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Abstract 

Study of seismo-ionospheric coupling mechanism demands the quiet geo-

magnetic condition to eliminate any kind of contamination in the lower at-

mospheric and ionospheric parameters. In this manuscript, we present the 

effect of back to back two geomagnetic storms before a strong earthquake 

happened in Imphal, India on January 4, 2016 (M = 6.7). We studied the 

lower ionospheric irregularities for the duration of 31 days by computing the 

nighttime fluctuations in Very Low Frequency (VLF) radio signal received 

transmitter JJI (22.2 kHz) in Japan at Ionospheric and Earthquake Research 

Centre & Optical Observatory (IERCOO), Sitapur, India. We also studied the 

presence of Atmospheric Gravity Wave (AGW) in nighttime VLF signal in 

lower ionospheric heights and the same computed that from SABER/TIMED 

satellite. Two geomagnetic storms occurred on December 21, and 31, 2015. 

By the conventional analysis, we found that there is a significant decrease in 

nighttime trend and an increase in nighttime fluctuations around 15 days be-

fore the earthquake and just on the first storm and thus the pre-seismic ef-

fects on VLF signal gets contaminated due to the presence of storms. The 

wave-like structure in VLF fluctuations shows significant increase in intensity 

by using Fourier and Wavelet analysis before the earthquake. By analysis of 

SABER data, we found significant enhancement in AGW around 10 days be-

fore the earthquake. As the wavelike structures are coming from neutral 

acoustics reasons from pressure or temperature variations, this paper exhibits 

a significant example of contamination in ionospheric parameters due to 

geomagnetic storm where the acoustics parameters remain un-contaminated. 
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1. Introduction 

There are a few hypothetical models for the Lithospheric-Atmospheric-Ionospheric 

Coupling (LAIC) mechanism, which consists of three types of channels, i.e. 

thermal, acoustics and electromagnetic channel [1] [2]. In the electromagnetic 

channel, sub-ionospheric Very Low Frequency (VLF) signal has a significant in-

fluence to understand this mechanism. The general hypothesis of this channel is 

that the electromagnetic perturbation in ionospheric heights modulates the VLF 

amplitude and phase which can be utilized to identify the pre-seismic irregulari-

ties. Abnormality in VLF amplitude and phase has been observed and modeled 

by several scientists [3]-[20]. After the historical Kobe earthquake 1995, Haya-

kawa and his team began to examine the VLF anomaly and observed a signifi-

cant shift in the sunrise and sunset terminator times towards the nighttime be-

fore the earthquake [21] [22]. Later [23] used a different approach of the “Night-

time fluctuation method” to analyze the anomalies in the night-time VLF signal 

during earthquakes. Later [18] found significant fluctuation in VLF signal fluc-

tuation during Sumatra earthquake, 2004. Later, VLF nighttime fluctuations 

have been statistically studied by using three methods in [16]. Three parameters 

namely 1) “trend” (as the monthly average of nighttime amplitude), 2) “disper-

sion” (standard deviation of the signal amplitude from this average) and 3) 

nighttime fluctuation has been studied to examine the pre-seismic anomalies. 

Similar studies have been performed for multiple earthquakes by [24]. 

Indian Centre for Space Physics (ICSP) is monitoring Sub-ionospheric VLF 

propagation characteristics extensively for more than 1.5 decade. Extensive 

works have been performed on VLF anomaly and seismic hazards for multiple 

baselines both statistically and case-wise. The first report of such seismogenic 

VLF perturbation was published for the Sumatra earthquake, 2004 by following 

the terminator time methods [25]. Later the correlation between “VLF Day 

Length” and seismic activity was established by [26] by using the VTX-Kolkata 

propagation path. The anomalies in “D layer preparation time (DLPT)” and “D 

layer disappearance time (DLDT)” before 1 - 2 day prior to the earthquake were 

observed by [27] [28] [29] [30] who have presented a simultaneous and compar-

ative study of seismogenic VLF perturbation for multiple paths and earthquakes 

and performed a numerical modeling. The nighttime signal fluctuations have 

been also investigated by [31] [32]. 

In the acoustic channel, the most influential parameter of seismogenic irregu-

larities is the atmospheric gravity wave (AGW) which can appear due to the at-

mospheric oscillation near the epicentral zone of corresponding earthquakes. 
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These oscillations further travel to the upward direction and perturb the lower 

ionosphere [33]. Also, in lower stratosphere, this gravity wave perturbs the stra-

tospheric wind and temperature and gets excited by convection system and jet 

stream and its wave period having a range from Brunt-Vaisala period to the in-

ertial period. [34] first observed that VLF signals before earthquake exhibit at-

mospheric gravity wave signature of periods of few minutes to hours. They used 

data from Chofu, Shimizu and Maizuru receiving stations in Japan and found 

significant enhancement in the period range of gravity wave on 10 days prior to 

the earthquake on March 4, 2000. The AGW excitation was strong for Chufu 

and Maizuru station where for Shimazu, it was not clearly understandable. They 

use data from multiple receiving stations in Japan. And they found significant 

enhancement in the period range of gravity wave during seismic activity by ob-

serving AGW excitation on 10 days prior to earthquake. [35] reported the gen-

eration of planetary waves with period of 2 - 30 days associated with earth-

quakes. [36] [37] [38] [39] [40] also reported the evidences of presence of wave-

like structure before large earthquakes. The first direct evidence has been re-

ported by [41] using the Atmosphere Explorer-E (AE-E) satellite. He established 

the link between troposphere and ionosphere and reveals that AGW activity also 

can use as precursor signal of earthquake. [42] have also reported the AGW ac-

tivity before the 2015 Nepal earthquake by using sub-ionospheric VLF signal 

anomaly in nighttime data by computing the Fast Fourier Transform (FFT) and 

wavelet power spectrum (WPS) methods. Direct evidences are also found by us-

ing the temperature profile in middle atmosphere by [43] by using ERA5 tem-

perature profile data. They observed significant excitation in AGW happened a 

week before the Kumamoto earthquake on April 15, 2016 near the epicentral re-

gion. [44] also examined the signal from both ERA5 and SABER (Sounding of 

the Atmosphere by using Broadband Emission Radiometry) instruments by us-

ing atmospheric temperature profile to compare the generation of AGW for a 

oceanic earthquake in Tohoku on 2011 the land earthquake in Kumamoto. They 

found significant excitation in AGW on 4 - 8 days before the earthquake. 

Ionospheric characteristics can be significantly modified by the influenced by 

the high-speed stream of solar wind due to the high-speed incoming plasma 

from the sun due to coronal mass ejections or coronal holes which associated 

with shock waves [45] named as geomagnetic storms. The ionosphere, middle 

atmosphere and tropospheric region feel a strong disturbance due to this geo-

magnetic storm [46] [47]. The impact of the storm on the ionosphere is caused 

by the penetration of energetic particles precipitations which suffer collisions 

with ionospheric plasmas and neutral elements and produces X-ray bremsstrah-

lung radiation resulting loss of energy [46]. This impact enhances the electron 

density in the ionosphere [46] [48] [49], resulting to the change in electromag-

netic signal propagation which influence the signal absorption mechanism. The 

weaker version of this effect shows in lower ionosphere later the storm event or 

can be justified as post-storm effect. Including enhancement in charge density, 
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ionospheric conductivity gradient, electromagnetic field distributions, ionization 

rate and reference height of D and E layers are also modified. All of these in the 

Earth Ionosphere Wave Guide (EIWG) characteristics which farther influence 

the VLF signal propagation [50]. 

In this manuscript, we try to understand the impact of a geomagnetic storm 

on pre-seismic anomalies in electromagnetic and acoustics channel by analyzing 

VLF radio signal and AGW excitation. The major objective of this study is to 

figure out the contamination in the pre-seismic effects due to geomagnetic storm 

and a possible method to eliminate such contamination to extract the seismo-

genic anomalies. We use fluctuations in VLF signal amplitude and temperature 

profile as observed from SABER satellite to figure out such possibilities during a 

moderately strong earthquake in Imphal on January 4, 2016. Two moderate 

geomagnetic storms occurred on December 21 and 31, 2015 before the earth-

quake. We compare both the VLF and AGW fluctuations and try to examine the 

contamination in the pre-seismic anomaly. The plan of the paper is the follow-

ing. In Section 2, we present the data and methodology, In Section 3, we present 

the results and in Section 4, we conclude our findings. 

2. Data and Methodologies 

The earthquake occurred on January 4, 2016 at 04:35 local time (January 3, 2016, 

23:05 UTC) in the north-east of India (Manipur). The epicenter was located at 

Tamenglong district which is 30 km away from Imphal (Geographic coordinates: 

24.834˚N, 93.656˚E) with a depth of 55 km. The Richter scale magnitude of the 

EQ magnitude was M = 6.7. In this work, VLF signal are received at Indian sta-

tion IERCOO (Ionospheric and Earthquake Research Centre & Optical Obser-

vatory), Sitapur (Geographic coordinate: 22.5112˚N, 87.7865˚E) transmitted 

from a fixed frequency transmitter JJI, 22.2 kHz at Japan (Geographic coordi-

nate: 32.05˚N, 131.51˚E). We choose the JJI-IERCOO propagation path as it 

passes over the epicenter and the earthquake preparation zone of the earthquake. 

The propagation path length is ~4418 km. The location JJI and IERCOO, prop-

agation path, earthquake epicenter and the earthquake preparation zone are 

shown in Figure 1.  

Figure 2 represents the temporal variation of VLF signal amplitude profile as 

a function of time in hours for the JJI-IERCOO path. In the left panel, we 

present two consecutive days December 29 and 30, 2015 in the inset we present 

the nighttime fluctuation between these two days. In the entire computation of 

VLF fluctuations, we use the local Indian Standard Time (IST) defined as IST = 

UTC + 05:30:00. In our computations, we take the duration 8 hours data starting 

from 20:00:00 IST to next day 04:00:00 IST. The right panel of Figure 3 shows 

the nighttime signal amplitude for the duration of 31 days starting from De-

cember 15, 2015 to January 16, 2016. For better understanding, the data files are 

stacked with an amplitude shift of 20 dB. The red curve is the nighttime of the 

earthquake day where the blue curves are the same for the storm days.  
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Figure 1. The location of transmitter JJI (blue triangle), receiving location IERCOO (black circle) and the wave-path between 

them. The location of earthquake epicenter and the earthquake preparation zone are marked with red cycle and the shaded circle 

respectively. 

 

  

Figure 2. Temporal variation of VLF signal amplitude for JJI-IERCOO path. Left panel illustrates the diurnal variation of VLF 

amplitude as function of time for December 29-30, 2015. The data for the nighttime period (20:00:00 IST to 04:00:00 IST) between 

these two days are shown in the inset. The right panel shows the nighttime signal amplitude variation as a function of time in 

hours for 31 consecutive days. Data from December 15, 2015 to January 15, 2016 are plotted with a amplitude shift of 20 dB for 

better understanding. The red and blue lines represent the day of earthquake and geomagnetic storms. 

 

It is found that the, the nighttime fluctuation analysis method for VLF signal 

is more effective for long propagation paths (>1000 km) in comparison to the 

daytime analysis techniques mainly Terminator Time (TT) method [51] [52]. 

This was verified by the results obtained by [3] and [53] where the VLF signal 

were used for longer path lengths from ~5000 to ~9000 km. For Imphal earth-

quake, as the path-length is around ~4418 km, we use the conventional night-

time fluctuation methods. As presented in Figure 2, we take the 8 hours of 

nighttime data for a period of 30 days. In the computation process, we take 

( )A t  as the VLF amplitude at time t and ( )A t  is running average of ampli-

tude at the same time t taking over all 31 days. Now we compute the fluctuations 
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as ( )dA t  defined as ( ) ( ) ( )dA t A t A t= − . It is reported that for seismogenic 

effects, it is that is ( ) 0dA t <  [23] [36] and so, we take the negative ( )dA t  to 

compute the Nighttime Fluctuation (NF). Now Trend and Nighttime Fluctua-

tion (NF) are defined by, 

( )d d
e
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N

N

e s

Tre
A t t

N
n
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d =

−
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                      (1) 
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A t t= ∫                       (2) 

Here Ne and Ns are Nighttime data ending and starting times. Normalization of 

these two parameters are done by ( ) Tσ−trend trend  and ( ) σ− NFNF NF . 

Here < > is defined as the average values of that parameter for 31 days and σ's 

are the standard deviations of trend and NF for 31 days.  

As the daytime ionosphere and the sub-ionospheric VLF signal is mainly con-

trolled by the sun and solar flux, to examine the presence of wave like structure 

in VLF data, we choose the nighttime signal profile. We perform Fast Fourier 

Transform (FFT) and Wavelet analysis to investigate such phenomena. For FFT, 

we use a rectangular data window to observe the periodic structures and the 

wavelet analysis; we consider the Morlet mother wavelet function defined by, 

( ) ( )
2

04

1
exp exp

2

t
f t j tω

π
 −

=  
 

,                 (3) 

In our analysis, we take the value of ω0 is 6, the time sampling was 1 minutes 

and scale of 1 hour and ω0 is the non-dimensional frequency. The value is equal 

to 6 in this study to satisfy an admissibility condition. The admissibility condi-

tions for the wavelet are that the function must have zero mean and be localized 

in both the time and frequency space [54]. For wavelet, we convert the input 

sample data from seconds to minutes and make to the total number of data 

sample in the power of 2. We use the zero-padding method by adding zeros at 

the end of the true sample number until it reaches the power of 2. We compute 

the Cone of Influence (COI) region inside the Wavelet Power Spectrum (WPS). 

The periodicity signatures outside of the COI region is due to the zero padding 

and are not genuine data and thus ignorable.  

To compute the AGW excitation for direct observation, we use temperature 

profiles retrieved from observations of Sounding of the Atmosphere using 

Broadband Emission Radiometry (SABER) instrument on board the Thermos-

phere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite 

around the earthquake region (Latitude range: 14˚ to 35˚N and Longitude range: 

70˚ to 110˚E) for the period December 15, 2015 to January 15, 2016. SABER is a 

multi-channel radiometer designed to measure heat emitted by the atmosphere 

onboard of TIMED satellite. It is a geocentric satellite with a period of 96.8 mi-

nutes. The altitude resolution is 10 km to 180 km with an orbital altitude of 625 

km circular (+/− 25 km) and with orbital inclination of 74.1 degrees (+/− 0.1 

degree). The Limb Vertical Sampling Interval is 0.4 km for this instrument. 
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SABER cover 50˚S to 80˚N while in Northward view and 50˚N to 80˚S in 

Southward view and on an average, it gathers data from 50˚N to 50˚S latitude 

range. In this study, we compute the potential energy (Ep) associated with the 

gravity waves from the temperature profile. According to [55] [56] and [57] the 

satellite-based gravity wave analysis can be made by these methods. At first the 

background data is computed by fitting the individual temperature profile with 

least square fit (LSF). The estimation of LSF is made by taking the logarithm of 

the individual profile. Then a three-degree polynomial is fitted with logarithm 

profile and subtracted the fitted profile from the logarithm profile to obtain the 

residual. To remove the noise and other waves a 4 km box filter is applied to the 

residual and then the filtered residual is added back to the fitted profile. The an-

tilog of the final fitted profile is called the LSF. The sum of the wave number 0 - 

5 components is considered as the background temperature (T0). The perturba-

tion temperature (T') is obtained by subtracting the background temperature 

(T0) profile from the original profile. Now the gravity wave associated Ep is ob-

tained by the values by Equation (1). 
2

1
,

2
p

g
E

N

 =  
 

                        (4) 

where g is the acceleration due to gravity and N is the Brunt Väisälä Frequency 

defined by, 

2 0

0

,
p

Tg g
N

T z c

 ∂
= +  ∂ 

                      (5) 

where z is the altitude and cp is the specific heat at constant pressure.  

To check the geomagnetic conditions, we use various geomagnetic indices da-

ta obtained from the NASA OMNIWEB archive. The geomagnetic indices 

Dst(nT), Kp and Ap during December 15, 2015 to January 15, 2016 are shown in 

Figure 3.  
 

 

Figure 3. The variation of the geomagnetic indices from December 15, 2015 to January 15, 2016. 
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3. Result 

The normalized Trend (top) and NTF (bottom) as a function of day number are 

shown in Figure 4. Along X-axis, the “0” day number is treated as December 31, 

2015 night to January 1, 2016 early morning. The days of the geomagnetic 

storms and earthquake are marked with “S” and “Eq” respectively. It is evident 

that there is a significant depletion in trend (below 2σ level) and enhancement in 

NF (above 2.5σ level) on the day of first storm (December 21, 2015). As it is on 

both pre-seismic and a geomagnetically active day, this abnormality cannot be 

correlated with individual event. The next enhancements occur on the day of the 

earthquake (January 3 night to January 4, morning) which is after three days of 

second geomagnetic storm (January 31, 2015) in both Trend (2.5σ) and NF (3σ). 

This second case shows comparatively better contaminating effect due to the 

presence of post-storm and pre-earthquake effects. Thus, VLF fluctuation seems 

highly contaminated and it is difficult to distinguish.  

It is evident from Figure 3 that the recovery time of Dst index indicates for 

both the storms are almost 2 days after the main phase. As the first storm is ra-

ther stronger (maximum Dst ~ 160 nT) in comparison to the second one (Dst ~ 

100 nT), the immediate impact on lower ionosphere and thus in VLF signal with 

high Trend and NTF on December 21, 2015 is justifiable with the storm intensi-

fication. As the second storm is moderate and also close to the pre-seismic 

proximity situation, the effect during second storm is a mixed outcome. Also, 

the fluctuation in the VLF during the second storm is during the recovery phase. 

The enhancement of NF is also larger for second case. As reported previously 

that geomagnetic storm shows negative fluctuations in trends [50] but in this 

case we observe positive enhancement for the second storm. We can anticipate 

that the pre-seismic and moderate storm effect together create so much com-

plexity in the ionosphere which generates some different results from the result 

for the independent storm and independent seismic events.  

To examine the evidences of wavelike structures (AGW) in the VLF signal 

during nighttime we performed the FFT and Wavelet analysis by VLF nighttime 

signal during this period. We measured the wave like periodicity structure 

present in signal by both FFT and WPS up to earthquake date. We do not 

present the post-earthquake story as we are mainly interested the contamination 

in the precursors only. The resultant FFT spectrum is shown in Figure 5. Peri-

odicity of 60 minutes is observed on 27 December 2015 night which is the sig-

nature of AGW.  

The Wavelet power density spectrum is shown in Figure 6. It is evident that 

the most prominent wavelike structure with the similar periodicity that of FFT is 

found on December 27-28, 2015. A comparatively lower intensification also 

presents during December 22-23 and 24-25, 2015 with similar periodicity of ~60 

minutes which indicates the presence of AGW in VLF signal. So the major exci-

tation in AGW is after the first geomagnetic storm on December 21, 2015 and 

before the second storm on December 31, 2015 and the earthquake on January 5, 
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2016. As the fluctuations are coming from ionospheric origin and that can be 

contaminated by geomagnetic storm, to validates this wave like structures in 

FFT and WPS, we use a direct observation of AGW generates from the acoustics 

origin by changing the pressure and temperature profile of atmosphere.  

 

 

 

Figure 4. Normalized Trend (top) and NTF (bottom) as a function of day number during 

December 15, 2015 to January 15, 2016. The “0” denotes the December 31, 2015 night to 1 

January, 2016 early morning. “S” and “Eq” denote the nighttime of storm and earthquake 

day. The horizontal blue lines represent the ±2σ where σ is the standard deviation. 
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Figure 5. Normalized Fast Fourier Transform (FFT) spectrum of VLF signal from December 21, 2015 to January 5, 2016. The X 

axis indicates the periods in minutes and Y-axis indicates the Fourier amplitude in dB. Strong amplitude around 60 minutes of 

periodicity (AGW) is observed found in the nighttime on 27-28 December, 2015. 

 

 

Figure 6. Wavelet power density spectrum of nighttime VLF data from December 21, 2015 night to January 5, 2016. The X-axis 

denotes the time in hours, Y-axis indicates periodicity of wave structure in minutes and the color-bar represents the power. The 

WPS shows maximum intensification in AGW of periodicity ~60 minutes on December 27-28, 2015. 
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To examine the direct evidences of AGW, we compute the four dimensional 

Ep values, i.e., over space (three dimension) and time, from the SABER temper-

ature profile for the stratospheric altitude of 30 - 50 km December 15, 2015 to 

January 15, 2016. Firstly, the time altitude profile is shown in Figure 7(a), Fig-

ure 7(b). As the satellites data are procured in the universal time format. It is 

clearly evident that Ep is significantly increased at an altitude of 44 to 46 km 

around December 24-27, 2015 (UTC). For better understanding, we also zoom 

the region “A” portion, which is shown in Figure 7(b) (bottom). The date of the 

earthquake is marked with magenta dashed vertical line (January 3, 2016, UTC).  

 

 
(a) 

 
(b) 

Figure 7. (Top: a) Altitude profile of Potential Energy Ep derived from the SABER tem-

perature profile during the period December 15, 2015 to January 15, 2016 as presented in 

Universal time. The red box represents the region “A” which shows significant increase in 

EP. The magenta dashed line represents the EQ day in Universal date time format (Janu-

ary 3, 2016). (Bottom: b) Prominent AGW activity period during December 24-27, 2015 

in Universal date time format (Zoom in on region “A”). 
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The initial outcomes from temperature profiles are shown in Figure 8. Figure 

8(a) shows the temperature profile with fitted profile, Figure 8(b) T', Figure 

8(c) N2 and Figure 8(d) Ep for December 24-27, 2015 in the Universal Date 

Time format. 

The maximum value of Ep enhancement is near about 12 J/kg. To examine the 

locational dependency of the AGW, the latitudinal and longitudinal variation Ep 

at an altitude of 45 km during December 21, 2015 to January, 9 2016 are pre-

sented in Figure 9(a), Figure 9(b). The horizontal magenta lines represent the 

latitude and longitude of the epicenter of earthquake. 

It is evident from Figure 9(a), Figure 9(b) that the enhancement in Ep is 

maximum around the epicenter before the earthquake. The Ep enhancement is 

not fixed but getting transferred. The enhancement starts at lower altitude of 

~20˚N (Top panel of Figure 9) and then it starts to transfer to the higher alti-

tude. The Ep reaches its maximum at 23˚N latitude on December 24, 2015 and is 

spread over up to 26˚N around the epicenter. After December 24, it starts to de-

crease and again gets increased around December 27 in a lower latitude region.  

 

 

Figure 8. Vertical profile of (a) temperature profile with fitted profile, (b) T', (c) N2 and (d) Ep for (1) December 24, 2015, (2) De-

cember 25, 2015 (3) December 26, 2015 and (4) December 27, 2015. 
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(a) 

 
(b) 

Figure 9. (Top: a) Latitudinal ad (Bottom: b) longitude variation of the potential energy 

Ep at an altitude 45 km. The magenta horizontal lines represent the latitude and longitude 

of the epicenter and the vertical dashed line denote the day of the earthquake (UTC). 

 

In and around the epicenter, the transfer is not symmetric in nature. The longi-

tudinal variation is rather different from the latitudinal variation. Around the 

epicenter, the Ep becomes maximum on December 27, 2015 at ~94˚E. However 

instead of continuous transformation, the Ep around epicenter is rather discrete 

and forms clusters around the epicenter from 88˚E to 98˚E. It is evident that 

during the December 24-27, 2015, the Ep gets transferred from the higher alti-

tude to the lower which is different than from the latitudinal variation. 

To examine the distribution of Ep more precisely, we draw the spatial varia-

tion of Ep over a map. Figure 10 shows the variation of Ep values from December 

17, 2015 to January 15, 2016 over a map of India and its territory. It is clearly 
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visible from Figure 10 that the enhancement of Ep is maximum during Decem-

ber 24-27, 2015 over the epicenter. It is also evident that the generated wave are 

coming from the North-East (December 23, 2015), cover widely over the epi-

center (December 25, 2015) and faded away in the direction of South-East of In-

dian landmass. This is consistent with the overall AGW variation as shown in 

Figure 7(a), Figure 7(b) and Figure 9(a), Figure 9(b). 

 

 
(a) 

 
(b) 

Figure 10. Variation of Potential energy over Indian landmass during December 17, 2015 to January 15, 2016. 
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4. Conclusions 

In this manuscript, we try to figure out the possible pre-seismic phenomena 

during a strong earthquake in Manipur, India on December 4, 2015 (IST). Prior 

to the earthquake, moderate to strong geomagnetic storms happened on De-

cember 21 and December 31, 2016 for which the seismogenic signal got conta-

minated. We proceed in a different approach where we examine the most useful 

parameter in LAIC mechanism which can be used to identify the contaminated 

seismogenic signals. Also, we try to eliminate the storm induced phenomena in 

our results. We mainly use two channels in LAIC mechanism viz. 1) electro-

magnetic channel and 2) acoustics channel. For electromagnetic channel, we use 

sub-ionospheric VLF propagation technique for JJI-IERCOO baseline and 

compute the nighttime Trend and NTF from the conventional methods for a pe-

riod of December 31, 2015 to January 15, 2016. It is found that the Trend and 

NTF gets anomalous on the first storm on December 20-21 night and on the day 

of the earthquake i.e. January 3-4. Also, the Trend in positive during the second 

storm implies that apart from the storm, and the seismogenic wave also has an 

impact on the nighttime signal amplitude. It is difficult to anticipate the effects 

whether seismogenic or due storm induced plasma variation as the effects in 

lower ionosphere can be a combined effect of both the earthquake and storm. 

We notice that the effect of the first storm which is stronger, the impact on VLF 

signal is immediate in comparison to the second storm which is weaker. To ve-

rify this effect, we use the acoustics channel and compute the AGW fluctuations 

from VLF signals using FFT and Wavelet analysis. From both eh FFT and 

Wavelet analysis, we observe that there is strong signature of AGW with peri-

odicity of ~60 minutes. It is mostly acceptable that the generation mechanism of 

AGW is majorly from the acoustics origin where the temperature and pressure 

gradient waves move to the higher attitude. To justify the above statement, we 

compute the potential energy (Ep) of AGW as compute from the atmospheric 

temperature profile as observed by SABER/TIMED instruments. We observed 

that the Ep gets enhanced during December 24 to 27, 2015 which is ahead of 

earthquake. To justify these results, spatio-temporal profile of Ep is computed 

(Figures 7-10) where it is observed that the increase in the potential energy is 

over the earthquake epicenter with a transport mechanism around the same.  

We anticipate that the ionospheric effects are of course getting contaminated 

due to the geomagnetic storm where the ionospheric charge particles and plasma 

gets perturbed significantly. So, in this case, the VLF fluctuation is rather conta-

minated in nature and it is difficult to assign this effect in Trend/NTF as 

pre-seismic. However, as the effects of acoustics channel (AGW hypothesis) are 

consistent in both FFT/WPS and SABER/TIMED, we can say that, AGW hypo-

thesis are rather non-contaminated in this case. As the sources of stratospheric 

AGW are the neutral winds, it is most likely to remain unperturbed during the 

storm. Though there is an example from [58] where evidences of AGW have 

been found after 1 - 15 days of storm as observed from wind speed, atmospheric 
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density and pressure. It is also evident from Figures 7-10 that there is also ex-

ample of post seismic AGW excitation. This could have several reasons starting 

from several aftershocks and many other meteorological phenomena [43] [59]. 

As, in this manuscript, we concentrate mainly the contamination in pre-seismic 

effects, we are excluding this part from our discussion. We will do it in future. 

Also, in future we will choose more earthquakes which have perturbations due 

to geomagnetic storms where we can apply more parameters in thermal, acous-

tics and electromagnetic channels of LAIC to figure out this seismogenic conta-

mination.  
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