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1. ABSTRACT
In this paper, we propose several strategies to curb the trans-
missible diseases from spreading. Our policies identifies indi-
viduals and locations which play a vital role in spreading the
disease. Our analysis is based on simulation data generated
by Episims system. We model this data as People-People
Contact Network and People-Locations Activity Graph. We
also evaluate our proposed strategies under different practi-
cal resource constraints.

2. INTRODUCTION
Outbreak of highly pathogenic H5N1 avian influenza or bird
flu was first reported in 2003 in South-East Asia. This in-
fectious disease of birds caused by the type A strains of
influenza virus is highly lethal and has now spread to 13
different countries in Asia and Europe. Till date, a total of
170 human cases are reported causing 92 deaths1. In the
year 2006, bird flu is recored in Turkey and Iraq for the first
time. Though the cause of all reported human cases is from
direct contact with diseased poultry, a fully transmissible
pandemic might arise via process of re-assortment events
and adaptive mutations in influenza virus. Furthermore,
with the increase in global transport, urbanization and over-
crowded conditions, it is likely that the virus spreads around
the world quickly.
Given such lethal transmissible influenza pandemic threat, it
is essential to be prepared for the potential outbreak of pan-
demic influenza. However, lack of enough knowledge about
the dynamics of the virus strain makes it difficult to design
effective controlling strategies. Nascent state of H5N1 vac-
cines and anti-viral drugs makes the design of containment
policies even more challenging. Large scale vaccination poli-
cies can significantly reduce the threat of pandemic but the
high cost make these policies impractical.
It is thus important to implement adequate measures be-
fore the occurrence of pandemic. Analysis of interactions
among people and their movement in co-located geographic
regions is the key for assessing the transmissibility of the
virus. Eubank et. al [3], [4] have developed disease out-
break models for generating large-scale synthetic data. They
also proposed fast algorithms for computing basic structural
properties such as clustering coefficients and shortest paths
distribution. Ferguson et. al [5] have proposed strategies to
contain the emerging influenza pandemic.
In this paper, we primarily focus on developing algorithms
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for finding individuals who are highly infectious. We also
find locations at which people are more susceptible to the
infection. This paper is organized as follows: In Section 3,
we briefly discuss about the data format and models used
to represent the data. Section 4 presents our various con-
tainment policies. Finally, we discuss the results in Section
5 followed by conclusions.

3. DATA AND MODELS
We use the simulation data generated from the model de-
scribed in [6]. The data describes the interactions between
individuals in Portland, USA. The data includes the geo-
graphical locations of places in Portland, demographic in-
formation of individuals, their daily activities at different
locations and their contact network based on daily activ-
ities. Furthermore, it also provides the details of disease
outbreak and spread that is simulated by EpiSims system.
The data consists of 1.6 million people spread over 246, 000
locations. At the start of the simulation, 100 individuals
are selected and are marked as diseased. The system is then
run to simulate 100 days. When a person gets infected, the
time and place at which the infection occurred is recorded by
the system. With no containment policies, 565, 000 people
(∼ 35% of whole population) are infected with the disease,
at the end of 100th day.
The given simulation data can be modeled in many different
ways. Such models should capture the interactions among
people and interplays between people and locations. Our
models are generic in nature and hence many graph theo-
retic algorithms can be easily applied to them. We use two
representations, People - Locations Activities Graph (PLA)
and People - People Contacts Network (PPC) (Figure 1).
Though these two models seem to capture different inter-
actions, one model can be derived from the other. In our
discussion, we chose to differentiate these two models for
the ease of exposition. The PLA graph, (VP , VL, EP ), is a
bi-partite graph and models the relationship between people
and locations in the city. VP and VL represents the set of
all people and locations, respectively. Here, an edge (Pi, Lj)
∈ EP implies that the person Pi is connected to the location
Lj to perform some activity like going to school. Each edge
is weighted with the type, start time, and duration of the
corresponding activity. The PPC network, (VC , EC) cap-
tures the social interactions between people in the form of
contacts. Edges in PPC network are weighted with type,
start time and duration of the contact. Contact type is the
purpose for which the contact is made. It is one of Home
(id: 0), Work (1), Shop (2), Visit (3), Social/Recreation



(4), Other (5), Pick up (6), School (7), College (8). Con-
tact hours (0 − 23) is the duration for which the contact is
made. An edge (Pi, Pj) ∈ EC weighted with c, s, h implies
that the person Pi is in contact with Pj for the purpose of
c and for the duration of h hours, starting at s.
We observe that PLA graph and PPC networks are scale-
free networks. Their degree distributions follow the power
law i.e., number of nodes with degree k falls as k−α for
some constant α. Scale-free networks and power laws are
well addressed in [1] and [7]. For example, in PLA graph,
we have observed the value of α to be between 1.7 − 2.1 for
locations and around 1.8 for people.

Figure 1: Data Models (a) People - Locations Activ-
ities graph and (b) People - People Contacts network

We now present the effect of demographic attributes like
age, household size etc. on disease spread. Such an analy-
sis can help in developing probability functions for gaining
better insights into the data. We concentrate on four at-
tributes viz.,household size, contact type, age, and hours of
contact. Figure 2 illustrates the effect of these attributes
on disease outbreak. X-axis in each graph shows the type
of attribute and Y-axis gives the number of people who got
infected. Not surprisingly, an infected person in a larger
household is more infectious than an infected person in a
smaller household, because the person in larger household
can spread the infection to more number of people. For ex-
ample, an infected person in an household of size 14 can
infect 80% of the other household members. Figure 2 (b)
illustrates how the contact type effects the probability of a
person to get infected. All types of contacts are not equally
infectious. Contacts at schools and work places are far more
infectious than other contacts. Similarly, a person’s age can
effect the susceptibility of a person to the disease. We can
infer that the people who are between age of 5 and 60 are
more susceptible to the infection than the people from other
age groups. Along with the type of activity, the duration of
contact also effects the person’s susceptibility to the disease.
Chances of getting the infection is directly proportional to
the time spent with the infected person.
Based on this analysis, we developed probability functions
as follows. Let us consider the example of contact types.
From figure 2 (b), we can infer that 24% of the people going
to the work and 21% of the people attending the school are
infected. By normalizing these susceptibility percentages
over all activities, we can model the effect of contact type as
a discrete probability mass function. In similar spirit, we can
construct probability density functions for other attributes
also. Based on a person’s attributes (age, household size
etc.) and the above developed attribute specific functions,

we can derive the probability of that person to get infected.

4. STRATEGIES
A naive strategy to contain the disease is by vaccinating
the whole population. However, difficulty in implementing
and high cost renders this scheme practically infeasible. An-
other seemingly correct approach will be to vaccinate all the
household members of the 100 initially infected people. This
strategy is easy to implement and cheap but not effective.
It could only prevent 66, 419 cases out of a total of 565, 685
cases. Therefore there is a need for more sophisticated meth-
ods which take into account interaction among people, effect
of locations, activity type and number of contact hours. In
this section, we propose five such policies. Each of our five
strategies chooses a set of people to vaccinate from the whole
population. Intuitively, we would like to choose and vacci-
nate the people who are more probable to get the disease in
future.

4.1 Random Vaccination
This strategy randomly chooses the set of people to vac-
cinate. A simple random sampling without replacement is
employed for this purpose. Random numbers are generated
using a Uniform distribution.

4.2 Contacts Driven Vaccination
Another intuitive vaccinating policy is to select people who
are directly in contact with an infected person. One can
continue to higher levels by choosing the people who are
in direct contact with the contacts of infected person, and
so on. In graph theoretic terms, this algorithm is called as
Breadth-First Search (BFS). We start the BFS from each of
the 100 people who are initially infected (sources of BFS).
In level i, we select nodes which are connected to the source
by i − 1 nodes or i edges.

4.3 Sociability Driven Vaccination
As mentioned in section 3, PPC network is a scale-free net-
work. The distinguishing feature of a scale free networks is
the presence of centrally located and highly connected nodes
known as hubs. In the PPC network, vertex degrees (i.e.,
number of contacts) varies from 0 to 277 with the µ = 39
and the σ2 = 33.28. There are 956 people (0.06% of pop-
ulation) with number of contacts greater than or equal to
200 and hence they act as hubs. These hubs corresponds to
people who are more societal compared to others. A straight
forward strategy will be to vaccinate these hubs to control
the outbreak. But, vaccinating these 956 people could only
prevent 4655 cases, which is less than 1% of total number
of infected people. Vaccinating people with number of con-
tacts ≥ 150 could prevent only 12% of the cases. There-
fore, vaccinating just the hubs will not help in containing
the disease from spreading. Instead of concentrating on just
the hubs, we propose to vaccinate all the nodes with degree
greater than a fixed cutoff degree. If the cutoff degree is
small, then the set of nodes chosen for vaccination would
be large. Hence, it can lead to better prevention rate. We
discuss the detailed results in section 5.

4.4 Profile Based Vaccination
In this strategy, we use random walks on the PPC network
to select the set of people to vaccinate. Random walk is a
random process consisting of sequence of discrete steps of



Figure 2: Effect of attributes on disease outbreak (a) Household size (b) Contact Type (c) Age (d) Contact
Hours

fixed length. In our context, each discrete step corresponds
to traversing an edge of the graph. Random walk starts at
a node (i.e., person) referred to as source of the walk. At
each step, next node in the walk is chosen randomly from all
the nodes, which are adjacent to the current node. Multiple
random walks from a given node can be performed using
restarts i.e., at each step during the walk we can restart
from the source with certain probability known as restart-
ing probability. We say that two people have similar profiles
if their contact networks are similar. Sun et. al [8] have
demonstrated, in context of bi-partite graphs, that random
walk with restarts can be used to determine nodes which
are most relavent (i.e., more similar) to the source node. If
the source is an infected person, random walk visits a set of
people who have similar profile as of the source. Therefore,
people visited during such random walks are more suscep-
tible to the infection. We treat each of the 100 initially
infected people as 100 sources of a random walk.
In traditional random walk, probability of an edge to be
taken is same for all the edges incident on a given node.
From Figure 2 (b), we know that the contact type and hours
of contact effects a person’s susceptibility to infection. For
example, probability of getting infected at a work place is
0.29 whereas at a shopping place it is 0.033. We construct
these probability distributions for attributes, contact type
and the duration of contact (as described in section 3). Each
edge in the contact network is weighted based on the distri-
butions constructed above. Assume that v is an intermedi-
ate node in the random walk and Ev = {e1, e2, ..., en} is the
set of edges incident on v. Let edge ei corresponds to one of
the v’s contact with type X and duration H. Assume that
px and ph are probabilities of getting infected for contact
type X and duration of contact H, respectively. Each edge
ei is then weighted with the product px × ph. We normalize
the weights of all the edges incident on v in order to make
the sum to 1.

4.5 Location Based Vaccination
Till now, we have presented four vaccination policies which

are based on the contact network of people. In this section,
we propose a policy based on locations at which people per-
form their activities. In order to study the people-locations
relationship, we make use of PLA graph. We first identify
the critical locations based on the number of cases reported
at each location. Assume that a location, L is connected to
PL number of people (i.e., the degree of L in PLA graph) out
of which IL are infected. We calculate the measure Infection
Ratio at location L as on day D, IRD

L = IL

PL

to analyze how

infectious a location is. A location is declared as critical
if IRD

L exceeds a certain threshold value, ThresholdIR. D

is referred to as Policy Effective Date (PED). Even though
IRD

L can be calculated every time IL changes, we calculate
IRD

L at the end of each day for computational efficiency. It
is important to note that the cases reported till policy effec-
tive day can not be prevented. Once the critical locations
are identified, people can be vaccinated in various ways. One
possible way is to vaccinate all the people who are connected
to critical locations through some activity.
This method can easily be extended to make more sophisti-
cated policies. For example, the concept of IRD

L can be ex-
tended to take the type, start time and duration of the activ-
ity into consideration. And, instead of calculating IRD

L for
each location, we can group locations that are collocated into
regions to identify critical regions over space. Such grouping
of locations can either be static or dynamic. Static grouping
can be based on geographic boundaries or any other given
constraints. In dynamic grouping, set of locations constitut-
ing a group can change over time.

5. RESULTS
In this section, we first present the effectiveness of proposed
policies and compare them. We then evaluate our strategies
under different constraints like limited number of anti-viral
drugs and delay in response time. We compare the effec-
tiveness of different methods using the measure, Percentage
Prevention. It is the percentage of people who are prevented
from the disease. To calculate this measure, we make use
of disease evolution data from EpiSims simulation system



[6]. This data provides insight into when, where and from
whom a person got infected. Simulation is started at t = 0
with 100 initially infected people. When any person is in-
fected during the simulation, system records the time and
location at which the person got infected along with the
list of already infected people who are currently in the same
location. Assume that a person, P is infected at time TP

during the simulation. With no containment policies, P can
infect other people in the contact network. Assume that P

infects a person Q at TQ (> TP ). Now, assume that using
one of the disease containment strategies, we vaccinate P

at time TV (TV < TP ). Since P is vaccinated, P is pre-
vented from the disease directly. But vaccinating P in turn
also prevents Q from getting infected because P is no longer
infectious. We say that Q is prevented from the disease in-
directly. Therefore, vaccinating a person not only prevents
that person but can also prevent other people indirectly.
Percentage Prevention includes total number of people who
are prevented from infection both directly and indirectly.
Another closely related measure is the cost incurred by the
containment strategy. It is inversely proportional to number
of cases prevented (both directly and indirectly) per vaccine.

5.1 Effectiveness of Policies
In every strategy, percentage prevention increases as more
people are vaccinated. Random vaccination policy gives the
theoretical upper bound on number of vaccines needed to
achieve the given prevention rate (Figure 4 (a)). In practice,
this strategy will not be effective as it can not take any extra
knowledge about the data or the disease into account.
Figure 4 (b) shows how the number of vaccines and percent-
age prevention changes as we change the number of levels of
BFS. Exponential increase in number of nodes visited (i.e.,
number of vaccines) by BFS illustrates shorter path lengths
of small-world PPC network. Although we prevent 98% of
cases at level 3, the cost incurred is very high because we
vaccinate 71% of population. From level 2 to level 3, num-
ber of cases prevented per vaccine dropped from 162 to 48.
This method is very costly and therefore may not be very
practical. We later show that even with a fixed number of
vaccines, it performs poorly when compared to the profile
based and sociability driven strategies. Note that, BFS with
1 level will vaccinate the direct contacts of an infected per-
son. Since a person can pass on the infection only to direct
contacts, BFS with 1 level should achieve 100% prevention
rate. But, this is not true for the given data. This is due to
the presence of people who are neither infected from others
nor in the set of initially infected people. We attribute them
as people who got infected naturally but not from contacts
made with an infected person.
Figure 4 (c) illustrates the variation in percentage preven-
tion and number of vaccines given as we vary the cutoff de-
gree. Trend representing the number of vaccines expounds
the power-law degree distribution in PPC network. Pres-
ence of highly connected nodes (hubs) can be seen from the
slow increase in the number of vaccines given, initially. A
quick increase after the cutoff degree of 100 is due to large
number of nodes with smaller degrees of contact. Hence, a
smaller cutoff degree leads to higher percentage prevention.
Sociability driven prevention strategy offers the lower bound
on number of vaccines to be spent for achieving a given per-
centage of prevention. Prevention of 99.21% is achieved at
cutoff degree of 30. This can be achieved by vaccinating at

least 55% of population.
Effectiveness of the profile based vaccinating policy with
varying number of steps is shown in figure 4 (d). We have
set the restarting probability to be 0.15 for our experiments.
As we increase the number of steps taken during the walk,
number of nodes visited and hence the prevention rate goes
up. As more number of nodes are visited, more number of
vaccines are used. Therefore, there is a trade-off between
the cost incurred and the percentage prevention achieved.
Thus, constraints such as availability of vaccines and other
resources should be taken into account when determining
the number of steps. It is important to note that the in-
crease in percentage prevention is slow when compared to
increase in number of vaccinations. In other words, num-
ber of cases prevented per vaccine reduces as the number
of steps increases. In practice, profile based strategy might
work better than any sociability driven strategy. Because,
sociability driven methods require the exact knowledge of
contacts of a person and they assume the contact network
to be static. In real life, it is very difficult to keep track of ex-
act information of contacts as the contact network changes
over time. Hence, in such cases, we can expect the profile
based policies to be more effective than others.

5.2 Location Based Vaccination
Figure 3 (a) shows the effectiveness of location based vacci-
nation scheme for various values of policy effective day. We
have set ThresholdIR to 0.01 i.e., if 1% of people connected
a location are infected then that location is declared as crit-
ical. Let T be the set of people who got infected during the
100 day simulation. And, let S is the set of people who got
infected before PED. Hence, people present in S can not be
prevented from disease. We define a set R as T − S that
represents the set of people who are yet to be prevented.
Percentage prevention can be calculated based on both T

and R. We refer to prevention rate as a percent of T and
R as PPT and PPR, respectively. As mentioned earlier, we
vaccinate all the people connected to critical locations.
As we increase the PED, number of cases which can not be
prevented increases quickly. For example, if we delay the
policy for 50 days then almost 23% of the cases can not be
prevented. As the time progresses, disease spreads among
the people and so the number of locations with infected peo-
ple increases. Since we vaccinate all the people connected
to infected locations, number of vaccines given and, hence,
the PPR increases. Note that the amount of increase in
PPR reduces as the PED increases. But the PPR does not
give the overall effectiveness of the vaccinating policy. To
analyze the exact behavior or to compare against other poli-
cies, one should use PPT . As we change PED from 45 to
50, difference between PPT and PPR will become evident.
Though the PPR increases from 92.9% to 96%, PPT actu-
ally decreases from 81.2% to 75%. This is due to the quick
increase in number of cases which can not be prevented,
from 12.6% to 22.7%.
Figure 3 (b) shows the distribution of infectiousness across
various locations. For example, Locations in red color have
more infected people. Spatial clustering algorithms like DB-
SCAN [2] can be applied on this graph to group critical
locations into critical regions.

5.3 Effect of Resource Constraints
Anti-viral drugs are often limited in number because of vari-
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Figure 3: Location Based Vaccination. (a) Distribution of infectious locations at PED = 35 (b) Effectiveness

ous reasons like mass production cost, inventory cost etc. In
this section, we fix the number of vaccines available and eval-
uate how the percentage prevention changes across different
strategies. Such a comparison will enable us in analyzing
the effectiveness and feasibility of various strategies given
resource constraints. Figure 5 shows the differences in effec-
tiveness if we fix the number of anti-viral drugs to be used.
For all the strategies, total number of prevented cases in-
creases and number of cases prevented per vaccine decreases
as the number of vaccines used increases. As we vaccinate
larger section of population, difference between their effec-
tiveness decreases. For any given number of vaccines, socia-
bility driven vaccination policy is the clear winner retaining
high levels of effectiveness over all other methods of vacci-
nating. As shown in section 4.2, the reach of BFS is very
high but for a fixed number of anti-viral drugs, its effec-
tiveness falls behind the sociability driven and profile based
vaccination policies.

5.4 Effect of Delay in Response
It is not practical to assume that the disease containment
policies can be implemented as soon as the first case of the
infection is reported. The delay can be due to various con-
straints like distance between anti-viral drug inventory and
the location at which the infected person resides or might
be due to late diagnosis. Therefore, it is important to eval-
uate the tolerance levels of our strategies to the delay in
response after the first case has been reported. Figure 5
shows the effectiveness of different methods as a function
of reaction time (in terms of days). Number of anti-viral
drugs has been fixed at 350, 000 courses for this experiment.
Clearly, number of cases prevented goes down as we de-
lay the implementation of containment policies. From the
graph, it can be inferred that, in general, delay up to 35 to
40 days is acceptable for sociability driven and profile based
vaccination policies without foregoing significant prevention
percentage. For other two policies, number of people pre-
vented from infection continuously decreases as the response
time increases. After 40 days, prevention rate decreases at a
faster rate especially in sociability driven scheme. Difference
in effectiveness between degree and profile based policies de-
creases as the delay increases.

6. CONCLUSIONS
In this paper, we proposed and evaluated five different pro-

phylaxis policies to contain the disease from spreading. Four
policies are based on PPC network and one is based on PLA
graph. Over all, degree based policy gave the best perfor-
mance in terms of Percentage Prevention. But in practice,
profile based strategy might perform better than any socia-
bility strategy as the contact network would be changing.
Moreover, It is extremely difficult to obtain the exact con-
tact network of a person. We have shown that implementa-
tion of these policies can be delayed up to 35 days without
effecting the percentage prevention. In future, We would like
to use density-based spatial clustering algorithms like DB-
SCAN to group collocated locations with similar infection
ratios to yield critical regions.
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(a) Random vaccination (b) Contacts driven vaccination

(c) Sociability driven vaccination (d) Profile based vaccination

Figure 4: Effectiveness of various vaccination policies

(a) Limited anti-viral drugs (b) Delay in response time

Figure 5: Effectiveness under constraints


