) ∈ χ ∩ ∂ΩL ∀y ∈ P(x).

Then:

∃α > 0 : r(x, t) + αṙ(x, t) ∈ χ ∩ ∂ΩL, (9)

3Actually, [17, Theorem 5] proves a stronger property, namely that the origin of (7) is “exponentially stable on the space

H1
0 (S)”. The definition of stability of equilibria on subspaces is provided in [17].

4The setΩL ⊂ R
d is full-dimensional if the dimension of the affine hull generated byΩL is d (see [20]).
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2) otherwise,

∃α > 0 : r(x, t) + αṙ(x, t) ∈ ΩL \ ∂ΩL. (10)

Note that (9) means that the velocity ofx will be along the hyperplaneχ (in other words, the

agent may slide on the boundary∂ΩL), whereas (10) means that the velocity ofx is pointing

inside the polytopeΩL. While Theorem 2 and the fact thatr → h as t → +∞ guarantee that

followers asymptotically enterΩL, Theorem 3 ensures that once all followers are inΩL they

cannot exit from this set and therefore containment will be never violated.

Proof: (Theorem 3)

Sincer(x, t) obeys to (4), by rearranging terms we obtain:

ṙ(x, t) = −|P(x)|r(x, t) +
∑

y∈P(x)

r(y, t).

Then, settingα = |P(x)|−1, it holds:

r(x, t) + αṙ(x, t) = |P(x)|−1
∑

y∈P(x)

r(y, t),

i.e.,r(x, t)+αṙ(x, t) is the barycenterb(Yx) of the polytopeYx
.
= Co({r(y, t), y ∈ P(x)}). Note

that, if r(y, t̄) ∈ ΩL, ∀y ∈ P(x) one hasYx ∈ ΩL. Moreover, thanks to convexity, the barycenter

of Yx lies in the relative interior ofYx. Thus, if all y ∈ P(x) verify that r(y, t) ∈ χ∩ ∂ΩL then

Yx ⊂ χ ∩ ∂ΩL and so doesb(Yx), i.e. b(Yx) ∈ χ ∩ ∂ΩL; otherwiseb(Yx) ∈ ΩL \ ∂ΩL. �

IV. L EADER-FOLLOWER CONTAINMENT CONTROL

Containment of all the followers is achieved in the case of static leaders in the last section.

However, if the leaders are moving, this property might be violated. In order to prevent the

followers from leaving the polytope spanned by the leaders,appropriate control strategies need

to be designed for the leaders to guarantee the containment.In what follows, we propose a

hybrid strategy for this purpose and analyze liveness and reachability of the resluting closed-

loop system.

A. Hybrid Control Strategy

For the sake of containment, we define two distinctly different control modes for the evolution

of the leaders. The first of the two control modes is theSTOP mode that corresponds to the
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leaders halting their movements altogether in order to prohibit a break in the containment:

STOP : (4a), (4b) and˙̂r(x, t) = 0, x ∈ NSL
(11)

It is clear that in order to execute this mode, no informationis needed for the leaders whatsoever.

The second control mode under consideration is theGO mode, in which the leaders move

toward a given target formation. A number of different control laws can be defined for this,

but, for the sake of conceptual unification, we let theGO mode be given by a Laplacian-based

control strategy as well.

GO : (4a), (4b) and˙̂r(x, t) = ∆SL
(r̂(x, t) − rT (x)), x ∈ NSL

(12)

where rT (x), x ∈ NSL
denotes the desired target position of leaderx and ∆SL

denotes the

Laplacian operator defined solely over the subgraphSL, i.e.

∆SL
f(x)

.
= −

∑
y∼x, y∈NSL

∂2
yf(x).

Under the assumption thatSL is connected, and by exactly the same reasoning as for the

standard rendezvous problem, under the influence of theGO mode alone the leaders will converge

exponentially torL(x) = 〈r̂(·, 0) − rT (·)〉 + rT (x), i.e. ∃k > 0, η > 0 such that‖r̂(·, t) −

rL(x)‖L2 ≤ ke−ηt‖r̂(·, 0) − rL(x)‖L2 . In other words, no convergence to a predefined point is

achieved. Rather, this control law ensures that the leadersarrive at a translationally invariant

target formation.

Note that the details of the leaders’ motion is not crucial and this particular choice is but

one of many possibilities. However, this choice is appealing in that it makes the information

flow explicit, and the leaders only need access to the positions (and target locations) of their

neighboring leaders in order to compute their motion. As such the decentralized character of the

algorithm is maintained.

In order to fully specify the hybrid Stop-Go leader policy transition rules are needed as well.

As before, letΩL denote the leader-polytope and letd(µ, ΩL) denote the signed distance

d(µ, ΩL)
.
= ζΩL

(µ) min
x∈∂ΩL

‖µ − x‖2, (13)
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where‖·‖2 denotes the Euclidean 2-norm, and whereζΩL
(µ) = −1 if µ ∈ ΩL and +1 otherwise.

Using this distance measure we let the two guards, i.e. transition conditions, be given by

GO2STOP :∃y ∈ NSF
| d(r(y, t), ΩL) ≥ 0? (14a)

STOP2GO :d(r(y, t), ΩL) < −ǫ ∀y ∈ NSF
? (14b)

where a transition fromGO to STOP triggers when the conditions inGO2STOP are met,

and similarly forSTOPT2GO, and whereǫ > 0 is a threshold.

Note that the guardSTOP2GO is crossed only if the following assumptions are verified:

Assumption 1 Let ĥ(·, t) be the solution to(5) for r̄(·) = r̂(·, t), ∀t ≥ 0 and consider the set

Ωǫ
L(t) = {y ∈ ΩL(t) : d(y, ∂ΩL(t)) < −ǫ}. Then

1) Ωǫ
L(t) is nonempty,∀t ≥ 0;

2) Co({ĥ(x, t), x ∈ NSF
}) ⊂ Ωǫ

L(t).

Note that, for a given timet ≥ 0, the uniqueness of̂h(·, t) follows from the uniqueness of the

solution to (5). In particular, Assumption 1 implies thatΩL must be full-dimensional at all times

and “sufficiently fat” along every direction (see condition1). Conditions relating property 2 of

Assumption 1 to the graph topology are currently under investigation. A few comments must

be made about the computation and communication requirements that these guards give rise to.

If two leaders are located at the end-points of the same face of ΩL, then they must be able to

determine if any of the followers are in fact on this face. This can be achieved through a number

of range sensing devices, such as ultrasonic, infra-red, orlaser-based range-sensors. Moreover,

in order for all leaders to transition between modes in unison, they must communicate between

them, which means that eitherSL is a complete graph, or that multi-hop strategies are needed. In

either way, a minimal requirement for these mode transitions to be able to occur synchronously,

without having to rely on information flow across follower-agents, is thatSL must be connected.

The hysteresis thresholdǫ > 0 in the STOP2GO guard and the next assumption are needed

in order to avoid Zeno behaviors. LetρΩL
denote the supremum of the diameter ofΩL during

an execution.

Assumption 2 ∃M < ∞ such thatρΩL
≤ M .
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It is easy to check that Assumption (2) is verified when Laplacian control governs the leaders’

motion in theGO mode as in (12). Indeed, the exponential convergence ofr̂(x, t) to rL(x) =

〈r̂(·, 0) − rT (·)〉+ rT (x) implies thatr̂(x, t) is bounded at all times. However, Laplacian control

is but one of many possible control strategies and can be replaced by other control schemes (e.g.

plan-based leader control laws) without generating Zeno executions as long as Assumption 2 is

verified.

Theorem 4 Under Assumptions 2 and 1, the hybrid automaton defined by(11), (12) and (14)

is non-Zeno.

Proof: Let the system be in theSTOP mode. Under Assumption 2 we have

‖ṙ(x, t)‖ = ‖∆r(x, t)‖ ≤
∑
y∼x

‖∂yr(x)‖ ≤
∑
y∼x

ρΩL
≤ NρΩL

, ∀x ∈ NSF
. (15)

From Assumption 1, in order for the system to leave theSTOP mode, at least one follower

agent must have travelled at least a distanceǫ, which in turn implies that the system will always

stay for a time greater than or equal toǫ/NρΩL
in the STOP mode. In order for the system to

exhibit Zeno executions, a necessary condition is that the difference between the transition times

must approach zero [21]. Since this is not the case here, the non-Zeno property is established.

�

B. Liveness and Reachability

As already mentioned, the proposed solution is non-Zeno. However, as it is currently defined,

the Stop-Go policy may be blocking in the sense that the system never leaves theSTOP mode.

One remedy to this problem is to allow the containment to be slightly less tight. In other words,

we can select different guards, e.g.

GO2STOP :∃y ∈ NSF
| d(r(t, y), ΩL) > 2δ? (16a)

STOP2GO :d(r(t, y), ΩL) ≤ δ ∀y ∈ NSF
? (16b)

whereδ > 0. What this means is that we do not enter theSTOP mode until a follower is2δ

outsideΩL. Let us define

ΩL,δ
.
= {y ∈ R

d : d(y, ΩL) ≤ δ}
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Note that, one hasΩL ⊂ ΩL,δ. The next Theorem summarizes the main properties of the resulting

hybrid automaton. A remarkable feature of the guards (16) isthat Assumption 1 is no longer

needed in order to guarantee liveness.

Theorem 5 Under Assumption 2, the hybrid automaton by(11), (12) and (16) is non-Zeno, live,

in the sense of always leaving theSTOP mode eventually, and convergent in the sense that

r̂(x, t) → 〈r̂(·, 0) − rT (·)〉 + rT (x).

Proof: We first prove liveness. Assume that the system is in theSTOP mode. From Theorem

2 we have thath ∈ ΩL. Since∀x ∈ SF , r(x, t) → h, and ΩL ⊂ ΩL,δ, every follower will

eventually get back inΩL,δ in finite time (recall that the leaders are stationary in theSTOP

mode) hence triggering a transition to theGO mode.

Under Assumption 2, it holds‖ṙ(x, t)‖ ≤ N(ρΩL
+ 2δ) and we can repeat the non-Zeno

argument in the proof of Theorem 4 in order to see that the system always stays in theGO

mode for a time greater than or equal toδ/(N(ρΩL
+ 2δ)).

As a result, in a non-blocking system the leaders will be given infinitely many opportunities

to move during a finite (bounded away from zero) time horizon,which implies convergence to

the target location as long as the leaders would in fact end upat the target location under the

influence of theGO mode alone. �

V. CONCLUSIONS

In this paper we presented a hybrid Stop-Go control policy for the leaders in a multi-agent

containment scenario. In particular, the control strategyallows us to transport a collection of

follower-agents to a target area while ensuring that they stay in the convex polytope spanned by

the leaders. The enabling results needed in order to achievethis is that, for stationary leaders,

the followers in a connected interaction graph will always converge to locations in the leader-

polytope. Extensions to the proposed control strategy are moreover given in order to ensure

certain liveness properties.
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