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ABSTRACT
The graph database model is currently one of the most pop-
ular paradigms for storing data, used in applications such
as social networks, biological databases and the Semantic
Web. Despite the popularity of this model, the develop-
ment of graph database management systems is still in its
infancy, and there are several fundamental issues regard-
ing graph databases that are not fully understood. Indeed,
while graph query languages that concentrate on topological
properties are now well developed, not much is known about
languages that can query both the topology of graphs and
their underlying data.

Our goal is to conduct a detailed study of static analysis
problems for such languages. In this paper we consider the
containment problem for several recently proposed classes
of queries that manipulate both topology and data: regu-
lar queries with memory, regular queries with data tests,
and graph XPath. Our results show that the problem is
in general undecidable for all of these classes. However,
by allowing only positive data comparisons we find natural
fragments that enjoy much better static analysis properties:
the containment problem is decidable, and its computational
complexity ranges from PSPACE-complete to EXPSPACE-
complete. We also propose extensions of regular queries with
an inverse operator, and study query evaluation and query
containment for them.

Categories and Subject Descriptors
F.4.1 [Mathematical logic and formal languages]:
Mathematical logic; H.2.3 [Database management]: Lan-
guages—Query Languages

General Terms
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1. INTRODUCTION
Managing graph-structured data is one of the most active
topics in the database community these days. Although first
introduced in the eighties [16, 17], the model has recently
gained popularity due to a high demand from services that
find the relational model too restrictive, such as social net-
works, Semantic Web, crime detection networks, biological
databases and many others. There are several vendors offer-
ing graph database systems [19, 23, 36] and a growing body
of literature on the subject (for a survey see e.g. [2, 7, 44]).

In such applications the data is usually modelled as a graph,
with each node describing one entity in the database, for
example a user in a social network, and the edges of the
graph representing various connections between nodes, such
as friends in a social network, supervisor connections in a
database modelling the structure of a company, etc. Nodes
can have various types of connections, so usually each edge
in the graph is labelled. Finally, nodes by themselves contain
the actual data, modelled as traditional relational data with
values coming from an infinite domain [2].

To query graph-structured data, one can, of course, use tra-
ditional relational languages and treat the model as a rela-
tional database. What makes graph databases attractive in
modern applications is the ability to query intricate navi-
gational patterns between objects, thus obtaining more in-
formation about the topology of the stored data and how it
relates to the actual data. Earliest graph query languages,
such as regular path queries (RPQs) [17] and conjunctive
regular path queries (CRPQs) [13, 16], concentrate on re-
trieving the topology of the graph and ignore the actual
data stored. These languages have been well studied in last
decades, and many extensions were defined for them, such
as 2-way RPQs [13], that allow backward navigation; nested
regular expressions [5], that allow existential tests; or ex-
tended CRPQs [3], that allow checks of nontrivial relations
amongst paths. Industry is also taking account of navi-
gational languages. For example, RPQs have been added
to SPARQL, a query language for Semantic Web graph
databases [27], as a primitive for querying navigational prop-
erties of graphs.

But purely navigational languages such as RPQs or CRPQs
cannot reason on the data stored in the nodes. Thus such
data was usually queried using relational languages, without
a way of specifying the interplay between the data stored and
various navigational patterns connecting the data.
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This interplay is indeed a requirement in many applications
using graph-structured data. For example, in a database
modelling the inner workings of a company one might be
interested in finding chains of people living in the same city
that are connected by professional links, or in a social net-
work one could look for a sequence of friends, all of which
like the same type of music. Recently, several languages that
can handle such queries have been proposed [30–32] and they
were all built on the idea of extending RPQs, or some vari-
ation thereof, with the ability to reason about data values
that appear along the navigated path.

Our goal is to study static analysis aspects of this new gener-
ation of graph query languages, understanding them as ba-
sic building blocks for more complex navigational languages.
We concentrate on the query containment problem, which
is the problem of deciding, given two queries in some graph
language, whether the answer set of the first query is con-
tained in the answer set of the second one. Deciding query
containment is a fundamental problem in database theory,
and is relevant to several complex database tasks such as
data integration [29], query optimisation [1], view definition
and maintenance [24], and query answering using views [15].

The importance of this problem motivated sustained re-
search for relational query languages (see e.g. [1]), XML
query languages (see e.g. [41]) and even extensions of RPQs
and other graph query languages [3, 4, 13, 20]. The overall
conclusion is that containment is generally undecidable for
first order logic and other similar formalisms (see e.g. [1]),
but becomes decidable if we restrict to queries with little
or no negation. For example, containment of conjunctive
queries is NP-complete, while containment of RPQs, 2-way
RPQs and nested regular expressions is PSpace-complete.
For CRPQs it jumps to ExpSpace-complete.

While much is known about the containment of above men-
tioned classes of queries, no detailed study has been con-
ducted for query languages that deal both with naviga-
tional and data aspects of graph databases. In this work we
concentrate on three such languages. Namely, we consider
regular queries with memory (or RQMs for short), regular
queries with data tests (or RQDs), both introduced in [32],
as well as a recent adaptation of the widely used XML query
language XPath to the graph setting, which is called graph

XPath (or GXPath) [31]. We primarily concentrate on con-
tainment, but the techniques presented here can easily be
adapted to deal with other similar problems, such as satis-
fiability or equivalence of queries.

The intuition behind RQMs is that one can navigate through
a graph in the same way as with RPQs, but along the path
it is also possible to store a data value into a register and
later on compare it with another value encountered further
on the path. This idea is very similar to the one of register
automata [28, 37] and in fact one can show that these two
formalisms are equivalent [33]. RQDs operate in a similar
fashion, but storing and comparing values adheres to a more
strict stack-like discipline, so they enjoy much better evalu-
ation properties. Lastly, the language of GXPath allows one
to define patterns that are not necessarily just paths, as it
is for RQMs and RQDs, and also provides the ability to test
whether some data values in these patterns are equal.

Contributions By using equivalence of RQMs with reg-
ister automata, we obtain our first result: the problem of
checking whether one RQM is contained in another RQM
is undecidable. This, of course, opens up the question of
fragments of the language that do have decidable contain-
ment problem. The class of positive RQMs is one of such
fragments, in which we allow testing only if two data val-
ues are equal, but not different. We show that the problem
of positive RQM query containment is decidable, and, in
fact, ExpSpace-complete—the same complexity as for CR-
PQs [13].

Next we move onto the class of RQDs, which was shown
to be strictly contained in the class of RQMs [32]. The
imposed restrictions to RQMs are quite heavy, and compu-
tational complexity of query evaluation drops by almost one
exponent when we consider RQDs instead of RQMs. For
this reason one may expect the containment problem to be
decidable for RQDs. On the contrary, as we show, it remains
undecidable even in this restricted scenario. However, this
changes once again when we consider positive RQDs, for
which a PSpace algorithm for testing containment is ob-
tained. This is the best possible bound for any extension of
RPQs, since their containment is already PSpace-hard [14].

A common assumption when considering graph languages is
that edges can be traversed in both directions. Indeed, the
authors in [12,13] argue that any practical query mechanism
for graphs should incorporate this functionality, as there are
many scenarios when backward navigation is required. It is
therefore natural to study what happens when RQMs and
RQDs are extended with the inverse operator. This gives rise
to two new classes of languages, called 2RQMs and 2RQDs,
respectively. Remarkably, we show that adding this opera-
tor carries no extra computational cost with respect to query
evaluation. However, it does make a big difference for con-
tainment, as even the subclass of 2RQMs that allows only
positive data comparisons has undecidable query contain-
ment problem.

Finally, we consider GXPath and its various dialects. This
language has recently attracted attention because it provides
considerable expressive power while maintaining good query
evaluation properties (in particular, the combined complex-
ity is in polynomial time). However, with respect to con-
tainment the story is different: even the navigational frag-
ment that does not allow data value comparisons has unde-
cidable containment problem. Although this bound follows
from some folklore results on satisfiability of the three vari-
able fragment of first order logic, we could not find a formal
proof of this fact and, hence, provide a self-contained one by
a reduction from an unusual variation of the tiling problem.

The reason for the undecidability of GXPath is the presence
of a powerful negation operator that allows complementa-
tion of binary relations. We show, that if one excludes such
negation from the language, then containment becomes de-
cidable (ExpTime-complete). Such a language is in fact
close to propositional dynamic logic (PDL), whose contain-
ment is also known to be ExpTime-complete [26].

The classes above do not consider data values tests in
GXPath queries. Following [31], we consider an extension
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of these classes with an operator to test whether data values
at the beginning and at the end of a path are same or differ-
ent. This language can simulate all RQDs [31], and thus our
previous results imply that inequalities in tests immediately
lead to undecidability of the containment problem.

Hence the natural way to obtain decidability is to consider
GXPath queries that allow only equalities between data val-
ues. Whether or not the containment problem is decidable
for this class promises to be a challenging task, worthy of
a research line of its own. Indeed, even seemingly simpler
problems in the XML case (that is, trees with data) are still
unanswered [8, 9], and the ones that have been solved usu-
ally require very intricate techniques that cannot be applied
in the graph scenario (see e.g. [18, 35]).

Overall, we see that when containment is considered, the sit-
uation is quite different for languages handling both topol-
ogy and data than it is for traditional graph languages al-
lowing only navigational queries. While for the latter con-
tainment is generally decidable, we show that for the lan-
guages considered here the problem resembles behaviour of
relational algebra, where containment is undecidable for the
full language, but various restrictions on the use of negation
lead to decidable fragments. Hence, the existence of real-
world relational systems which deal with similar problems,
demonstrates that undecidability or high complexity should
not be viewed as an insurmountable obstacle for practical
use of the languages studied here, but as a foundation for
further research.

Organization In Section 2 we formally define the data
model and the problem studied. In Sections 3 and 4 we in-
troduce RQMs and RQDs, respectively, and study their con-
tainment problems. In Section 5 we show how these classes
can be extended with inverses, and turn our attention to GX-

Path in Section 6. We conclude with some remarks about
future work in Section 7. Due to space limitations, most
of the proofs are only sketched, and complete proofs can be
found in the appendix.

2. PRELIMINARIES

Data graphs Let Σ be a finite alphabet of labels and D an
infinite set of data values. A data graph over labels Σ and
data values D is a triple 〈V,E, ρ〉, where:

- V is a finite set of nodes,

- E ⊆ V × Σ× V is a set of labelled edges, and

- ρ : V → D is a function that assigns a data value to
each node in the graph.

An example of a data graph is shown in Figure 1. If data
values are not important, we disregard ρ and only talk about
graphs 〈V,E〉 over Σ.

Regarding data values, this paper follows [31, 32] and the
standard convention for data trees (as a model for XML),
and assumes that data values are attached to nodes. There
are of course other possibilities, but they are all essentially
equivalent. We also assume that each node is assigned with
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Figure 1: A data graph over labels {a, b, c} and natural
numbers as data values, in which nodes are vi, 1 ≤ i ≤ 6.

a single data value. This is not a real restriction, since tu-
ples of attributes can be modelled by a set of edges, each
labelled with the attribute name and connecting the current
node to a new node with a data value for the corresponding
attribute.

Paths A path π between nodes v1 and vn in a graph 〈V,E〉
is a sequence

v1a1v2a2v3 . . . vn−1an−1vn,

such that each (vi, ai, vi+1), for 1 ≤ i < n, is an edge in E.
The label of the path π is the word a1 . . . an−1 obtained by
reading the edge labels appearing along this path.

Queries The default core of each query language for graphs
is regular path queries (or RPQs) which are just regular lan-
guages over labels Σ, usually defined by regular expressions.
The evaluation JeKG of an RPQ e over a graph G, is the set
of all pairs (v1, v2) of nodes in G for which there exists a
path from v1 to v2 with the label from the language of e.

There are a number of extensions of RPQs proposed in the
literature. In this paper we concentrate on those that are
capable of dealing with data values. Also, all of the queries
we study are binary queries, i.e. such that their evaluations
(i.e. answers) are sets of pairs of nodes. We denote by JeKG

the evaluation of a query e over a data graph G.

Containment A query e1 is contained in a query e2 (written
e1 ⊆ e2) if for each data graph G over Σ and D we have that

Je1K
G ⊆ Je2K

G
.

The queries e1 and e2 are equivalent (written e1 ≡ e2) iff
Je1K

G = Je2K
G for every G.

The containment and equivalence are at the core of many
static analysis tasks, such as query optimisation. All the
classes of queries considered in this paper are closed under
union, so these two problems are easily interreducible: e1 ≡
e2 iff e1 and e2 contain each other, and e1 ⊆ e2 iff e1 ∪ e2 ≡
e2. That is why in this paper we concentrate just on the first
and consider the following decision problem parametrized by
a class of queries Q.
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Containment (Q)
Input: Queries e1 and e2 from Q.
Question: Is e1 contained in e2?

The semantics of RPQs is defined for graphs, but it is
straightforward to see that for any two RPQs e1 and e2,
we have that e1 ⊆ e2 if and only if the language accepted
by the regular expression e1 is contained in the language
accepted by e2 [14]. From this fact we obtain that con-
tainment of RPQs is PSpace-complete, following the classic
result that containment of regular expressions is PSpace-
complete. Since all of the classes of queries studied in this
paper are extensions of RPQs, this establishes a lower bound
for containment of any of these classes.

3. REGULAR QUERIES WITH MEMORY
Regular queries with memory, or RQMs for short, were in-
troduced in [32] (where they were called regular expressions
with memory) as a formalism for querying data graphs that
allows data comparisons while navigating through the struc-
ture of the graph. They are based on register automata, an
extension of finite-state automata for words over infinite al-
phabets (see, e.g. [32, 37] for a detailed description).

The idea of RQMs is the following. They can store data val-
ues in a number of named registers, while parsing the input
graph according to a specified regular navigation pattern.
Also, they can compare the current data value with values
that had previously been stored. An example of an RQM is
the expression ↓x.a+[x=], which returns all pairs (v, v′) of
nodes in a graph that have the same data value and are
connected by a path labelled only with a’s. Intuitively the
expression works as follows: it first stores the data value of
the node v into register x, and after navigating an a-labelled
path, it checks that the node v′ at the end of this path has
the same data value as the first node. This check is done
via test x= which makes sure that the data value of v′ is the
same as the one stored in register x.

The proposal of RQMs as a formalism for querying data
graphs was motivated not only by their ability to handle
data values, but also by the low computational complexity
of their evaluation: it is PSpace-complete in general, and
NLogSpace-complete if the query is fixed (i.e. in data com-
plexity) [32]. Hence, their complexity is essentially the same
as for first-order or relational algebra queries.

3.1 Syntax and Semantics of RQMs
Let X be a countable set of registers. We denote them by
letters x, y, z, etc. A condition over X is a positive boolean
combination of atoms of the form x= or x 6=, for x ∈ X.

Definition 3.1. A regular query with memory (or
RQM) over an alphabet of labels Σ and set of registers X

is an expression satisfying the grammar

e := ε | a | e ∪ e | e · e | e
+ | e[c] | ↓x.e (1)

where ε is the empty word, a ranges over labels, x over reg-
isters, and c over conditions.

Before formally defining the semantics, let us give some ex-
amples of RQMs and explain their intuitive meaning.

HG(ε) = {(s, s) | s is a state},
HG(a) = {((v, λ), (v′, λ)) | (v, a, v′) ∈ E},
HG(e1 ∪ e2) = HG(e1) ∪HG(e2),
HG(e1 · e2) = HG(e1) ◦ H

G(e2),
HG(e+) = HG(e) ∪HG(e · e) ∪ . . . ,

HG(e[c]) = {((v, λ), (v′, λ′)) |
((v, λ), (v′, λ′)) ∈ HG(e) and (ρ(v′), λ′) |= c},

HG(↓x.e) = {((v, λ), (v′, λ′)) |
((v, λ), (v′, λ′)) ∈ HG(e) and λ(x) = ρ(v)}.

Table 1: Definition of the function HG with respect to a
data graph G.

Example 3.2.

1. The RQM ↓x.(a[x=])+ returns all pairs of nodes con-
nected by a path, along which all edges are labelled a

and all data values are equal. The evaluation starts
with ↓x, which stores the first data value into regis-
ter x. The subexpression (a[x=])+ then checks that
each subsequent label along the path is a, and that
the data value of each node on this path is equal to
the one of the first node (this is done by comparison
with the value stored in register x). The fact that this
subexpression is in the scope of + indicates that the
length of the sequence of checks is of arbitrary length.

2. The RQM ↓x.(a[x 6=])+ returns all pairs of nodes con-
nected by a path where all edges are labelled with a

and the first data value is different from all other data
values. It works analogously as the expression above,
except that it checks for inequality.

3. The RQM ↓x.(abc)+[x 6=] returns all pairs of nodes con-
nected by a path, whose label is of the form abc . . . abc,
and the first data value is different from the last. Note
that the order of + and condition is different from the
previous examples: the condition is checked only once,
after verifying that the label is in (abc)+, i.e. at the
end of the path.

To define what it means for a data value to satisfy a condi-
tion we need the following notion. An assignment of regis-
ters X is a partial function λ, from X to the set of data val-
ues D. Intuitively, an assignment models the current state
of the registers at some point of computation, with some
registers containing stored data values, and some still being
empty. Formally, a data value d and an assignment λ sat-
isfy a condition x= (or x 6=) iff λ(x) is defined and d = λ(x)
(or d 6= λ(x), correspondingly). This satisfaction relation is
denoted |= and extended to general conditions in a straight-
forward way.

Given a data graph G and a set of registers X, a state is a
pair consisting of a node of G and an assignment of X.

The semantics of RQMs over a data graph G = 〈V,E, ρ〉
is defined in terms of function HG, which binds each RQM
with a set of pairs of states. The intuition of the set HG(e),
for some RQM e, is as follows. Given states s = (v, λ) and
s′ = (v′, λ′), the pair (s, s′) is in HG(e) if there exists a
path w from v to v′, such that the expression e can parse
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w assuming that the registers are initialized according to λ,
modified and compared as dictated by e, and the resulting
assignment after traversing the path is λ′.

Formally, given a data graph G = 〈V,E, ρ〉, the function HG

is constructed by the inductive definition in Table 1.

The symbol ◦ in the table refers to the usual composition of
binary relations:

HG(e1) ◦ H
G(e2) = {(s1, s3) |

∃s2 s.t. (s1, s2) ∈ HG(e1) and (s2, s3) ∈ HG(e2)}.

Finally, the evaluation JeKG of an RQM e over a data graph
G is the following set of pairs of nodes in G:

{(v, v′) | ∃λ′ s.t. ((v,⊥), (v′, λ′)) ∈ HG(e)},

where ⊥ is the empty assignment.

Example 3.3. Consider the evaluations of expressions
from Example 3.2 over the data graph from Figure 1:

1. the evaluation of ↓x.(a[x=])+ is {(v6, v5)};

2. the evaluation of ↓x.(a[x 6=])+ is {(v1, v2), (v1, v5),
(v2, v5), (v2, v3)};

3. the evaluation of ↓x.(abc)+[x 6=] contains
(v1, v6), (v6, v1), (v2, v1) and (v2, v6) (but not
(v6, v6)).

3.2 From Graphs to Words
As we mentioned in the preliminaries, standard algorithms
for containment of RPQs rely on the fact that two RPQs are
contained if and only if the regular languages they define are
contained [14]. In this section we exhibit a similar behaviour
for RQMs.

Data words are a widely studied extension of words over fi-
nite alphabets [40], in which every position carries not only
a label from the finite alphabet Σ, but also a data value from
the infinite domain D. However, just for uniformity of pre-
sentation, we follow [32] and opt to the following essentially
equivalent definition, by which data values are attached not
to positions in a word, but “between” them.1

Definition 3.4. A data word over a finite alphabet of
labels Σ and infinite set of data values D is a sequence
d1a1d2a2 . . . an−1dn, where n > 0, ai ∈ Σ, for each 1 ≤
i < n, and di ∈ D, for each 1 ≤ i ≤ n.

Every data word w = d1a1d2 . . . an−1dn can be easily trans-
formed to a data graph Gw, consisting of n different nodes
with data values d1, . . . , dn, respectively, consequently con-
nected by edges labelled with a1, . . . , an−1, as illustrated in
Figure 2.

1In [32] to distinguish this notion from the original, the term
“data path” was used.

d1

v

d2 d3 . . .. . . dn

v′

a1 a2 a3 an−1

Figure 2: The data graph Gw corresponding to the data
word w = d1a1d2 . . . an−1dn (some node identifiers are omit-
ted).

The semantics of RQMs over data words is defined in the
straightforward way: a data word w is accepted by an RQM
e iff (v, v′) ∈ JeKGw , where v and v′ are the first and the last
node of Gw. The set of all data words, accepted by an RQM
e is denoted L(e).

Coming back to graphs, each path

v1a1v2a2v3 . . . vn−1an−1vn,

in a data graph 〈V,E, ρ〉 has the corresponding data word

ρ(v1)a1ρ(v2)a2ρ(v3) . . . ρ(vn−1)an−1ρ(vn).

As noted in [32], for each RQM e, data graph G, and nodes
v, v′ of G, it holds that (v, v′) ∈ JeKG iff there exists a path
between v and v′ such that its corresponding data word is
accepted by e. Exploiting usual techniques in query con-
tainment we arrive at the following proposition, similar to
the property of RPQs, mentioned in the preliminaries.

Proposition 3.5. Given two RQMs e1 and e2, it holds
that e1 ⊆ e2 iff L(e1) ⊆ L(e2).

In the proposition above e1 ⊆ e2 is defined on data graphs,
but L(e1) and L(e2) are sets of data words.

3.3 Containment of RQMs
We now turn to the containment problem for RQMs. Un-
fortunately, as the following theorem shows, the power that
RQMs gain through its data manipulation mechanism comes
with a high price for static analysis tasks.

Theorem 3.6. The problem Containment (RQMs) is
undecidable.

This fact follows from Proposition 3.5 and the undecidabil-
ity of the containment problem for register automata ([37]),
which are known to be equivalent to RQMs evaluated on
data words ([32,33]).

The theorem above naturally leads to question of finding
decidable subclasses. It is known that testing containment
of an expression using at most one register in an expression
using at most two registers is decidable [37]. This approach
appears to be too restrictive, and thus we concentrate in-
stead on positive RQMs, i.e. RQMs that use only atoms of
the form x= in the conditions. In [42] it was shown that the
containment of positive RQMs is decidable, but no complex-
ity bounds were given. The next theorem fills the gap.
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Theorem 3.7. The problem Containment (positive
RQMs) is ExpSpace-complete.

Proof Sketch. For the ExpSpace upper bound, let e1
and e2 be two RQMs over Σ, and assume that e1 6⊆ e2.
Then by Proposition 3.5 there is a data word w, such that
(v, v′) ∈ Je1K

Gw , v and v′ being the first and last nodes of
the graph Gw. We associate to each node of Gw an assign-
ment λ for the registers in e1, representing the way how e1 is
parsed over Gw in accordance to the relation HGw (e1). We
show that one can always have such a graph Gw satisfying,
in addition, the following property: two nodes u and u′ of
Gw have the same data value d if and only if the assignment
for the registers in all nodes in the path from u to u′ assigns
d to at least one of the registers. In other words, once a data
value is dropped by all registers, one does not encounter the
data value again further along the path. Let now Ae1 and
Ae2 be the register automata equivalent to e1 and e2, respec-
tively. The above fact allows us to check whether w belongs
to L(Ae1) but does not belong to L(Ae2), using only expo-
nential space. The idea is to build a transition system that
simulates a succesful run of Ae1 and all possible runs of Ae2 .
Of course this is not feasible because there can be infinitely
many assignments for the registers (because there are in-
finitely many data values), but by the fact explained above
we show that we only need to focus on which registers are
assigned the same values, and which ones are not (instead of
their precise assignments). In other words, to check word w

we can build a transition system whose states store roughly
the following information: (1) a state of Ae1 and Ae2 , and
(2) the equivalence relation formed by the data values stored
in the registers of e1 and e2.

Hardness is by reduction from the acceptance problem of a
Turing machine that works in ExpSpace. The reduction is
similar to the one used in [6, Theorem 6], except that the
gadgets in this proof are constructed by taking advantage of
registers, instead of the variable assignments used there.

The previous proof relies on the fact that the set of registers
X is unbounded. Carefully checking the proof reveals the
following corollary. Here n-bounded positive RQMs refers to
the class of positive RQMs which can use at most n registers.

Corollary 3.8. Let n be a natural number. The prob-
lem Containment (n-bounded positive RQMs) is PSpace-
complete.

Hence, positive RQMs are a natural subclass of RQMs with
decidable query containment. However, when comparing the
complexity with the one for RPQs, we see that allowing pos-
itive data test comparisons results in an exponential jump.
In the following section we consider another class of queries
extending RPQs, which also allows data value comparisons,
but in a more restricted way than RQMs. As we will see,
the positive subclass of this class has the same complexity
of query containment as RPQs.

4. REGULAR QUERIES WITH DATA TESTS
Looking for classes of queries handling data values, but hav-
ing better query answering properties than RQMs, the au-
thors of [32] introduced regular queries with data tests, or

RQDs for short (these were called regular expressions with
equality in the original paper). An example of such a query
is the expression a(b+)=c, whose intention is to return all
pairs of nodes connected by a path labelled ab . . . bc and
where the data values before and after the sequence of b’s
are the same.

All RQDs are RQMs, but the usage of registers is restricted:
each stored data value can be retrieved and compared only
once, and the order of these storing and retrieving operations
is not arbitrary, but on the“last in, first out”basis. The data
complexity of RQDs’ evaluation is the same as for RQMs—in
NLogSpace, but the combined complexity is much better,
in fact tractable, in PTime [32].

4.1 Syntax and Semantics of RQDs
The syntax for RQDs can be defined in a direct, much sim-
pler way than for RQMs, without even mentioning registers
and conditions.

Definition 4.1. A regular query with data tests (or
RQD) over an alphabet of labels Σ is an expression satis-
fying the grammar

e := ε | a | e ∪ e | e · e | e
+ | e= | e 6= (2)

where a ranges over labels.

Again, before the formal definition of semantics we give some
examples of RQDs and their connection to RQMs.

Example 4.2. Recall RQMs from Example 3.3 (we con-
sider them here in different order for better understanding
of the relation between RQMs and RQDs).

1. The RQM ↓x.(abc)+[x 6=] can be written as the RQD
((abc)+) 6=: the first data value is stored, then the
sequence of abc’s is read, and then the value is re-
trieved and compared for inequality with the current
one. Note that the stored value is used just once.

2. The RQM ↓x.(a[x=])+ can be written as the RQD
(a=)

+: the first data value is stored; then a is read;
then the stored data value is retrieved and compared
with the current one for equality; if successful, this
current value (equal to the original!) is stored again,
another a is read, and so on. If the parsing contin-
ues, then the current data value is always equal to the
original one, even if we use each stored value just once.

3. Contrary to the previous case, it can be shown that the
RQM ↓x.(a[x 6=])+ cannot be expressed as an RQD: in-
deed, after the first comparison the original data value
is lost, and storing the current data value (different
from the original) cannot help with correct compari-
son on the next step.

4. The RQM ↓x.a ↓y.b[y=]c[x=] can be written as the
RQD (ab=c)=. However, the very similar RQM
↓x.a ↓y.b[x=]c[y=] is not expressible as an RQD, since
the sequence in which data values have to be retrieved
does not respect the ”first-in-last-out” discipline re-
quired by RQD syntax.
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JεKG = {(v, v) | v ∈ V },
JaKG = {(v, v′) | (v, a, v′) ∈ E},
Je1 · e2K

G = Je1K
G ◦ Je2K

G,
Je1 ∪ e2K

G = Je1K
G ∪ Je2K

G,
Je+KG is the transitive closure of JeKG,
Je=KG = {(v, v′) | (v, v′) ∈ JeKG, ρ(v) = ρ(v′)},
Je 6=KG = {(v, v′) | (v, v′) ∈ JeKG, ρ(v) 6= ρ(v′)}.

Table 2: Semantics of RQDs with respect to a data graph
G. The composition of binary relations is again denoted ◦.

The semantics of RQDs is also defined in a much simpler
way than for RQMs. The evaluation JeKG of an RQD e over
a data graph G = 〈V,E, ρ〉 is the set of all pairs (v1, v2) of
nodes in V defined recursively in Table 2.

As Example 4.2 suggests, and as it is formally shown in
[32], the class of RQDs is strictly contained in the class of
RQMs. Indeed, to transform an RQD to RQM we just need
to recursively replace each subexpression of the form e∼,
∼ ∈ {=, 6=}, with the subexpression ↓x.e[x∼], where x is a
previously unused register. However, there are RQMs which
cannot be transformed to RQDs, which is also justified by
the lower complexity of query evaluation.

Similarly to RQMs, each RQD defines a language of data
words. A data word w is accepted by an RQD e iff (v, v′) ∈
JeKGw , with Gw as in the Figure 2. The set of all data words
accepted by an RQD e is denoted L(e). It is easy to see that
for each RQD e, data graph G and nodes v, v′ in G, it holds
that (v, v′) ∈ JeKG iff there exists a path between v and
v′ such that its corresponding data word is accepted by e.
This allows us to show an analogue of Proposition 3.5, thus
reducing query containment to language containment.

Proposition 4.3. Given two RQDs e1 and e2, it holds
that e1 ⊆ e2 iff L(e1) ⊆ L(e2).

4.2 Containment of RQDs
RQDs were originally introduced as a restriction of RQMs
that enjoys much better query evaluation properties. In light
of this result, one might also hope for good behaviour when
query containment is considered. Surprisingly, the following
theorem shows that this is not the case.

Theorem 4.4. The problem Containment (RQDs) is
undecidable.

Proof Sketch. The proof exploits the idea of coding
the Post correspondence problem by data words from [37].
However, the expressions used there are RQMs and they rely
on the fact that one can store a data value and then compare
it with a value encountered later with no restrictions. This
is not immediately possible when dealing with RQDs, since
testing for (in)equality must adhere to the first-in-last-out
discipline. The trick used to circumvent this issue is based
on the observation that part of the coding from [37] can be
reversed, thus allowing us to nest data value tests as dictated
by the syntax of RQDs.

This naturally opens the search for subclasses of RQDs
with decidable containment problem. Similarly to posi-
tive RQMs, we now consider the class of positive RQDs,
i.e. RQDs where subexpressions of the form e 6= are not al-
lowed. We can obtain a positive RQM from a positive RQD
by the described above procedure that transforms an RQD
into an RQM. Hence, we again have a strict containment
of the corresponding classes, and from Theorem 3.7 we con-
clude that containment of positive RQDs is decidable and
in ExpSpace. However, the following theorem says that we
can perform even better, in fact, the best possible in light
of the PSpace lower bound for plain RPQs.

Theorem 4.5. The problem Containment (positive
RQDs) is PSpace-complete.

Proof Sketch. The hardness follows from the bounds
for RPQs, so next we give an idea of an PSpace algorithm
which decides whether L(e′) ⊆ L(e) holds for positive RQDs
e′ and e. The main difficulty here is to identify and carefully
exploit those nontrivial properties of RQDs that allow to
extend a standard algorithm for containment of RPQs.

Let’s start with a simple PSpace algorithm for containment
of RPQs: (1) transform the RPQs to nondeterministic fi-
nite state automata (NFAs) A′ and A without ε-transitions;
(2) put a pebble to each of the initial states; (3) non-
deterministically repeat moving the single pebble in A′ along
transitions, moving at the same time all the pebbles in A in
parallel, along the transitions labelled the same as the cur-
rent transition in A′: if we have several options, the pebble
multiplies, if a pebble cannot move, it is removed, if several
pebbles meet, just one is left; (4) stop and fail if the peb-
ble in A′ is in a final state, but none of the pebbles in A

are; stop and succeed if the search space is exhausted. Es-
sentially, the set of pebbles in A is the state in the typical
power set construction, done “on the fly”.

A naive adaptation of this algorithm to deal with data values
can be as follows.

(a) Before transforming to NFAs, normalise e and e′ such
that none of the equality checks ()= can be opened together
and none of them can be closed together on any run. This
can be done, essentially, by applying the rules

((e1)=e2)=  (e1)=(e2)=, (e1(e2)=)=  (e1)=(e2)=,

and some others. After this, RQDs can be transformed to
NFAs whose transitions have extra labels from the set R =
{∅, ↑, ↓, ↓↑}, where ↑ means that an equality is opening, and
↓ that an equality is closing.

(b) Attach a stack of reactions to all the pebbles in A, where
each reaction is a symbol from R. Then, during a run of
the algorithm, if the pebble in A′ moves along a transition
with ↑, then every moved pebble in A pushes into its stack
the extra label of the transition, but only if it is either ∅
or ↑; otherwise pebble does not pass (of course, the usual
label matching is also checked). In turn, if the pebble in
A′ moves along a transition with ↓, then only those pebble
pass, which popped extra label pairs with the label of the
current transition: ↓ pairs with ↑, and ∅ pairs with itself.
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The extra label ↓↑ can be handled similarly.

By this, e.g. (ab=c)= is contained in (abc)= because the only
pebble in the second NFA when reading b has stack (↑, ∅) and
the current label is pairing ∅. The same (ab=c)= is contained
in ab=c, because, after b the stack is (∅, ↑) and the label is
pairing ↓, but it is not contained in (ab)=c, because they are
(↑, ∅) and not pairing ↓.

Such an adaptation would work, but it has space issues.

First, the normalisation step can cause an exponential blow-
up if nested simultaneously opened or closed equalities are
combined with ∪ operation. So, a PSpace algorithm should
not apply the rules above, but deal with such situations on
the fly: e.g. we may allow a pebble in A to pass through
an equality opening, but only with a condition that this
equality will be closed together with the previous one.

Second, and more serious problem is that even if the depth
of each stack is bounded by the depth of the equality tests
nesting in A′, the number of different stacks is exponential.
In fact, there are examples where exponentially big set of
pebbles with different stacks are on the same state in A at
some point of a run. However, such a set is never arbitrary,
and lots of information in the stacks can be shared: if a
stack can be seen as a unary tree, then every set of such
trees which appears on a run can be represented as a dag,
whose size is polynomial.

Careful exploiting of the ideas above leads us to the desired
PSpace algorithm for checking containment of RQDs.

5. LANGUAGES WITH INVERSE
RQMs and RQDs are recent, but established extensions of
RPQs which manage data values. However, as noted in [13],
RPQs by themselves lack a very natural construction for
navigation through the structure of graphs—namely, the in-
verse operator. Indeed, consider for example a genealogy
graph over a single parent label, such as the one presented in
Figure 3. We assume that nodes represent people and data
values are their names. A natural query over this graph,
which does not deal with data values, would be to ask for
all pairs of siblings. This, however, is clearly not express-
ible as an RPQ. On the other hand, it can be written as
parent−parent, where ‘−’ is the inverse operator, which tra-
verses edges backwards. This query will retrieve e.g. (v2, v4)
from the graph in Figure 3, since these nodes have a common
parent v1.

The class of queries enriching RPQs with inverse, called
2-way RPQs, or 2RPQs for short, was introduced in [13],
where it was shown that even with this extension query eval-
uation remains the same as for RPQs (namely NLogSpace-
complete). Moreover, in [14] the authors also show that
query containment is as efficient as for plain RPQs (namely
PSpace-complete).

In this section we consider the extensions of RQMs and
RQDs with the inverse operator, called 2RQMs and 2RQDs
respectively. As far as we are aware, these languages
have never been formally investigated, but we believe that
they are natural and intuitive formalisms for querying data
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Figure 3: A genealogy database over the parent label.

graphs. For example, one query of interest in our genealogy
database might be to retrieve all pairs of (blood) relatives
with the same name. This can be easily done by the means of
2RQD ((parent−)+parent+)=, which checks that two peo-
ple have a common ancestor and ensures that they also have
the same name. For example the pair (v3, v4) is an answer
to this query in our sample graph.

The main focus of this paper is query containment. But
since we introduce the languages of 2RQMs and 2RQDs here,
after the formal definitions we first explore the complexity
of query evaluation, and afterwards proceed to containment.

5.1 Definition and Evaluation of 2RQMs and

2RQDs
The syntax of 2RQMs results from adding the inverse oper-
ator to RQMs. The similar holds for 2RQDs.

Definition 5.1. A 2-way regular query with memory, or
2RQM, over alphabet of labels Σ and registers X, is an ex-
pression satisfying the grammar (1) in Definition 3.1 ex-
tended with the alternative a−, where a ranges over Σ. A
2-way regular query with data tests, or 2RQD, over labels
Σ is an expression satisfying (2) in Definition 4.1 extended
with a−.

By this definition, 2RQDs restrict 2RQMs in the same way
as RQDs restrict RQMs. The semantics of these languages
extends their one-way analogs in the intuitive way. For
2RQMs, given a data graph G = 〈V,E, ρ〉, the function HG

extends the definition from Table 1 to the inverse construc-
tion as follows:

HG(a−) = {((v′, λ), (v, λ)) | (v, a, v′) ∈ E}.

Then, the evaluation JeKG of an 2RQM e over a data graph
G stays the same as for RQMs.

Similarly, the evaluation JeKG of a 2RQD e over a data graph
G = 〈V,E, ρ〉 is obtained by adding the following rule to
Table 2:

Ja−KG = {(v′, v) | (v, a, v′) ∈ E}.

As noted above, the complexity of 2RPQ evaluation is the
same as for plain RPQs. Next we show that the same also
holds for RQMs and RQDs with their two-way variants.

138



Proposition 5.2. The problem of deciding whether a
pair of nodes belongs to JeKG for a 2RQM e and a data graph
G is PSpace-complete. The same problem is in PTime if e
is a 2RQD. If we assume that e is fixed the problem becomes
NLogSpace-comlete for both 2RQMs and 2RQDs.

The proof of this proposition follows from the evaluation
algorithms for RQMs and RQDs described in [32], and the
observation that such two-way query can be viewed as an
ordinary one-way query over the extended alphabet Σ′ =
Σ ∪ {a− | a ∈ Σ}. Then a pair (v, v′) is an answer of e over
a graph G if and only if it is an answer of e when viewed
as a one-way query over the extended graph G′ (over the
alphabet Σ′) which contains the edge (v′, a−, v) edge for
each edge (v, a, v′) in G.

5.2 Containment of 2RQMs and 2RQDs
The classic result by Calvanese et al. [14] states that one can
add the inverse operator to RPQs and maintain not only the
same complexity of query evaluation, but also the same com-
plexity of query containment. The proposition above gives
a hope that the inverse functionality will not affect the com-
plexity of containment of 2RQMs and 2RQDs as well. Of
course, by the results of the previous sections, containment
is undecidable when full languages are considered. Unfor-
tunately, as we show next, decidability for positive RQMs
does not propagate to their two-way variant.

The class of positive 2RQMs is defined as the subclass of
2RQMs that use only conditions built from atoms of the
form x= (but not x 6=). Note that for 2RQMs we can no
longer use language containment to check for query contain-
ment [14]. Indeed, it might be tempting to do the same as
we did for Proposition 5.2, and reduce containment check-
ing of two-way queries to containment of the same queries,
but viewed as one-way queries over the extended alphabet
containing symbols a− for each a ∈ Σ. However, this does
not imply that queries are contained, because labels of the
form a− can also symbolise going backwards (for example,
the 2RPQ a is contained in the 2RPQ aa−a, but the con-
tainment does not hold when the queries viewed as regular
expressions over the extended alphabet). This leads to the
following announced result.

Theorem 5.3. The problem Containment (positive
2RQMs) is undecidable.

Proof Sketch. The proof is by reduction from the
emptiness problem of stateless multihead automata, known
to be undecidable [45]. Two-way register automata are
known to be able to simulate stateless multihead automata
[37], and the same can be shown for 2RQMs. However, such
simulation requires both equalities and inequalities, so the
proof does not follow directly from this fact.

The idea of our novel reduction is to simulate only the ac-
cepting runs of a particular stateless multihead automaton
A. In other words, we define positive 2RQMs e1 and e2 such
that A accepts no words if and only if e1 ⊆ e2. In our cod-
ing, a witness Gw for e1 6⊆ e2 represents a word belonging
to A.

v

v′

b b
a

c

. . .

Figure 4: A pattern for GXPath query a[〈b+〉]c.

This negative result comes as a surprise, and it poses a ques-
tion on whether the containment problem is at least decid-
able for positive 2RQDs. We leave this question for future
work.

6. GRAPH XPATH
As we saw in the previous section, 2RQMs and 2RQDs ex-
tend RPQs with the constructs for data values comparisons
and also with an additional navigational feature. The lan-
guage of graph XPath, or GXPath for short, which was in-
troduced in [31] as an adaptation of the widely used XML
query language XPath to the graph setting, goes further in
this direction, extending the classes considered above with
even more elaborate navigational tools, including a branch-
ing operator that allows one to check conditions along more
than one path in the graph. For example, the GXPath query
a[〈b+〉]c retrieves all pairs (v, v′) of nodes connected by a
path labelled ac, such that the intermediate node on this
path has an outgoing sequence of b-labelled edges. The end
point of that sequence can be arbitrary, we are only inter-
ested in its existence. The pattern described by this query
is illustrated in Figure 4.

One consequence of this gain in navigational expressiveness
is that we cannot always go from graphs to words as be-
fore: for instance, there are GXPath queries which are satis-
fiable on graphs, but not on words (like the one above). It
means that we cannot hope for anything like Propositions 3.5
and 4.3, because query containment no longer corresponds
to containment of languages.

Contrary to 2RQMs and 2RQDs, static analysis aspects of
GXPath were not previously studied even for purely naviga-
tional fragment GXPathreg that uses no data value compar-
isons. That is why we start by exploring the containment
problem for this fragment, and only after it proceed to var-
ious extensions with data tests.

Before proceeding to the formal details, it is worth to note,
that the aforementioned class GXPathreg essentially corre-
sponds to the well studied formalism of propositional dy-
namic logic, or PDL [26], with negation on paths.

6.1 Syntax and Semantics of GXPathreg

As in XPath, formulas of GXPathreg are divided into path
formulas, returning pairs of nodes, and node formulas, re-
turning single nodes. Since we are interested in extensions of
RPQs (which are binary), we concentrate on path formulas,
and node ones will play just an auxiliary role. The formulas
are defined by mutual recursion as follows.
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J⊤KG = {v | v ∈ V },
J¬ϕKG = V − JϕKG,

Jϕ ∧ ψKG = JϕKG ∩ JψKG,
Jϕ ∨ ψKG = JϕKG ∪ JψKG,

J〈α〉KG = {v | ∃v′ (v, v′) ∈ JαKG};

JεKG = {(v, v) | v ∈ V },
JaKG = {(v, v′) | (v, a, v′) ∈ E},

Ja−KG = {(v′, v) | (v, a, v′) ∈ E},
J[ϕ]KG = {(v, v) ∈ G | v ∈ JϕKG},

Jα ∪ βKG = JαKG ∪ JβKG,
Jα · βKG = JαKG ◦ JβKG,

JαKG = V × V − JαKG,
Jα+KG is the transitive closure of JαKG.

Table 3: The semantics of GXPathreg. The symbol ‘−’
stands for set-theoretic difference.

Definition 6.1. Node formulas of ϕ,ψ of GXPathreg and
path formulas α, β are expressions satisfying the grammar

ϕ,ψ := ⊤ | ¬ϕ | ϕ ∧ ψ |ϕ ∨ ψ | 〈α〉,
α, β := ε | a | a− | [ϕ] | α ∪ β | α · β | α | α+.

(3)

Just by glancing the definition one immediately notices that
GXPathreg is a formalism much richer in navigational prop-
erties than RPQs: it allows inverse traversal of edges (the a−

operator), non-existence of paths (the α operator), and test-
ing for existence of (boolean combinations of) paths starting
from the current node (the [ϕ] operator). The formal seman-
tics with respect to a graph G = 〈V,E〉 is given in Table 3:
a node formula ϕ defines the set JϕKG of nodes, and a path
formula α defines the set JαKG of pairs of nodes.

Since we are dealing with navigational queries the tree ana-
logue of our language would be the regular fragment of
XPath. Note that there negation over path formulas is usu-
ally not included in the syntax, as one can show that this
class is closed under complementation of path expressions
[34]. This, however, is not the case for GXPath as shown
in [31], so complementation is added to preserve close con-
nection between GXPath and first-order logic.

6.2 Containment of GXPathreg Queries
Analysing the expressive power of GXPathreg reveals that
this class of queries is equivalent to the extension of first
order logic with three variables (FO3) with the transitive
closure operator [31]. It is well known that satisfiability of
FO3 formulas is undecidable over arbitrary (possibly infi-
nite) graphs, and it is folklore to assume that this bound is
maintained for finite graphs, which we study in this paper.
Since containment is a more general problem, than satisfia-
bility, we have the following theorem.

Theorem 6.2. The Containment (GXPathreg) problem
is undecidable.

Proof Sketch. Since we could not find a formal proof of
the aforementioned result about finite satisfiability of FO3,

we include a self contained proof in the appendix, as for
all other theorems of this paper. The proof shows that even
satisfiability problem for GXPathreg formulas is undecidable.
To obtain this result we give a reduction from a variation
of tiling problem from [25]. In particular we use the fact
that the set Snotiling, of all finite sets of tiles that can not
tile the positive plane, and the set Speriod, of all finite sets
of tiles that can tile the plane periodically, are recursively
inseparable.

Following the ideas from [21], we then show how to con-
struct, for each finite set of tiles T , a GXPathreg node formula
γT such that satisfiability of γT implies that T can tile the
positive plane, while the fact that T can tile the plane peri-
odically implies that γT is satisfiable. Note that this shows
that the set S = {ϕ | ∃G s.t. JϕKG 6= ∅} contains the set
{γT | T ∈ Speriod} and is disjoint from {γT | T ∈ Snotiling}.
The fact that Snotiling and Speriod are recursively insepara-
ble then implies that S can not be recursive, so satisfiability,
and thus containment, of GXPathreg queries is undecidable.

To define the formula γT we rely heavily on the fact that
GXPathreg can force loops in a graph, thus allowing us to
check that tiles are placed correctly and that the tiling can
proceed from any point in the plane.

By analysing the proof one can also observe that the usage of
the transitive closure operator + is restricted to edge labels
only. Thus, we actually show that the satisfiability problem
is already undecidable for the fragment of GXPathreg, called
GXPathcore by analogy with the core fragment of XPath,
which allows only a+ and (a−)+ instead of α+ in the gram-
mar for path queries in (3). Note, that GXPathcore does not
contain RPQs any more, and in fact these two classes are
incomparable [31].

Due to the aforementioned connection to PDL, we have a
result on satisfiability of PDL with negation over finite mod-
els.

Corollary 6.3. The satisfiability problem for PDL with
negation on paths is undecidable over finite models, even in
the absence of propositional variables.

In fact, by carefully examining the proof, one can check that
the use of negation is quite limited and that we only use
intersection and the fact that GXPathreg can define the set of
all pairs of mutually different nodes via the expression ε. We
are hoping that further adaptations of the proof could lead
to solving the well known open problem of finite satisfiablity
for PDL formulas with intersection [22].

As in the previous sections, we have the following question:
what are the restrictions on GXPathreg that make contain-
ment decidable? The most natural candidates are of course
the ones that forbid negation. Since we have two forms of
negation, one on node formulas and another on path formu-
las, we consider two positive subclasses of GXPathreg.

Definition 6.4. The positive GXPathreg, denoted
GXPath

pos
reg , does not allow node formulas of the form ¬ϕ
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Data comparisions RQD RQM 2RQD 2RQM GXPath
pos
reg GXPath

path-pos
reg GXPathreg

none PSpace-c∗ PSpace-c∗ PSpace-c∗ ExpTime-c und.
positive PSpace-c ExpSpace-c ? und. ? ? und.

full und. und. und. und. und. und. und.

Table 4: Complexity of containment of data graph queries. Some classes have synonyms, not given for clarity: i.e. RQDs
and RQMs with no data comparisons are RPQs. Results, known before, are marked with ‘*’, “-c” stands for “complete”.

nor path formulas of the form α in the grammar (3) of
GXPathreg.

The path-positive GXPathreg, denoted GXPath
path-pos
reg , does

not allow α, but keeps ¬ϕ in the grammar.

Note that, as opposed to the classes from previous sections,
the word “positive” refers here to restrictions of navigational
properties, and not of data manipulation abilities.

A PSpace upper bound for complexity of containment prob-
lem for GXPath

pos
reg queries was shown in [39]. Hence, this

complexity is the same as for RPQs. Exploiting connections
with PDL, we obtain the following result for the second,
bigger class defined above.

Theorem 6.5. The decision problem Containment

(GXPathpath-posreg ) is ExpTime-complete.

Note that this result gives us an upper bound of contain-
ment for path-positive GXPathcore, i.e. the intersection of
GXPathcore and GXPath

path-pos
reg . We leave the precise bounds

for core fragments for future work, as our focus in this paper
is on queries extending RPQs.

6.3 Adding Data Values
There are two approaches to add data value comparisons to
XPath. We consider the one which is in line with RQDs. The
syntax of this new class GXPathreg(∼) extends the grammar
(3) of GXPathreg with path formulas of the form α= and
α 6=. The semantics over a data graph G = 〈V,E, ρ〉 enriches
Table 3 in a way similar to semantics of RQDs:

Jα=KG = {(v, v′) ∈ JαKG | ρ(v) = ρ(v′)},
Jα 6=KG = {(v, v′) ∈ JαKG | ρ(v) 6= ρ(v′)}.

Similarly to previous sections, we also consider subclasses
GXPath

pos
reg (∼) and GXPath

path-pos
reg (∼) of GXPathreg(∼), the

first of which does not allow node negations ¬ϕ and path
negations α, and the second one does not allow just path
negations.

Another way to add data value tests would be to follow usual
XPath and add node formulas 〈α = β〉 to the syntax. The
evaluation of such a formula contains all the nodes in the
graph from which one can reach two nodes v′ and v′′ by
following paths satisfying α and β respectively, such that
ρ(v′) = ρ(v′′). In [31] it was shown that such an exten-
sion of GXPathreg is strictly contained in the defined above
GXPathreg(∼).

Next we come to query containment for GXPathreg(∼) and
its fragments. However, it is shown in [31], that even
GXPath

pos
reg (∼), i.e. the smallest subclass defined above, con-

tains the class of RQDs. That is why we have the following
corollary of Theorem 4.4.

Corollary 6.6. The problems

- Containment (GXPathposreg (∼)),

- Containment (GXPathpath-posreg (∼)) and

- Containment (GXPathreg(∼))

are undecidable.

The next step in the search for decidable fragments of
GXPath would be to restrict data tests to equality tests of
the form α= only (i.e. forbid the form α 6=). We did such a
restriction for RQDs and RQMs before. From Theorem 6.2
we already know that containment for GXPathreg(∼) with
such restriction is undecidable. However, results for simi-
lar fragments of RQDs give some hope that containment for
GXPath

path-pos
reg (∼) and GXPath

pos
reg (∼) with such restrictions

might be decidable. In future work we would like to extend
our research in this direction, as well as study what happens
in core fragments, where one might even be allowed to use
inequality tests and still retain decidability of basic static
analysis tasks.

7. CONCLUSIONS AND FUTURE WORK
After conducting a detailed study of query containment for
main classes of queries for graphs with data, we conclude
that the picture here is quite different from the one for tradi-
tional navigational languages. In particular, there is a sharp
contrast between RPQs or CRPQs, where containment is
decidable, and any of the known extension of RPQs that
handle data values. Undecidability for the class of RQMs
comes as not a surprise, due to high complexity of query
evaluation and powerful data manipulation mechanism, but
we have seen that even classes with good query evaluation
properties can have undecidable containment.

The presence of inequality tests seems to be one of the major
detractors here, although the ability to define complex nav-
igational patterns can lead to undecidability as well. Thus,
it seems that to obtain decidable fragments one has to limit
attention to purely positive subclasses. The situation fur-
ther complicates in the presence of inverse operator. We
summarise all of the results in Table 4.

141



All of this shows that, although most of graph query lan-
guages are already well established, there is still some fine
tuning needed to define languages with desirable static anal-
ysis properties. In particular, we would like to fully under-
stand the containment problem for all fragments of GXPath.
Some results in previous sections give us hope that decid-
ability could be obtained for positive fragments using only
equality tests and for core fragments, which we did not con-
sider here.

In particular, the decidability of containment is open for pos-
itive 2RQDs; and the equalities-only versions of GXPathposreg

and GXPath
path-pos
reg . The expressive power of these classes

is tightly related: positive GXPath
pos
reg is obtained by adding

the test operator [ϕ] to positive 2RQDs, and of course pos-
itive GXPath

path-pos
reg contains positive GXPath

pos
reg . An unde-

cidability result for positive 2RQDs would settle the ques-
tion for all three classes, but we conjecture that the the de-
cidability frontier is somewhere between positive GXPath

pos
reg

and positive GXPath
path-pos
reg . Another approach is to con-

sider only standard XPath-like tests of the form 〈α = β〉,
which were shown to be weaker than the equality tests used
here [31]. Finally, it could be interesting to look at graph
queries over various description logics, where some results
are known, but only about 2RPQs and C2RPQs [10].
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[5] P. Barceló, J. Pérez, J. L. Reutter. Relative expressiveness
of nested regular expressions. In AMW’12, pages 180–195.
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[32] L. Libkin, D. Vrgoč. Regular path queries on graphs with
data. In ICDT’12, pages 74–85.
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