
Containment of Pattern-Based Queries over Data Trees

Claire David
Université Paris-Est Marne-la-Vallée

claire.david@univ-mlv.fr

Amélie Gheerbrant
University of Edinburgh

agheerbr@inf.ed.ac.uk

Leonid Libkin
University of Edinburgh

libkin@inf.ed.ac.uk

Wim Martens
University of Bayreuth

wim.martens@uni-bayreuth.de

ABSTRACT

We study static analysis, in particular the containment prob-
lem, for analogs of conjunctive queries over XML docu-
ments. The problem has been studied for queries based on
arbitrary patterns, not necessarily following the tree struc-
ture of documents. However, many applications force the
syntactic shape of queries to be tree-like, as they are based on
proper tree patterns. This renders previous results, crucially
based on having non-tree-like features, inapplicable. Thus,
we investigate static analysis of queries based on proper
tree patterns. We go beyond simple navigational conjunc-
tive queries in two ways: we look at unions and Boolean
combinations of such queries as well and, crucially, all our
queries handle data stored in documents, i.e., we deal with
containment over data trees.

We start by giving a general Πp
2 upper bound on the con-

tainment of conjunctive queries and Boolean combinations
for patterns that involve all types of navigation through doc-
uments. We then show matching hardness for conjunctive
queries with all navigation, or their Boolean combinations
with the simplest form of navigation. After that we look
at cases when containment can be witnessed by homomor-
phisms of analogs of tableaux. These include conjunctive
queries and their unions over child and next-sibling axes;
however, we show that not all cases of containment can be
witnessed by homomorphisms. We look at extending tree
patterns used in queries in three possible ways: with wild-
card, with schema information, and with data value compar-
isons. The first one is relatively harmless, the second one
tends to increase complexity by an exponential, and the last
one quickly leads to undecidability.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
EDBT/ICDT ’13, March 18 - 22 2013, Genoa, Italy.
Copyright 2013 ACM 978-1-4503-1598-2/13/03 $15.00.

Categories and Subject Descriptors

H.2.3 [Database management]: Languages—Query Lan-
guages; F.2 [Analysis of algorithms and problem com-
plexity]: General

General Terms

Algorithms, Theory

1. INTRODUCTION

Static analysis of queries and specifications has been ac-
tively investigated in the context of XML, not only due to
its importance in tasks such as query optimization but also
due to a very different nature of the results brought to the
fore by the hierarchical structure of XML documents [1, 3,
7, 10, 13, 14, 16, 17, 18, 19, 28, 30, 33, 35]. Typical reason-
ing problems include consistency of queries or constraints
with respect to schema information, typechecking of trans-
formations, security of views, and crucially, query contain-
ment, with or without schema information. The latter is the
problem we deal with. Starting from the relational case, we
know that query containment is often the technical core of
many query optimization [15]. In recent years query con-
tainment found multiple applications not only in query an-
swering and optimization, but also in data integration, ex-
change, and provenance among others [22, 23, 27].

Already in the relational case, we know that, by and
large, containment is decidable for conjunctive queries and
relatives, and undecidable for expressive queries, such as
those coming from the full relational algebra. In the XML
case, static analysis of queries has been largely restricted to
queries in various fragments of XPath [35] and analogs of
conjunctive queries [10, 11, 21], primarily describing the
structure of documents. The latter classified the complex-
ity of query containment depending on the list of used axes,
providing a seemingly complete picture.

Nonetheless, the picture depicted by [10, 11, 21] is not
as complete as it seems. Firstly, this work basically took
relational conjunctive queries on top of XML documents,
and considered containment problems for them. Queries like
that in a way do not follow tree patterns. An example of such

201

a query is one saying that we have two nodes s and s′, so that
s′ is a descendant of s, and we have other nodes s1, . . . , sn
so that each si is a descendant of s and an ancestor of s′. This
says that the sis appear in some order on the unique path
from s and s′. But note that the query itself is DAG-shaped
rather than tree-shaped (i.e., if we consider its tableau, it is
a DAG rather than a tree). Secondly, results in those papers
mainly concentrated on navigational features and much less
on the data that documents carry. For instance, containment
of queries with data values remained practically unexplored
(as these papers concentrated on satisfiability).

And yet many applications demand proper XML conjunc-
tive queries which are tree-based and can return data. Such
queries are naturally induced by XML patterns which ap-
pear in multiple applications including XML data exchange,
data integration, and query optimization [4, 5, 6, 8, 9, 24].
Such patterns are given by grammars or formation rules that
naturally induce a tree structure. As a simple example, we
can say that a label a is a pattern, and if π1, . . . , πn are pat-
terns, then a[π1, . . . , πn] is a pattern. It will be matched by
an a-labeled node that has n (not necessarily distinct) chil-
dren matching π1, . . . , πn. Such patterns (and more com-
plex ones including other axes) form the basis for describing
XML schema mappings and incompleteness in XML docu-
ments. And yet they cannot generate the DAG-like “conflu-
ence” behavior explained earlier; because for any two nodes
appearing on a descendant path, it is always specified which
one appears first. But it is precisely this behavior that is be-
hind many of the complexity results applied to graph-based
pattern queries in XML.

So our question is: what are the costs of static analysis
problems for proper tree-based pattern queries?

A key feature of the main applications of such patterns
is that they are not purely about the structure of docu-
ments, but they also collect data. For instance, a pattern
a(x)[b(x), c(y)] collects values x and y of data so that a doc-
ument has an a-node with value x, that in turn has a b-child
with the same value x and a c-child with value y. Thus,
queries return sets of tuples, rather just a yes/no answer for
the existence of a purely structural match.

Furthermore, we do not look solely at analogs of conjunc-
tive queries. In the relational case, it is well known that con-
tainment of both conjunctive queries and their unions has
the same complexity, namely NP-complete [15, 34], and the
complexity of containment of arbitrary Boolean combina-
tions of conjunctive queries moves one level up in the poly-
nomial hierarchy to Πp

2-complete. So we deal with analogs
of such queries too, built from tree-based patterns.

Thus, our revised goal is to investigate the containment
problems for analogs of conjunctive queries and relatives
(unions, Boolean combinations) based on tree-based XML
patterns over both structural information and data that XML
documents carry.

Overview of the results. As an abstraction of XML docu-
ments with data values we use, as is common, data trees.
In those trees, each node carries both a label and a data

value. This is also sufficient to model XML documents
whose nodes may have multiple attributes, simply by cre-
ating an extra child of a node for each attribute name.

We start by defining tree patterns upon which our queries
are based. The simplest are patterns based on child navi-
gation. An example is the pattern a(x)[b(x), c(y)] that we
explained before. Note that variables corresponding to data
values are free: we view this pattern as π(x, y), returning all
pairs (x, y) such that a match occurs with x and y being the
data values witnessing it. We can add horizontal navigation
too, for instance we can have a pattern a(x)[b(x) → c(y)],
stating that the c-witness is the sibling that follows the b-
witness. More generally, we can have transitive closure axes
too: for instance a(x)[c(x)]//[b(x) →∗ c(y)] says that the
a-node has a c-child with the same data value and two de-
scendants, with labels b and c and data values x and y, so
that they are siblings and the b-node occurs earlier in the
sibling order. These types of patterns occur, for instance,
in integration and exchange tasks for defining XML schema
mappings [4, 6, 8] or in descriptions of XML with incom-
pleteness features [2, 9].

Based on such patterns, we define conjunctive queries
(CQs) by closing them under conjunction and existential
quantification, i.e., as queries q(x̄) = ∃ȳ

∧

i πi(x̄, ȳ). We
look at unions of conjunctive queries, or UCQs, which are
of the form

⋃

i qi(x̄), where each qi(x̄) is a CQ, and their
Boolean combinations, or BCCQs, obtained by applying op-
erations q ∩ q′, q ∪ q′, and q − q′ to CQs.

We present a general upper bound showing that contain-
ment of BCCQs that use all the axes is in Πp

2. We show two
matching lower bounds: either for BCCQs with the simplest
navigation (only child relation), or CQs with all the axes.

In the relational case, CQ containment is tested by
tableaux homomorphisms. The Πp

2-hardness for general
CQs precludes the possibility of such a test in general, but
we show that with restricted sets of axes it is still possible
(in fact we just have to exclude the horizontal →∗ relation).

We then look at adding features to patterns and queries.
First, we add wildcard and show that the Πp

2-upper bound
continues to hold. We also show that, for some classes of
queries, the complexity of containment can jump from NP-
complete to Πp

2-complete if wildcard is added to patterns.
Furthermore, we identify a ‘safe’ case of using wildcard,
namely everywhere except at roots of patterns, that preserves
homomorphism characterizations of containment.

The next addition we consider is containment under
schema information (abstracted as a tree automaton, which
capture many schema formalisms for XML). Here we show
that the upper bound increases to double-exponential, and
a matching lower bound can be shown for CQs with all
axes. Finally, we look at adding data-value comparisons to
queries, in particular the disequality (6=) comparisons. This
addition has a much more dramatic effect on the complexity
of containment: it becomes undecidable for BCCQs, and for
CQs when both comparisons and schemas are present (even
with severe restrictions on available navigation).

202

Comparison with non-tree pattern queries. As we already
mentioned, a number of results exist on CQs based on graph-
shaped, rather than tree-shaped patterns [10, 11, 21]. None
of those results extend to handle unions and differences of
queries (i.e., UCQs and BCCQs) and they handle data values
in a very limited way. Below we contrast them with our
results.

For CQs that may contain arbitrary graph patterns, the Πp
2

upper bound continues to hold, but hardness requires less:
for instance, purely navigational queries with non-tree pat-
terns are already Πp

2-complete for vertical navigation [11]
(for tree patterns they stay in NP, as we show). Under
schema, containment of CQs jumps to doubly-exponential
too [10]. With 6= comparisons, even CQ containment be-
comes undecidable [10].

Those results cover only a part of the landscape that we
study here (i.e., CQs, concentrating mainly on pure navi-
gation), and, crucially, under different assumptions on the
shape of queries. Such assumptions make most existing
proofs inapplicable for us (as they often rely heavily on non-
tree features, such as the confluence, explained earlier, and
the bidirectionality of axes).

Organization. We give key definitions in Section 2. The
Πp

2 upper bound for BCCQs is shown in Section 3. In Sec-
tion 4 we prove two matching lower bounds. In Section 5
we investigate cases when containment can be witnessed by
the homomorphism of tableaux. Section 6 studies the effect
of adding wildcard to queries. In Section 7 we investigate
static analysis under schema constraints. Adding data-value
comparison is studied in Section 8. Concluding remarks are
given in Section 9. Due to space limitations, proofs are only
sketched.

2. TREES, PATTERNS, AND QUERIES

Unranked trees and data trees. We start with the standard
definitions of unranked finite trees which serve as an abstrac-
tion of XML documents when one deals with their structural
properties. A finite unranked tree domain is a non-empty,
prefix-closed finite subset D of N∗ (words over N) such that
s · i ∈ D implies s ·j ∈ D for all j < i and s ∈ N

∗. We refer
to elements of finite unranked tree domains as nodes. We
assume a countably infinite set L of possible labels that can
be used to label tree nodes. An unranked tree is a structure
〈D, ↓,→, λ〉, where

• D is a finite unranked tree domain,

• ↓ is the child relation: s ↓ s · i for s · i ∈ D,

• → is the next-sibling relation: s · i → s · (i + 1) for
s · (i+ 1) ∈ D, and

• λ : D → L is the labeling function assigning a label to
each node.

We denote the reflexive-transitive closure of ↓ by ↓∗

(descendant-or-self), and the reflexive-transitive closure of
→ by →∗ (following-sibling-or-self).

Data trees are a standard abstraction of XML documents
when one deals with both structural properties and data.
Suppose we have a domainD of data values, such as strings,
numbers, etc. A data tree is a structure t = 〈D, ↓,→, λ, ρ〉,
where 〈D, ↓,→, λ〉 is an unranked tree, and ρ : D → D
assigns each node a data value. In XML documents, nodes
may have multiple attributes, but this is easily modeled with
data trees. For instance, to model a node with attributes
a1, . . . , an having values v1, . . . , vn, we pick special labels
ℓ1, . . . , ℓn, and create n extra children labeled ℓ1, . . . , ℓn car-
rying values v1, . . . , vn.

Patterns. As already explained, the patterns that we use are
naturally tree-shaped. To explain how they are introduced,
let us consider the reducts of data trees to the child relation,
i.e., structures 〈D, ↓, λ, ρ〉. Trees of this form can be defined
by recursion. That is, a node labeled with a ∈ L and carry-
ing a data value v ∈ D is a data tree, and if t1, . . . , tn are
trees, we can form a new tree by making them children of a
node with label a and data value v.

In patterns we use also variables; the intention for them is
to match data values in data trees. Thus, they are essentially
partial tree descriptions with variables appearing in place of
some data values. We assume a countable infinite set V of
variables, disjoint from the domain of values D. So the pre-
vious inductive definition gives rise to the definition of the
simplest patterns we consider here:

π := a(x)[π, . . . , π] (1)

with a ∈ L and x ∈ V ∪ D. Here the sequence in [. . .]
could be empty. In other words, if π1, . . . , πn is a sequence
of patterns (perhaps empty), a ∈ L and x ∈ V ∪ D, then
a(x)[π1, . . . , πn] is a pattern. If x̄ is the list of all the vari-
ables used in a pattern π, we write π(x̄).

We denote patterns from this class by Π(↓). The seman-
tics of π(x̄) is defined with respect to a data tree t = 〈D, ↓,
→, λ, ρ〉, a node s ∈ D, and a valuation ν : x̄ → D as
follows: (t, s, ν) |= a(x)[π1(x̄1), . . . , πn(x̄n)] iff

• λ(s) = a (the label of s is a);

• ρ(s) =

{

ν(x) if x is a variable

x if x is a data value;

• there exist not necessarily distinct children s · i1, . . . ,
s · in of s so that (t, s · ij, ν) |= πj(x̄j) for each j ≤ n
(recall that n could be 0, in which case this last item is
not needed).

We write (t, ν) |= π(x̄) if there is a node s so that (t, s, ν) |=
π(x̄) (i.e., a pattern is matched somewhere in the tree). Also
if v̄ = ν(x̄), we write t |= π(v̄) instead of (t, ν) |= π(x̄).

A natural extension for these simple patterns is to include
both vertical and horizontal navigation. Again the intuition
comes from defining data trees as follows: a node labeled
with a ∈ L and carrying a data value v ∈ D is a data tree,
and if t1, . . . , tn are trees, we can form a new tree by making
them children of a node with label a and data value v, so that
their roots are connected in the order t1 → t2 → . . . → tn.

203

This leads to the definition of patterns in the class Π(↓,→):

π := a(x)[π → . . . → π] (2)

with a ∈ L and x ∈ V ∪ D. Again the sequence in [. . .]
could be empty. In other words, if π1, . . . , πn is a sequence
of patterns (perhaps empty), a ∈ L and x ∈ V ∪ D, then
a(x)[π1 → π2 → . . . → πn] is a pattern. The last clause
in the definition of the semantics of Π(↓) is modified as fol-
lows:

• there exists a child s·i of s so that (t, s·i, ν) |= π1(x̄j),
(t, s · (i+1), ν) |= π2(x̄2), . . ., (t, s · (i+n−1), ν) |=
πn(x̄n). In other words, it is consecutive children that
witness the satisfaction of subpatterns.

Patterns in Π(↓) and Π(↓,→) completely specify the
structure of a tree (depending on the available axes) and, in
particular, only express local properties of trees. We there-
fore also consider their more expressive versions with tran-
sitive closure axes ↓∗ (descendant) and →∗ (following sib-
ling). More precisely, following [4, 20], we define general
patterns by the rules:

π := a(x)[µ, . . . , µ]//[µ, . . . , µ]
µ := π ❀ . . . ❀ π

(3)

Here a, x and π are as before, and µ stands for a sequence,
i.e., a forest such that the roots of its trees are sequential
siblings in a tree, and each ❀ is either → or →∗.

The class of such patterns is denoted by Π(⇓,⇒), with ⇓
we use both types of downward navigation (↓ and ↓∗) and ⇒
meaning that we use both types of horizontal navigation (→
and →∗). The semantics is extended as follows.

• (t, s, ν) |= π1 ❀ . . . ❀ πm if there is a sequence
s = s1, . . . , sm of nodes so that (t, si, ν) |= πi for
each i ≤ m and si → si+1 whenever the ith ❀ is →,
and si →∗ si+1 whenever the ith ❀ is →∗.

• (t, s, ν) |= a(x)[µ1, . . . , µn]//[µ
′
1, . . . , µ

′
k] if the satis-

faction of a(x) in node s is as before, and there exist
n not necessarily distinct children s1, . . . , sn of s such
that (t, si, ν) |= µi for each i ≤ n, and there exist
k not necessarily distinct descendants s′1, . . . , s

′
k of s

such that (t, s′i, ν) |= µ′
i for each i ≤ k.

Notice that the semantics of patterns allows different µi to
be mapped into the same nodes in a tree.

Finally, we consider a class Π(⇓) of patterns which is a
restriction of the most general patterns to downward naviga-
tion only. These are defined by the grammar

π := a(x)[π, . . . , π]//[π, . . . , π] (4)

where each of the sequences of patterns can be empty. That
is, a pattern a(x)[π1, . . . , πn]//[π

′
1, . . . , π

′
k] is witnessed in

an a-labeled node assigning its data value to x if it has
n children (not necessarily distinct) witnessing π1, . . . , πn

and k descendants (again not necessarily distinct) witness-
ing π′

1, . . . , π
′
k.

Shorthands. We shall be using standard shorthand notations:
a(x)/π stands for a(x)[π], while a(x)//π denotes a(x)//[π],
and a(x)/π//π′ stands for a(x)[π]//[π′].

Conjunctive queries, their unions, and Boolean combina-
tions. Pattern-based conjunctive XML queries are obtained
by closing patterns by conjunction and existential quantifi-
cation. Since we have different classes of patterns Π(σ), for
σ being ↓, or ↓,→, or ⇓, or ⇓,⇒, we have different classes
of conjunctive queries denoted by CQ(σ). More precisely,
CQ(σ) queries are of the form:

q(x̄) = ∃ȳ
n
∧

i=1

πi(z̄i) (5)

where each πi is a Π(σ) pattern, and each z̄i is contained in
x̄, ȳ. The semantics is standard: (t, ν) |= q(x̄) if there is an
extension ν′ of valuation ν to variables ȳ such that (t, ν′) |=
πi(z̄i) for every i ≤ n.

As is standard, we also write t |= q(v̄) if (t, ν) |= q(x̄)
with ν(x̄) = v̄.

Of course conjunctive queries are closed under conjunc-
tion. Standard ways of enriching their power include consid-
ering unions of conjunctive queries (or UCQs, which, in the
relational case, capture the positive fragment of relational
algebra) and more generally, Boolean combinations of con-
junctive queries (or BCCQs, which, while possessing some
form of negation, still retain many nice properties that rela-
tional algebra as a whole loses).

Formally, a query from UCQ(σ) is of the form q(x̄) =
q1(x̄) ∪ . . . ∪ qm(x̄), where each qi(x̄) is a CQ(σ) query. It
returns the union of answers to the qi’s, i.e., (t, ν) |= q(x̄)
iff (t, ν) |= qi(x̄) for some i ≤ m.

Queries in the class BCCQ are obtained as follows: take
some queries q1(x̄), . . . , qm(x̄) from CQ(σ) and consider a
Boolean combination of them, i.e., close them under opera-
tions q ∩ q′, q ∪ q′, and q − q′. The semantics is extended
naturally, with those interpreted as intersection, union, and
set difference, respectively.

The answer to a query q(x̄), from any of the above classes,
on a data tree t is defined as q(t) = {ν(x̄) | (t, ν) |= q(x̄)}.
Note that our definitions of query classes ensure that q(t) is
always finite.

Containment. The main problem we study here is the con-
tainment problem. Given two queries q(x̄), q′(x̄′) with tu-
ples of free variables of the same length, we write q ⊆ q′ iff
q(t) ⊆ q′(t) for every data tree t. So the problem we look at
is the following.

PROBLEM: CQ⊆(σ)

INPUT: queries q(x̄), q′(x̄′) in CQ(σ);
QUESTION: is q ⊆ q′?

If instead of queries in CQ(σ) we use queries in UCQ(σ),
we refer to the problem UCQ⊆(σ) and, if we use queries

from BCCQ(σ), we refer to the problem BCCQ⊆(σ).

204

In the relational case, these problems are among the basic
problems of database theory. The complexity of CQ⊆ and
UCQ⊆ over relational databases is NP-complete [15, 34]
(under the representation of UCQs that we use here), and
the complexity of BCCQ⊆ is Πp

2-complete [34].

3. AN UPPER BOUND

A priori, there is no upper bound that is immediate for the
containment problem. In fact, in the presence of negation
(even a limited form of it) combined with XML hierarchical
structure, some reasoning problems can become undecidable
(see, e.g., [17, 4]). In the relational case, we know that con-
tainment for BCCQs is Πp

2-complete, but this does not imply
the same bounds for XML pattern-based queries, especially
those that might use transitive closure axes →∗ and ↓∗.

Nevertheless, we can show that for all such queries, the
containment problem remains not only decidable, but the up-
per bound on its complexity continues to match that for the
simplest relational queries. In fact we show the following.

THEOREM 3.1. The problem BCCQ⊆(⇓,⇒) is decid-

able in Πp
2.

In other words, for each of the classes of queries — CQ,
UCQ, BCCQ— and for each of the classes of patterns seen
so far, the containment problem is in Πp

2, as all of these prob-
lems are subsumed by the containment problem of BCCQs
with Π(⇓,⇒)-patterns.

Proof sketch. Checking whether q1 ⊆ q2 is the same as
checking q1−q2 = ∅, so it will suffice to give a Σp

2 algorithm
for checking if a BCCQ q returns a nonempty result on some
data tree. We assume that q is a Boolean combination of CQs
q1, . . . , qm. For the sketch we assume they are Boolean (free
variables do not change anything). To check satisfiability it
suffices to guess an assignment χ : {1, . . . ,m} → {0, 1} so
that for

q′ =
∧

{qi | χ(i) = 1} and q′′ =
∨

{qj | χ(j) = 0}

we have a tree t such that q′(t) is true and q′′(t) is false.
Note that q′ is a CQ, and q′′ is a UCQ. The idea of the proof
is to turn this into a certain answer problem in XML data ex-
change [8]. We let schemas of XML documents be arbitrary
and the mapping consist of a single rule _ → q′, forcing the
patterns of q′ in every target tree. Then we check whether
the certain answer to q′′ is false: this happens iff there is a
tree satisfying q′ and the negation of q′′.

The latter requires two steps in the proof. One is a modifi-
cation of the proof of the CONP data complexity of certain
answers in [8]. The problem is that the latter proof produces
a witnessing tree whose size is exponential in q′′, which is
too large for our purposes. So we show how to encode the
exponential witness by a data structure whose size is poly-
nomial in q′, q′′ and which allows checking for satisfiability
of UCQs. The second step is making sure that all the guesses
are combined in the right order to yield a Σp

2 algorithm. ✷

4. LOWER BOUNDS FOR CONTAIN-

MENT

Now that we know that all the containment problems are in
Πp

2, it is natural to ask when we have matching lower bounds.
Note that in all the variations of containment problems, we
have two parameters: the class of queries (going from the
simplest, CQs, to UCQs, and to BCCQs), and the set of axes
(again, starting with the simplest, just ↓, and then going to
more complex ↓,→, as well as ⇓ and ⇓,⇒).

What we show in this section is that each of the combi-
nation simplest/hardest leads to Πp

2-hardness. That is, the
containment problem with the simplest of axes, just ↓, is
Πp

2-complete if we allow Boolean combinations of queries.
If we have just CQs, the containment becomes Πp

2-complete
when we have all the axes, i.e. ↓, ↓∗,→, and →∗.

Note that the first result on the surface is rather similar to
Πp

2-completeness of containment of relational BCCQs [34].
Indeed, the standard representation of relations in XML only
needs the ↓ axis, and shallow documents. However, the re-
sult does not follow from the results in [34], as we demand
containment over all XML documents, not only those that
properly represent relational databases of a given schema.
In particular, if we have two relational BCCQs q and q′, and
their natural XML codings as BCCQ(↓) queries qXML and
q′XML , then qXML ⊆ q′XML implies q ⊆ q′ (as each relational
database can be coded as an XML tree), but under the same
coding q ⊆ q′ need not imply qXML ⊆ q′XML .

Even though we cannot use results on [34], we can modify
reductions to apply to all XML documents and obtain the
following.

THEOREM 4.1. The problem BCCQ⊆(↓) is Πp
2-

complete.

Next, we move to the other extreme case: CQs with all
the axes. Of course relational containment of CQs is NP-
complete, so to get hardness for a larger class, one has to use,
in an essential way, the hierarchical structure of XML. In
fact we provide a rather elaborate reduction showing that the
navigational abilities of all the axes are sufficient to increase
the complexity even of conjunctive query containment.

THEOREM 4.2. The problem CQ⊆(⇓,⇒) is Πp
2-

complete.

Proof sketch. The upper bound was shown in the pre-
vious section. To show hardness, we proceed by re-
duction from ∀∃3CNF. Given such a formula ϕ :=
∀p1 . . . ∀pl∃r1 . . . ∃rm

∧

i(ℓi1 ∨ ℓi2 ∨ ℓi3), where the ℓijs
could be positive or negative literals, we associate with it
two Boolean queries q, q′ ∈ CQ(⇓,⇒) such that ϕ is true if
and only if q ⊆ q′.

We construct q and q′ so that for every possible valuation
v of the pis, two conditions hold. First, there exists a tree tv
satisfying q which encodes v. Second, such a tree tv satisfies
q′ iff there is a valuation v+ extending v to the ris and for

205

which ϕ evaluates to true. The key idea behind the construc-
tion is encoding possible valuations for quantified variables,
and we explain it now. The encoding of the CNF formula
itself is standard.

In order to encode every possible valuation of the pis us-
ing one single query q, we associate a variable xi to each
pi and then take full advantage of navigational features
to model assignments. Specifically, we use a tree pattern
V (2)/[Val(0) → Val(1),Val(x1), . . . ,Val(xl)]. Its root has
l+2 children, among which the ordering is specified for two
(Val(0) → Val(1)). The remaining l children carry the xis,
but note that their exact positions as children of the V (2)
node are not specified. This is illustrated below:

V (2)

Val(0) −→ Val(1) Val(x1) . . . Val(xl)

Now on every complete tree t witnessing this pattern via
some homomorphism h, the image of every xi will either be
on the left, or on the right of 0, i.e., either

t |= V (2)[Val(h(xi)) →
∗ Val(0)],

or

t |= V (2)[Val(0) →∗ Val(h(xi))].

This allows us to associate a valuation v of the pis to any
tree satisfying this pattern by letting v(pi) be false if the im-
age of xi occurs on the left of Val(0), and by letting v(pi)
be true otherwise. The rest of the encoding consists of the
standard encoding of a CNF formula, and ensuring, for q′,
that the extended valuation makes that formula true. ✷

Remark Note that letting one omit a complete specification
of the sibling ordering has the effect of encoding 2n possible
valuations with n different nodes. This is similar to the effect
of using “confluence” features in [11]. In both cases, such
a concise encoding of exponentially many valuations led to
Πp

2 lower bounds.

5. CONTAINMENT VIA HOMOMOR-

PHISMS

A classical result of relational database theory says that
containment of relational CQs is NP-complete and contain-
ment is witnessed by the existence of a homomorphism of
tableaux: if Ti is the tableau of a query qi, for i = 1, 2, then
q1 ⊆ q2 iff there is a homomorphism from T2 to T1 [15].
However, the results of the previous section indicate that
such a characterization of containment via homomorphisms
cannot be extended to all classes of CQs we consider here.
Indeed, testing for the existence of a homomorphism is a
classical NP-complete problem and we saw in Theorem 4.2
that containment of CQ(⇓,⇒) queries is Πp

2-complete.

So the question is: for what types of queries, if any, can
we characterize containments via homomorphisms of their

tableaux? And even before answering this question, we need
to ask: what are the tableaux of XML-based CQs?

Since tableaux for relational queries are essentially incom-
plete databases (more precisely, naïve tables with a distin-
guished row of variables), it is natural to define tableaux of
XML CQs as incomplete XML trees. Indeed, patterns form-
ing a query are essentially incompletely specified trees, so
we can view each query as an incomplete tree (more pre-
cisely, a forest). The theory of incompleteness of XML has
been developed [2, 9] and thus we can borrow a notion of an
incomplete tree.

Incomplete trees and homomorphism. An incomplete tree
is defined as a structure t = (N, V, ↓, ↓∗, →,→∗, λ, ρ),
where

• N and V are disjoint finite sets of the nodes of t and its
data values, respectively; we assume that V ⊂ D ∪ V ,
i.e., values could be either data values or variables;

• all of ↓, ↓∗,→,→∗ are binary relations on N ;

• λ is a partial function from N to L; and

• ρ is a function from N to V .

Note that in an incomplete tree, the relations ↓, ↓∗,→,→∗

may be interpreted arbitrarily. In particular, some incom-
plete trees cannot be extended to a complete tree. The issue
is discussed in details in [9]. The labeling function is par-
tial, reflecting the fact that labels of some nodes may not be
known. The data assigning function ρ is not partial since
some data values could be variables, just like in patterns.

Given two incomplete trees t = 〈N, V, ↓, ↓∗,→,→∗, λ, ρ〉
and t′ = 〈N ′, V ′, ↓, ↓∗,→,→∗, λ′, ρ′〉, a homomorphism
from t to t′ is a map h : N ∪ V → N ′ ∪ V ′ such that:

• h(N) ⊆ N ′ and h(V) ⊆ V ′;

• if wRw′ in t, with w,w′ ∈ N and R one of the rela-
tions ↓, ↓∗,→,→∗, then h(w)Rh(w′) in t′;

• if λ(w) is defined in t, then λ′(h(w)) = λ(w);

• h is the identity on elements of D; and

• h(ρ(w)) = ρ′(h(w)) for all w ∈ N .

Note that each tree can be viewed as an incomplete tree
(with the natural interpretations of the binary relations) and
thus it makes sense to speak of a homomorphism from an
incomplete tree to a complete tree.

Our plan is now as follows. We show how to associate, to
a CQ q, an incomplete tree tq . If q is a Boolean query, then
t |= q iff there is a homomorphism from tq into t. If q has
free variables x̄, then t |= q(v̄) iff there is a homomorphism
from tq(x̄) to t that sends x̄ to v̄.

We then show that, for some classes σ of axes and queries
q, q′ ∈ CQ(σ), we have q ⊆ q′ iff there is a homomorphism
from the σ-restriction of tq′ to the σ-restriction of tq.

Incomplete trees of CQs. We now define analogs of
tableaux of relational CQs; these will be incomplete trees.

206

We first define an incomplete tree tπ for each pattern π. To
carry the inductive construction, we shall need to define both
trees tπ and tµ for sequences µ. Note that even though we
use the name ‘incomplete tree’, such a structure need not be
a tree (due to incompleteness); in fact tµs will be forest-like.
Each incomplete tree t of the form tπ or tµ will have a set
RT(t) of roots associated with it in such a way that RT(tπ) is
always a singleton. The inductive construction is as follows.

• If π = a(x), then tπ = 〈{s}, {x}, ↓, ↓∗,→,→∗, λ, ρ〉,
where s is a single node, all the binary relations are
empty, λ(s) = a and ρ(s) = x. Furthermore,
RT(tπ) = {s}.

• Let π = a(x)[µ1, . . . , µn]//[µ
′
1, . . . , µ

′
k]. Suppose we

already have tµi
s and tµ′

j
s defined. Let Ni and Vi be

the sets of nodes and values in tµi
s and N ′

j and V ′
j

be the sets of nodes and values in tµ′

j
s. By renaming

nodes in those incomplete trees, we may assume that
all the sets Nis and N ′

js are disjoint. Then

tπ = (N, V, ↓, ↓∗,→,→∗, λ, ρ)

where N = {s} ∪
⋃

iNi ∪
⋃

j N
′
j , with s being a new

node, and V =
⋃

i Vi ∪
⋃

j V
′
j . The binary relations

are the unions of those relations in the tµi
s and tµ′

j
s.

In addition, we put:

– s ↓ s′ for each s′ ∈ RT(µi), for i ≤ n; and

– s ↓∗ s′ for each s′ ∈ RT(µ′
j), for j ≤ k.

The functions λ and ρ are the same as in the tµi
s and

tµ′

j
s; in addition λ(s) = a and ρ(s) = x. Furthermore,

RT(tπ) = {s}.

• Let µ = π1 ❀ . . . ❀ πn. Let tπi
be an incomplete

tree 〈Ni, Vi, ↓, ↓∗,→,→∗, λi, ρi〉. As before, assume
that by renaming nodes, all the Nis are disjoint. Let
RT(tπi

) = {si}.

Then tµ = 〈N, V, ↓, ↓∗,→,→∗, λ, ρ〉, where N =
⋃

i Ni and V =
⋃

i Vi; the binary relations are unions
of those in the tπi

s, and in addition we put:

– si → si+1 if µ contains πi → πi+1; and

– si →∗ si+1 if µ contains πi →∗ πi+1.

The functions λ and ρ coincide with λi and ρi on Ni.
Moreover, RT(µ) = {s1, . . . , sn}.

With a query

q(x̄) = ∃ȳ1 . . . ∃ȳnπ1(x̄, ȳ1) ∧ . . . ∧ πn(x̄, ȳn)

we associate an incomplete data tree

tq = (N, V, ↓, ↓∗,→,→∗, λ, ρ)

which is the node-disjoint union of all the tπi
s; that is, we re-

name nodes so that their sets are disjoint (but not the values),
and take the union of structures tπ1

, . . . , tπn
.

The incomplete trees tq indeed play the role of tableaux of
CQs. Recall that in the relational case, we have D |= q(v̄)

iff there is a homomorphism from the tableau of q(x̄) to D
that sends x̄ to v̄. The same is true here. The result is very
similar to one in [9], adapted to the definitions given here.

PROPOSITION 5.1. Let t be a data tree, and q(x̄) a query
from CQ(⇓,⇒). Then t |= q(v̄) iff there is a homomorphism
h : tq → t so that h(x̄) = v̄.

Containment and homomorphisms. We already men-
tioned that a classical result of relational database theory
states that relational CQ containment q ⊆ q′ holds iff
the tableau of q′ can be homomorphically mapped into the
tableau of q. Furthermore, an analog of this cannot possi-
bly hold for queries in CQ(⇓,⇒) unless some complexity
classes collapse. Nonetheless, it will work for queries that
do not use all the axes.

Suppose we have a query q from CQ(↓). Then its incom-
plete tree tq records no information about ↓∗,→, and →∗.
So for two such queries q and q′, a homomorphism of the ↓-
reducts of tq and tq′ (that only keep information about ↓, λ,
and ρ) is the same as a homomorphism tq and tq′ . Hence,
even for queries that use reduced sets of axes, e.g., CQ(↓)
or CQ(↓,→), we can still meaningfully talk about homo-
morphisms of their incomplete trees, in place of homomor-
phisms of reducts of incomplete trees.

We next show that without transitive closure axes, we have
an analog of relational containment.

THEOREM 5.2. Let q(x̄) and q′(x̄′) be two queries from
either CQ(↓), or CQ(↓,→). Then q ⊆ q′ iff there is a homo-
morphism h : tq′ → tq so that h(x̄′) = x̄.

Since testing homomorphism existence is done in NP, and
NP-hardness bound for relational CQs trivially applies to
CQ(↓) queries, we obtain the following.

COROLLARY 5.3. The containment problems for CQ(↓)
and CQ(↓,→), i.e., CQ⊆(↓) and CQ⊆(↓,→), are NP-
complete.

In fact, we prove an even more general result, that shows
the applicability of the homomorphism technique to queries
in CQ(⇓,→), i.e., queries using all forms of vertical naviga-
tion, but only the next-sibling form of horizontal navigation.
Formally, they are CQs based on patterns from Π(⇓,→) de-
fined as

π := a(x)[µ, . . . , µ]//[µ, . . . , µ]
µ := π → . . . → π

(6)

That is, they extend Π(↓,→) patterns by allowing descen-
dants, and prohibiting only →∗.

Given a query q ∈ CQ(⇓,→), we define an incomplete
tree (tq)

∗ by replacing the interpretation of ↓∗ in tq by the
reflexive-transitive closure of the union of ↓ and ↓∗ in tq .
Then containment can be tested by the existence of homo-
morphisms between such extended tableaux. As an example,
consider queries q ⊆ q′, where q = ∃x a(x)//b(x)[c(x)] and
q′ = ∃x a(x)//c(x). While there is no homomorphism from

207

tq′ to tq, there is one from (tq′)
∗ to (tq)

∗. Indeed, in both
structures there is a descendant axis going from the a-labeled
node to the c-labeled node.

THEOREM 5.4. Let q(x̄) and q′(x̄′) be two queries from
CQ(⇓,→). Then q ⊆ q′ iff there is a homomorphism h :
(tq′)

∗ → (tq)
∗ so that h(x̄′) = x̄.

Proof sketch. The right to left direction of the equivalence is
immediate. To show the other direction, we assume q ⊆ q′

and we turn the forest tq into some “canonical” complete
tree T such that there is a natural one to one homomorphism
h1 : (tq)

∗ → T and such that for all w,w′ ∈ (tq)
∗, for all

R ∈ {→, ↓, ↓∗}, we have wRw′ iff h1(w)Rh1(w
′). To this

end, we create new nodes labeled with a fresh label ♥ and a
fresh data value ♯. One of these nodes becomes the common
parent of each of the roots of the tree patterns in tq and thus
becomes the root of T . We also define a recursive procedure
replacing descendant axis w1 ↓∗ w2 occurring in tq by child
paths w1 ↓ w3 ↓ w2, where w3 is one of the new nodes la-
beled ♥(♯). We proceed in a similar way with sequences of
siblings which are given as mere unions. We order them ar-
bitrarily using the next-sibling relation, but we always take
care of inserting one of the new ♥(♯)-labeled nodes in be-
tween two siblings which were not previously related by a
→-arrow. We finally substitute fresh distinct constants for
every distinct variable, thus obtaining a complete tree. From
q ⊆ q′, we then infer that there exists another homomor-
phism h2 : tq′ → T . Relying on the special properties of h1,
we finally construct the homomorphism h : (tq′)

∗ → (tq)
∗

from h1 and h2 by letting h(x) = h−1
1 (h2(x)). ✷

As before, we immediately obtain the following.

COROLLARY 5.5. The problem CQ⊆(⇓,→) is NP-
complete.

As mentioned earlier, replacing → by ⇒ and obtaining
an analog of Theorem 5.4 is impossible without an unlikely
collapse of complexity classes.

COROLLARY 5.6. Assume that there is a polynomial-
time algorithm that associates with each query q ∈
CQ(⇓,⇒) an incomplete tree t(q) so that q ⊆ q′ iff there
is a homomorphism t(q′) → t(q). Then NP =CONP.

Indeed, since containment of CQ(⇓,⇒) is Πp
2-hard and

testing homomorphism existence is NP-complete, the exis-
tence of such a containment test would implyΠp

2 ⊆ NP from
which NP =CONP follows easily.

Polynomial-time cases. Our characterization of contain-
ment via homomorphisms immediately shows how to ob-
tain polynomial-time cases of containment. Indeed, since
containment is now reduced to the existence of homomor-
phisms, it is effectively cast as a constraint satisfaction (or
conjunctive query evaluation) problem. Thus, we can use
multiple known results classifying tractable cases of those
and apply them to structures representing incomplete data
trees. As all of these are quite routine, we leave the com-
plete treatment to the full version (due to space limitations

here), and now give just a couple of examples. One is the
containment q ⊆ q′ for any of the classes CQ(↓),CQ(↓,→),
and CQ(⇓,→) if the query q′ is fixed. The other is contain-
ment for the classes CQ(↓) and CQ(↓,→) when q′ mentions
each variable at most once (since in this case containment
can be reduced to the combined complexity of evaluating
conjunctive queries of fixed treewidth). More results will be
provided in the full version.

Extension to unions of CQs. A classical result in relational
theory says that for unions of relational conjunctive queries,
q = q1 ∪ . . .∪ qm and q′ = q′1 ∪ . . .∪ q′k, we have q ⊆ q′ iff
for every i ≤ m, there exists j ≤ k so that qi ⊆ q′j [34]. We
call this the SY-criterion (for Sagiv/Yannakakis) for contain-
ment of UCQs. In particular, the SY-criterion implies that
the complexity of containment of relational UCQs remains
NP-complete (assuming, of course, that they are represented
in the above way, as unions of CQs; for other syntactic repre-
sentations, in which the union is not the outermost operation,
the complexity is Πp

2-complete [34]).

Note that we have defined XML queries in UCQ(σ) to be
syntactically of the form q1 ∪ . . . ∪ qm, where each qi is a
CQ(σ)-query. It turns out that for the classes which permit
testing containment by means of homomorphisms between
incomplete trees tq , a similar extension to unions continues
to be true.

PROPOSITION 5.7. Queries in UCQ(↓) andUCQ(↓,→)
satisfy the SY-criterion for containment.

This immediately gives us the following.

COROLLARY 5.8. The problems UCQ⊆(↓) and

UCQ⊆(↓,→) are NP-complete.

Indeed, for queries q = q1 ∪ . . . ∪ qm and q′ = q′1 ∪
. . . ∪ q′k we simultaneously guess a map f : {1, . . . ,m} →
{1, . . . , k}, and m maps hi from tq′

f(i)
to tqi for each i ≤ m,

and check, in polynomial time, if the his satisfy conditions
of Theorem 5.2.

6. THE EFFECT OF WILDCARD

A standard feature of most XML formalisms is the use
of wildcard, i.e., a special symbol in place of a label that
matches every label in a tree. We normally use _ for wild-
card. So patterns can be extended in the following way: in-
stead of a pattern that starts with a(x), we can have a pattern
that starts with _(x). It will be witnessed in a node s of a
data tree t even if we drop the requirement that labels match.
When we deal with classes of patterns Π(σ) extended with
wildcard, we write Π(σ, _).

For instance, patterns in Π(↓, _) are given by

π := a(x)[π, . . . , π], a ∈ L ∪ {_}, x ∈ V ∪ D. (7)

The semantics is extended, compared to (1), as follows.
For a data tree t = 〈D, ↓,→, λ, ρ〉, a node s ∈ D,

208

and a valuation ν : x̄ → D, we have (t, s, ν) |=
a(x)[π1(x̄1), . . . , πn(x̄n)] iff

• λ(s) = a if a ∈ L;

• ρ(s) is ν(x) if x is a variable, and x if x is a constant
data value;

• there exist not necessarily distinct children s · i1, . . . ,
s · in of s so that (t, s · ij, ν) |= πj(x̄j) for each j ≤ n.

Likewise we define all other classes of patterns extended
with wildcard, e.g., Π(↓,→, _) and Π(⇓,⇒, _), and classes
of CQs, UCQs, and BCCQs based on them. For those
queries we define the containment problem: for instance,
BCCQ⊆(⇓,⇒, _) is the problem of checking containment

of BCCQs based on patterns from Π(⇓,⇒, _).

The question is then whether the use of wildcard increases
the cost of testing containment. The first instance of that
question is whether we can preserve the Πp

2 upper bound for
all containment cases. The answer to this is positive. In
fact, our proof of Theorem 3.1 already shows how to handle
wildcard.

PROPOSITION 6.1. The problem BCCQ⊆(⇓,⇒, _) is in

Πp
2.

Hence, all other containment problems are in Πp
2 in the

presence of wildcard.

What does change, however, is the lower bounds. Re-
call that we saw in Corollary 5.8 that UCQ⊆(↓,→) is in
NP. The presence of wildcard makes the complexity jump:
adding wildcards to Π(↓,→) patterns makes the complexity
of containment of UCQs Πp

2-hard, rather than being in NP.

THEOREM 6.2. The problem UCQ⊆(↓,→, _) is Πp
2-

complete.

Proof sketch. To show hardness, we adapt the lower bound
proof of Theorem 4.2 by constructing queries qrigid, q

′
rigid in-

stead of q, q′. Recall that the query q was encoding all the
possible valuations of the pis using a special pattern over
Π(⇓,⇒). Additionally we used another pattern in q to en-
code the clauses in ϕ. We did not describe this pattern in
the sketch of Theorem 4.2, but it is enough for the current
sketch to note that it can alternatively be represented as a
Π(↓,→)-pattern πϕ. We define qrigid by adding to πϕ two
new nodes as first and second child of its root. These new
nodes are respectively labeled Val(0) and Val(1). Let π01

ϕ be
the resulting pattern. For every 1 ≤ i ≤ l, we also create
a single node pattern labeled Val(xi) and we form qrigid by
existentially quantifying the xi’s and taking the conjunction
of these l + 1 patterns. Now we define q′rigid as a disjunc-

tion whose first member slightly adapts q′, while its second
member π_ is the disjunction of all Π(↓,→) patterns extend-
ing π with one single node labeled with wildcard and with
a fresh variable over data values. The key idea is now that
if a complete tree t does not satisfy π_ but satisfies qrigid via
some homomorphism h, then for every xi, either h(xi) = 0,

or h(xi) = 1, i.e., t encodes one particular valuation of the
pis. ✷

Since wildcard can lead to an increase in complexity of the
containment problem, it is natural to ask then when we can
match the previously established complexity results in the
presence of wildcard. For Π(↓) and Π(↓,→) patterns the
answer to this is surprisingly simple: we can allow wildcard
everywhere except at the root of the pattern. Recall that in
Section 5 we associated with each pattern π an incomplete
tree tπ with a unique root. The requirement is basically that
the label of the root of tπ is a ∈ L; other nodes of tπ can be
labeled either by a ∈ L or by _.

For instance, the following rules define such patterns
based on child-only navigation:

π := a(x)[π′, . . . , π′] a ∈ L
π′ := a(x)[π′, . . . , π′] a ∈ L ∪ {_}

(8)

That is, the π′s define patterns that can use wildcard, and π
is the top-level pattern, whose root label comes from L.

When we have this restriction on patterns with wildcard,
we write Π(σ, _¬r), where σ, as before, is a set of axes.
Likewise we define classes of queries – e.g., CQ(↓,→, _¬r)
– and containment problems – e.g., CQ⊆(↓,→, _¬r).

Obviously the addition of wildcard preserves lower
bounds. We have already seen that containment of BCCQs
with wildcard is in Πp

2, and hence all three versions of BCCQ
containment – BCCQ⊆(⇓,⇒), BCCQ⊆(⇓,⇒, _), and

BCCQ⊆(⇓,⇒, _¬r) – are Πp
2-complete.

Now we show that the NP bounds established via homo-
morphisms are also preserved when wildcard is used every-
where except the root.

PROPOSITION 6.3. The problems CQ⊆(↓, _¬r) and

CQ⊆(↓,→, _¬r) are NP-complete.

Proof sketch. We adapt the proof of the corresponding result
in Section 5. We now turn tQ into a complete tree using
a slightly different procedure. We just add to it one new
root node labeled ♥(♯) and we decide arbitrarily on a sibling
ordering when none is specified. We finally substitute fresh
distinct constants for every distinct variable, thus obtaining
a complete tree T . The remainder of the proof is almost as
before. Whenever the next sibling relation is available, we
only need to notice that the homomorphism h2 : tQ′ → T
cannot map any node in tQ′ to the root of T . As tree patterns
are rooted, this entails that nothing can be said in tQ′ about
the relative sibling orderings of the preimages of the children
of the root of T . ✷

Note that such a procedure would not work when both
unions of siblings and next sibling are allowed. For
instance, let q = ∃x, y, z a(x)[a(y), b(z)] and q′ =
∃x, y, z a(x)[_(y) → _(z)] with a 6= b. Obviously q ⊆ q′,
as q forces the tree to have an a-labeled node with at least
two children. On the other hand, it is easy to see that there
is no homomorphism from tq′ to tq .

Similarly, the method cannot be applied to queries in

209

CQ(⇓, _¬r). Consider q = ∃x, y a(x)//b(y) and q′ =
∃x, y, z a(x)/_(z)//b(y) ∧ ∃x, y, z a(x)//_(z)/b(y), with
a 6= b. Again q ⊆ q′, as q forces the tree to have an a-labeled
node which has at least one child and a b-labeled descendant
which has a parent. But here again, it is obvious that there is
no homomorphism from tq′ to (tq)

∗.

Observe finally that by allowing wildcard to appear ev-
erywhere in patterns we also lose the homomorphism cri-
terion that let us establish the NP upper bound. For in-
stance, let q = ∃x, y

(

a(x) ∧ b(y)
)

, with a 6= b, and let

q′ = ∃x, y (_(x)/_(y)). Since q forces each tree to have at
least two nodes, we have the containment q ⊆ q′; however
there is no homomorphism from tq′ to tq .

As the last result of this section, we show that combining
unions of queries even with the restricted use of wildcard
can increase the complexity of containment.

PROPOSITION 6.4. Containment of UCQs that use
downward navigation and wildcard except at the root, i.e.,
the problem UCQ⊆(⇓, _¬r), is Πp

2-complete.

Proof sketch. We adapt the proof of Theorem 4.2 along
the same lines as in the proof of Theorem 6.2. We de-
fine queries q⇓, q

′
⇓ as follows. We keep all the ↓ paths pat-

terns which were actually used in q to encode the clauses
of ϕ, but we now encode the valuation of the pi’s using
a pattern π1/ . . . /πl where for each 1 ≤ i ≤ l, πi =
Val(0)//Val(xi)//Val(1). We can now construct q′⇓ almost
as in the proof of Theorem 6.2, except that we replace π_

with a CQ ∃x1 . . . ∃x2l+1Val(0)/_(x1)/ . . . /_(x2l+1). ✷

7. THE EFFECT OF SCHEMAS

So far we have not assumed any schema information, such
as a DTD or a more general schema description, under which
we perform static analysis of queries. However, such as-
sumptions are fairly common, as many XML documents are
required to satisfy schema descriptions. Schemas are very
well known to affect static analysis of XML. In fact contain-
ment of queries can easily behave differently under schemas,
even such simple ones as specifying the label of the root of
a document. For instance, if q = ∃x, y

(

a(x) ∧ b(y)
)

and

q′ = ∃x, y
(

c(x)/_(y)
)

, then in general q 6⊆ q′, but if we

state that roots must be labeled c, then q ⊆ q′.

In addition, the presence of schemas is known to affect the
complexity of static reasoning tasks, generally by increasing
it, sometimes even making it undecidable [7, 10, 17, 18, 21,
33, 35]. The main observation of this section is that under
schema information, we preserve decidability of query con-
tainment for those classes we have encountered so far, but at
the cost of an exponential blow-up.

Abstraction of XML schemas. There are many formalisms
for describing XML schemas (see, e.g., [29] for a survey),
but most of them are subsumed by the notion of an unranked
tree automaton. To define it, fix a finite alphabet Σ ⊂ L. A
non-deterministic unranked tree automaton (NTA) [32, 36]

over Σ-labeled trees is a tuple A = (Q,Σ, δ, F), where Q
is a finite set of states, F ⊆ Q is the set of final states, and
δ : Q × Σ → 2(Q

∗) is a transition function. We require
that the δ(q, a)’s be regular languages over Q for all q ∈ Q
and a ∈ Σ. When we deal with complexity results involving
automata, we assume that these regular languages are repre-
sented by NFAs (or by regular expressions, since those can
be converted into NFAs in polynomial time).

A run of A over a tree t with domain D and labeling
function λ is a function rA : D → Q such that for each
node s with n children s · 0, . . . , s · (n − 1), the word
rA(s ·0) · · · rA(s ·(n−1)) is in the language δ(rA(s), λ(s)).
So, for a leaf s labeled a this means that s could be assigned
state q iff the empty word ǫ is in δ(q, a). A run is accepting
on tree t if the root of t is assigned an accepting state (for-
mally, rA(ǫ) ∈ F . A tree t is accepted by A if there exists
an accepting run of A on t. The set of all trees accepted by
A is denoted by L(A).

We then define the containment problem under schemas
as follows. Let Q be one of the classes CQ, UCQ, or BCCQ,
and σ a set of axes.

PROBLEM: Q⊆(σ) under schemas

INPUT: queries q(x̄), q′(x̄′) in Q(σ) and NTA A;
QUESTION: is q(t) ⊆ q′(t) for every t ∈ L(A)?

A general upper bound. We show that all the versions
of Q⊆(σ) remain decidable under schemas, but the upper
bound is one exponent higher than it was without schemas.

THEOREM 7.1. BCCQ⊆(⇓,⇒, _) under schemas is
2EXPTIME-complete.

Proof sketch. The idea is to prove that we can reduce
BCCQ⊆(⇓,⇒, _) under schemas to a similar problem over

finite alphabets and that we can encode a CQ(⇓,⇒,_) into
an exponential-size unranked tree automaton. The 2EXP-
TIME upper bound then follows from tree automata tech-
niques. The lower bound is immediate from Theorem 7.2.

Lower bounds. Since BCCQ⊆(⇓,⇒, _) without the pres-

ence of schemas is inΠp
2 (and therefore in single-exponential

time), it is natural to ask to whether the jump to double-
exponential time is unavoidable. It turns out that it is, even
for conjunctive queries, as we can prove the following.

THEOREM 7.2. CQ⊆(⇓,⇒) under schemas is
2EXPTIME-complete.

Proof sketch. The upper bound is immediate from Theo-
rem 7.1. The lower bound is obtained in two steps. First we
show that we can transfer lower bounds for UCQ⊆(⇓,⇒)
under schemas to lower bounds for CQ⊆(⇓,⇒) under
schemas by adapting a technique from [31]. Then we prove
the lower bound for UCQ⊆(⇓,⇒) by a reduction from
the acceptance problem for alternating exponential space
bounded Turing machines. This is done by adapting the

210

proof of the 2EXPTIME lower bound for query containment
from Theorem 6 in [10]. Two difficulties arise as that proof
used queries with node equalities and wildcards. We handle
node equalities by using data value equality constraints in
our setting. We show how we can enforce all nodes from a
tree to have different data values and then we simulate node
equality by data equality. We further provide a modification
of the encoding that avoids the use of wildcard. ✷

We do not yet have a complete classification of what hap-
pens for all of the classes of queries under schemas, but
we do have an indication very little is needed to make their
complexity considerably higher than in the schema-less sce-
nario. In fact one can use results from [12] to prove that even
for very simple classes of queries (child relation only; no
branching), containment under schemas provably requires
exponential time.

8. THE EFFECT OF DATA VALUE COM-

PARISONS

The last feature we are going to consider is data value
comparisons, specifically disequalities 6=. This is a standard
addition that has been considered in the study of relational
conjunctive queries. In fact it is one of the mildest ways of
adding a limited form of negation to positive queries in a way
that preserves their nice properties, such as the decidability
of static analysis. The other such extension, also considered
here, is allowing Boolean combinations of CQs.

The relational case of CQs with 6= comparisons has been
settled in [25, 26, 37]: the containment problem is Πp

2-
complete. From this we can derive some hardness results,
for instance, containment of CQ(↓) with disequalities under
schema is Πp

2-hard (note that the schema assumption is nec-
essary here to ensure documents code relational databases,
as was already explained in Section 4). As for upper bounds,
for relational BCCQs, even with disequalities, containment
is decidable. In fact it is easily seen that such containment
reduces to the complement of satisfiability for the Bernays-
Schönfinkel class.

However, relational results do not give us any upper
bounds on the containment problem for XML queries. We
show in this section that there is a reason for it: such prob-
lems are, by and large, undecidable. In fact we show two
undecidability results: for XML BCCQs with data compar-
isons, and even for CQs in the presence of schema informa-
tion.

Queries with data comparisons. We now formally define
classes of queries with = and 6= data comparisons. Suppose
we start with a class Π(σ) of patterns. Then CQs with data
comparisons over σ are defined as

q(x̄) = ∃ȳ
(

n
∧

i=1

πi(z̄i) ∧ α(x̄, ȳ)
)

, (9)

where all the πis are patterns from Π(σ) and α is a con-
junction of formulae of the form u = v and u 6= v, where

the variables u and v come from x̄ and ȳ. For instance,
q(x) = ∃y (a[b(x), c(y)] ∧ x 6= y) is such a query.

The class of such queries will be denoted by CQ(σ,∼)
(using the common XML literature notation of ∼ for data
value comparisons). We then define the class UCQ(σ,∼) as
unions of queries in CQ(σ,∼), andBCCQ(σ,∼) as Boolean
combinations of such queries.

Before we present our results, notice that in (9), the for-
mula α allows explicit equalities. Normally in CQs these
can be avoided simply by collapsing two variables. How-
ever, in the case of pattern-based queries, we may actually
need explicit equalities, at least for UCQs. Consider, for ex-
ample, a Boolean query q(x, y) = a(x) ∧ a(y). Then this
query implies the following UCQ q′(x, y) = (x = y)∨ _/_.
Indeed, if q(x, y) is witnessed by two data values that are
different, then they must occur in different nodes and hence
the _/_ pattern is true.

Containment without schemas. Without schemas, the con-
tainment problem for BCCQs behaves drastically differently
from the relation case, as we show below.

THEOREM 8.1. Containment of BCCQs with data com-
parisons, i.e., the problem BCCQ⊆(⇓,⇒, _,∼), is undecid-
able.

In fact one needs either ↓, ↓∗,→ or ↓,→,→∗ to establish
undecidability.

Proof sketch. The proof shows that satisfiability for a
BCCQ is undecidable by reduction from Post’s Correspon-
dence Problem (PCP). The proof is rather technical. It may
be tempting to think that, since BCCQ(⇓,⇒, _,∼) can ex-
press certain key constraints, one can simulate the node
equality tests from [10] in our setting by data equalities, and
then we can adapt undecidability results from there as well.
However, under such a key constraint, it is not clear at all
how then the data equalities and inequalities from [10] can
be correctly simulated. The reduction from PCP consists of
a series of encoding steps that state that (1) all trees satisfy-
ing the BCCQ must be string-shaped and of a certain form;
and (2) that they somehow encode a PCP solution. The proof
can be done in two flavors: either we say that the tree does
not branch, in which case we need the negation of the →
predicate to express (1) as well as both ↓ and ↓∗ for (2).
Alternatively, we say that the root has no grandchildren, in
which case we need ↓ for (1) and → and →∗ for (2). ✷

Containment with schemas. As in the previous section, for
each containment problem of the form Q⊆(σ,∼), with Q
being CQ, or UCQ, or BCCQ, we can associate an analogous
containment problem under schemas which, in addition, will
take as an input a schema, represented as an automaton.

The combination of data value comparisons and schemas
has an even more severe effect on the complexity of the con-
tainment problem: it becomes undecidable already for CQs
using only downward navigation.

THEOREM 8.2. The containment problem for CQ(⇓,∼)
queries under schema is undecidable.

211

Proof sketch. As in the proof of Theorem 7.2, we first
notice that we can transfer lower bounds for UCQ⊆(⇓,∼)
under schemas to lower bounds for CQ⊆(⇓,∼). After that

we prove undecidability for UCQ⊆(⇓,∼) by reduction from
the halting problem of two-counter machines. ✷

We conclude with the following remark. We noticed ear-
lier that relational results give us Πp

2-hardness for contain-
ment of CQ(↓,∼) queries under schemas (to enforce rela-
tional encoding). While the precise complexity of the prob-
lem CQ⊆(↓,∼) remains open (see concluding remarks), we
can at least eliminate the need for schemas from the hardness
result, i.e., we can prove the following.

PROPOSITION 8.3. The problem CQ⊆(↓,∼) is Πp
2-hard.

9. CONCLUSION

We have analyzed the containment problem for three
classes of queries – CQs, UCQs, and BCCQs – based on
various classes of tree patterns (including Π(↓), Π(↓,→),
Π(⇓), and Π(⇓,⇒)), also in the presence of extra features
such as wildcard, schemas, and disequality comparisons.

Overall, this gives us 96 cases of possible variations of the
containment problem, and our results, although not generat-
ing the full set of 96 complexity bounds, have provided an-
swers to the majority of them. Nonetheless, there are a few
questions left open, that we would like to address. These
concern the cases when we have some of the extra features
(wildcard, schemas, inequalities) present.

With wildcard, without any restrictions, we do not yet
have the precise complexity of containment for four classes:
CQ(↓, _),CQ(↓,→, _), CQ(⇓, _), and UCQ(↓, _). With
schemas, we do not yet know whether containment for
CQs and UCQs without transitive closure axes is single-
exponential or double-exponential. And with disequality
comparisons, we do not know if containment without transi-
tive closure axes is decidable. Based on our investigations,
all these problems appear to be rather nontrivial. We plan to
address them in the future.

Acknowledgment. This work was supported by the FET-
Open project FoX (Foundations of XML), grant agreement
FP7-ICT-233599, by EPSRC grant G049165, and by DFG
grant MA 4938/2-1.

10. REFERENCES

[1] S. Abiteboul, B. Cautis, T. Milo. Reasoning about XML update
constraints. In PODS’07, pages 195–204.

[2] S. Abiteboul, L. Segoufin, and V. Vianu. Representing and querying
XML with incomplete information. ACM TODS, 31(1):208–254,
2006.

[3] N. Alon, T. Milo, F. Neven, D. Suciu, V. Vianu. XML with data
values: typechecking revisited. JCSS 66(4): 688-727 (2003).

[4] S. Amano, L. Libkin, F. Murlak. XML schema mappings. In
PODS’09, pages 33–42.

[5] S. Amer-Yahia, S. Cho, L. Lakshmanan, D. Srivastava. Tree pattern
query minimization. VLDB J. 11(4): 315-331 (2002).

[6] M. Arenas, P. Barceló, L. Libkin, F. Murlak. Relational and XML

Data Exchange. Morgan & Claypool, 2010.
[7] M. Arenas, W. Fan, L. Libkin. On the complexity of verifying

consistency of XML specifications. SIAM J. Comput. 38(3): 841-880
(2008).

[8] M. Arenas, L. Libkin. XML data exchange: consistency and query
answering. J. ACM 55(2): (2008).

[9] P. Barceló, L. Libkin, A. Poggi, C. Sirangelo. XML with incomplete
information. J. ACM, 58:1 (2010).

[10] H. Björklund, W. Martens, T. Schwentick. Optimizing conjunctive
queries over trees using schema information. MFCS’08, pages
132–143.

[11] H. Björklund, W. Martens, and T. Schwentick. Conjunctive query
containment over trees. JCSS 77(3): 450-472 (2011).

[12] H. Björklund, W. Martens, T. Schwentick. Validity of tree pattern
queries with respect to schema information. Unpublished manuscript.

[13] M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, L. Segoufin.
Two-variable logic on words with data. In LICS’06, pages 7-16.

[14] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi.
Regular XPath: constraints, query containment and view-based
answering for XML documents. In LID’08.

[15] A. Chandra and P. Merlin. Optimal implementation of conjunctive
queries in relational data bases. In STOC 1977, pages 77–90.

[16] C. David. Complexity of data tree patterns over XML documents.
MFCS’08, pages 278–289.

[17] W. Fan, L. Libkin. On XML integrity constraints in the presence of
DTDs. J. ACM 49(3): 368–406 (2002).

[18] D. Figueira. Satisfiability of downward XPath with data equality
tests. PODS’09, 197-206.

[19] P. Genevés and N. Layaida. A system for the static analysis of XPath.
ACM TOIS 24 (2006), 475–502.

[20] A. Gheerbrant, L. Libkin, and T. Tan. On the complexity of query
answering over incomplete XML documents. ICDT 2012, 169–181.

[21] G. Gottlob, C. Koch, K. Schulz. Conjunctive queries over trees.
J. ACM 53 (2006), 238–272.

[22] T. J. Green. Containment of conjunctive queries on annotated
relations. Theory Comput. Syst. 49(2): 429-459 (2011).

[23] A. Halevy. Answering queries using views: A survey. VLDB J.

10(4):270-294 (2001).
[24] B. Kimelfeld, Y. Sagiv. Revisiting redundancy and minimization in

an XPath fragment. EDBT’08, pages 61-72.
[25] A. Klug. On conjunctive queries containing inequalities. J. ACM

35(1): 146-160 (1988).
[26] P. Kolaitis, D. Martin, M. Thakur. On the complexity of the

containment problem for conjunctive queries with built-in predicates.
In PODS 1998, pages 197-204.

[27] M. Lenzerini. Data integration: a theoretical perspective. In
PODS’02, pages 233–246.

[28] L. Libkin, C. Sirangelo. Reasoning about XML with temporal logics
and automata. J. Applied Logic, 8:2, 210–232 (2010).

[29] W. Martens, F. Neven, T. Schwentick. Simple off the shelf
abstractions for XML schema. SIGMOD Record 36(3): 15-22 (2007).

[30] S. Maneth, T. Perst, H. Seidl. Exact XML type checking in
polynomial time. In ICDT 2007, pages 254–268.

[31] G. Miklau and D. Suciu. Containment and equivalence for a fragment
of XPath. J. ACM, 51(1): 2–45, 2004.

[32] F. Neven. Automata, logic, and XML. In CSL 2002, pages 2–26.
[33] F. Neven, T. Schwentick. On the complexity of XPath containment in

the presence of disjunction, DTDs, and variables. LMCS, 2(3):
(2006).

[34] Y. Sagiv, M. Yannakakis. Equivalences among relational expressions
with the union and difference operators. J. ACM 27(4): 633-655
(1980).

[35] Th. Schwentick. XPath query containment. SIGMOD Record 33(1):
101-109 (2004).

[36] J.W. Thatcher. Characterizing derivation trees of context-free
grammars through a generalization of finite automata theory. JCSS 1
(1967), 317–322.

[37] R. van der Meyden. The complexity of querying indefinite data about
linearly ordered domains. JCSS 54(1): 113-135 (1997).

[38] V. Vianu. A web Odyssey: from Codd to XML. In PODS’01, pages
1–15.

212

