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Within-species contamination is a major issue in sequencing studies, especially for mitochondrial studies. Contamination can

be detected by analyzing the nuclear genome or by inspecting polymorphic sites in the mitochondrial genome (mtDNA).

Existing methods using the nuclear genome are computationally expensive, and no appropriate tool for detecting sample

contamination in large-scale mtDNAdata sets is available. Here we present haplocheck, a tool that requires only the mtDNA

to detect contamination in both targeted mitochondrial and whole-genome sequencing studies. Our in silico simulations

and amplicon mixture experiments indicate that haplocheck detects mtDNA contamination accurately and is independent

of the phylogenetic distance within a sample mixture. By applying haplocheck to The 1000 Genomes Project Consortium

data, we further evaluate the application of haplocheck as a fast proxy tool for nDNA-based contamination detection using

the mtDNA and identify the mitochondrial copy number within a mixture as a critical component for the overall accuracy.

The haplocheck tool is available both as a command-line tool and as a cloud web service producing interactive reports that

facilitates the navigation through the phylogeny of contaminated samples.

[Supplemental material is available for this article.]

The humanmitochondrial DNA (mtDNA) is an extranuclear DNA
molecule of∼16.6 kb in length (Andrews et al. 1999). It is inherited
exclusively through the maternal line, facilitating the reconstruc-
tion of the humanmaternal phylogeny and female (pre-)historical
demographic patterns worldwide. The strict maternal inheritance
of mtDNA results in a natural grouping of haplotypes into mono-
phyletic clusters, referred to as haplogroups (Kivisild et al. 2006;
Kloss-Brandstätter et al. 2011). Furthermore, second-generation se-
quencing enables the detection of heteroplasmyover the complete
mitochondrial genome. Heteroplasmy is the occurrence of at least
two different haplotypes of mtDNA in the investigated biological
samples (e.g., cells or tissues). Depending on the sequencing cov-
erage, heteroplasmic positions are reliably detectable down to
the 1% variant level (Ye et al. 2014; Weissensteiner et al. 2016a).

It has been shown that external or cross-contamination (Yao
et al. 2007; Just et al. 2014, 2015; Yin et al. 2019; Brandhagen et al.
2020), artificial recombination (Bandelt et al. 2004), or index hop-
ping (VanDer Valk et al. 2019) can generate polymorphic sites that
can be erroneously interpreted as heteroplasmic sites (He et al.
2010; Bandelt and Salas 2012; Just et al. 2014, 2015; Ye et al. 2014).

Sample contamination is still a major issue in both nuclear
DNA (nDNA) and mtDNA sequencing studies that must be pre-
vented to avoid mistakes as they occurred with Sanger sequencing
studies in the past (Salas et al. 2005). Because of the accuracy and
sensitivity of second-generation sequencing combined with the
availability of improved computational models, within-species
contamination is traceable down to the 1% level in whole-genome
sequencing (WGS) studies (Jun et al. 2012).

Several approaches exist to detect contamination in mtDNA
sequencing studies. We and others previously showed that a con-
tamination approach based on the coexistence of phylogenetically
incompatible mitochondrial haplotypes observable as polymor-
phic sites is feasible (Li et al. 2010, 2015; Avital et al. 2012;
Weissensteiner et al. 2016a). The method of Dickins et al. (2014)
facilitates the check for contamination by building neighbor join-
ing trees. Mixemt (Vohr et al. 2017) incorporates themitochondri-
al phylogeny and estimates themost probable haplogroup for each
sequence read. The implemented algorithm reveals advantages for
contamination detection by detecting several haplotypes within
one sample and is independent of variant frequencies. However,
it is too computationally expensive when applied to thousands
of samples. For ancient DNA studies, schmutzi (Renaud et al.
2015) uses sequence deamination patterns and fragment-length
distributions to estimate contamination. Additionally, specific lab-
oratory protocols were designed for eliminating contamination,
for example, double-barcode sequencing approaches (Yin et al.
2019).

For contamination detection in mitochondrial studies, most-
ly DNA cross-contamination is investigated (Ding et al. 2015; Wei
et al. 2019; Yuan et al. 2020) by applying VerifyBamID (Jun et al.
2012; Zhang et al. 2020). Nevertheless, it becomes apparent that
a tool for mitochondrial studies that rapidly and accurately detects
contamination in thousands of samples is still missing. Because
mtDNA is also present hundredfold to several thousandfold per
cell depending on the cell type, also WGS data sets specifically
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targeting the autosomal genome result in a high coverage over the
mitochondrial genome.

In this study, we systematically evaluate the approach of us-
ing the mtDNA phylogeny for contamination detection and pre-
sent haplocheck, a tool to report contamination in mtDNA
targeted sequencing and WGS studies. In general, haplocheck
works by identifying polymorphic sites down to 1% within an in-
put sample. By grouping polymorphic sites into haplotypes, hap-
locheck identifies contamination using the mitochondrial
phylogeny and the concept of haplogroups. Overall, this work
should show themerits of themitochondrial genome as an instru-
ment for additional quality control in sequencing studies. It addi-
tionally presents haplocheck, a fast and accurate tool that takes
advantage of a solid well-known mitochondrial phylogeny for de-
tecting contamination.

Methods

Haplocheck takes as input BAM or VCF files. For BAM files, an ini-
tial variant calling step based on amaximum likelihood (ML) func-
tion (Ye et al. 2014) is performed. Detected polymorphic variants
are then reported in VCF format and split by their variant allele fre-
quency (AF) into a major and minor haplotype profile. A haplo-
type profile consists of all detected homoplasmic variants and
the corresponding allele of each polymorphic variant. Alleles
with an AF≥50% are added to the major haplotype profile; other-
wise, they are added to the minor haplotype profile. A haplogroup
for each haplotype is then determined using HaploGrep 2
(Weissensteiner et al. 2016b). By using the mitochondrial phylog-
eny, the phylogenetic distance (i.e., number of nodes between the
two haplogroups) is calculated. The identification of two stable
haplogroups allows haplocheck to report the contamination level
for each sample.

Three different scenarios need to be considered for contami-
nation detection based on the mitochondrial phylogeny. First,
two haplotypes branch into two different nodes: a major haplo-
type with a mutation level x and a minor haplotype with a muta-
tion level 1−x (Fig. 1A), whereas here H1a1 represents the last
common ancestor (LCA) for both haplotypes. Second, if polymor-
phic sites are only identified in the major haplotype, the minor
haplotype H1a1 is defined as the LCA (Fig. 1B). Third, if polymor-
phic sites are only present in the minor haplotype, the major hap-
lotype H1a1 defines the LCA (Fig. 1C).

Variant calling

The overall performance of haplocheck relies on an accurate
variant calling. Previously, we developed mtDNA-Server
(Weissensteiner et al. 2016a) for the detection of polymorphic sites
down to 1% (Ye et al. 2014) in combination with several quality-
control criteria such as (1) base quality≥20, (2) >10× depth per
strand, (3) 1% minor AF on each strand, and (4) a log-likelihood
ratio (LLR) of ≥5. LLR represents the ratio between the estimated
frequency of the major allele within the ML function of the poly-
morphic and the homoplasmic model.

For this work, we developed a multithreaded version of
mtDNA-Server and integrated it into haplocheck (https://github
.com/seppinho/mutserve). As mentioned, detected polymorphic
positions are reported in VCF format as heterozygous genotypes
(GT) using the AF tag for the estimated contamination level.
Although the term genotype applies to autosomal diploid scenar-
ios, we use it here to refer to mtDNA variation patterns that resem-
ble a genotype status.

For homoplasmic positions, the final genotype GT∈ {A,C,G,
T} is detected using all input reads (reads) and calculating the geno-
type probability P using Bayes’ theorem P(GT|reads) =P(reads|GT)
×P(GT)/P(reads). To calculate the prior probability P(GT), we
used The 1000 Genomes Project Consortium Phase 3 VCF file
(The 1000 Genomes Project Consortium 2015) and calculated
the frequencies for all sites using VCFtools (Danecek et al. 2011).
To compute P(reads|GT), we calculated the sequence error rate (ei
= 10−Qi/10) for each base i of a read, where Q is the reported quality
value. For each genotype GT (GT∈ {A,C,G,T}) of a read, we deter-
mined the genotype likelihood by multiplying 1− ei in case the
base of the read ri =GT and ei/3 otherwise over all reads (Ding
et al. 2015). The denominator P(reads) is the sum of all four P
(reads|GT).

Contamination detection model

The contamination model within haplocheck includes steps
for (1) splitting homoplasmic and polymorphic sites into two
haplotype profiles, (2) haplogroup classification for each haplo-
type profile, and (3) filtering based on quality-control criteria.
Homozygous genotypes for the alternate alleles (ALT; i.e., homo-
plasmic sites) are added to both haplotypes, whereas heterozygous
genotypes are split using the AF tag. Because mutserve always re-
ports the AF of the nonreference allele, the split method applies
the following rule: In case a GT 0/1 (e.g., Ref: G, ALT: C) with an
AF of 0.20 is included, the split method defines C as the minor al-
lele, 0.2 as the minor level, and 0.8 as the major level. Conversely,
when a GT 0/1 (e.g., Ref: G, ALT: C) with an AF of 0.80 is included,
the C is defined as themajor allele. If no reference allele is included
(e.g., 1/2), we use the first allele as the major allele and assign the
included AF to that allele.

For haplogroup classification, we use HaploGrep 2
(Weissensteiner et al. 2016b) based on Phylotree 17 (van Oven
and Kayser 2009), which has been refactored as a module and in-
tegrated directly into haplocheck. As a result, HaploGrep 2 reports
the haplogroup of both the major and minor haplotype. For each
analyzed sample, the LCA is required to estimate the final contam-
ination level and to calculate the distance between the two haplo-
types. Therefore, we traverse Phylotree from the rCRS reference to
each haplotype node. The LCA is determined by starting at the fi-
nal node of haplotype 1 (h1) and by iterating back until the refer-
ence (rCRS) is reached. Then, we iterate back to rCRS for haplotype
2 (h2) until the first node included in h1 is identified. This node
then defines the LCA of both haplotypes. Only polymorphic po-
sitions starting from the LCA and showing a phylogenetic weight
greater than five are taken into account for the subsequent filter-
ing step. The phylogenetic weight describes the frequency of
each mutation in Phylotree and is scaled from one to 10 in a
nonlinear way. Variants with a high occurrence in Phylotree are
assigned a small phylogenetic weight. Furthermore, back muta-
tions (i.e., mutation changes back to the rCRS reference within a
specific haplogroup) and deletions on polymorphic sites are ig-
nored by haplocheck.

By using all previous information, we finally estimate the
contamination level for samples fulfilling the following three
quality-control criteria: (1) two or more polymorphic variants
starting from the LCA, (2) ≥0.5 haplogroup quality for each haplo-
type (calculated by HaploGrep 2 using the Kulczynski metric),
and (3) phylogenetic distance of two or more. The median muta-
tion level of all detected polymorphic sites reaching the described
criteria is calculated independently for both haplotypes (h1 and
h2). Haplocheck reports the median level of the minor haplotype
as the final contamination level.
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Report

Haplocheck produces a tab-delimited text file and an interactive
HTML report. For each sample, haplocheck determines the final
contamination status, the contamination level, and quality met-
rics such as the phylogenetic distance or the coverage.
Additionally, a graphical phylogenetic tree is generated dynami-
cally for each sample, including the path from the rCRS to the
two final haplotypes. This allows the user to manually inspect
edge cases, visualize the contamination graphically, and analyze
the source of contamination (see Supplemental Fig. S1).

Results

Haplocheck is available as a standalone command-line tool and as
a cloudweb service. For both scenarios, the identical computation-
al workflow consisting of variant calling (for BAM input only),
haplogroup classification, and contamination detection is applied.
The Cloudgene framework (Schönherr et al. 2012) is used to pro-

vide the workflow as a service to users, which is also used for
large-scale genetic services like the Michigan Imputation Server
(Das et al. 2016) and the mtDNA-Server (Weissensteiner et al.
2016a), that greatly improves user experience and productivity.

Evaluation

To test the performance of haplocheck within targeted mtDNA
and WGS studies, we analyzed several data sets. First, we checked
previously generated mtDNA mixtures of two samples including
different haplotypes (Weissensteiner et al. 2016a). The mitochon-
drial genomes of the mixed fragments (1%–50%) were amplified
by PCR and sequenced on an Illumina HiSeq system.We analyzed
the original samples (coverage 60,000×) and down-sampled them
accordingly. Our results show that a coverage of >100× and >600×
is required to detect contamination of 10% and 1%, respectively
(see Table 1). Of note, The 1000 Genomes Project Consortium
low-coverage sample collection (2–4×nDNA coverage) already

B

A

C

Figure 1. All possible contamination scenarios. Here, a contamination level of 20% is shown in all three scenarios (A–C ). Shared polymorphisms of two
haplotypes are included in a single branch, whereas the split into two branches displays the different lineage haplotypes. (A) Shared mutations defining
H1a1 (last common ancestor [LCA]) are present at 100%, whereas 7961C is present only at 20%, defining the minor haplogroup H1a1b, whereas
4639C and 10993A are present at 80%, defining the major haplogroup H1a1a1. (B) A mixture of two haplotypes within a single lineage but of different
lineage depths (minor haplotype H1a1 and major haplotype H1a1a1) is observed if no minor haplotype can be found. (C ) A mixture of two haplotypes
within a single lineage but of different lineage depths (minor H1a1a1 and major H1a1) is detected if the minor haplotype results in a stable haplogroup.
Shared homoplasmic sites facilitate the identification of the branching pattern in all three scenarios and improve the overall haplogroup quality. The used
notation for variants (e.g., 1438G) includes the mtDNA position (1438) followed by the actual base change (G).
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includes sufficient coverage over the mitochondrial genome to
detect contamination down to 1% (1800×mtDNA coverage).

We further simulated sequencing data mixtures for different
sequencing instruments by using the ART-NGS read simulator
(Huang et al. 2012). The generated mixtures differ in (1) contami-
nation level (1%–50%), (2) coverage (between 10×–5000×), and (3)
phylogenetic distance between the twomixedhaplotypes (three to
23 phylogenetic nodes between them). The results were highly
concordant with the mixtures and show that haplocheck is able
to detect contamination accurately even for samples including
haplotypes with a close phylogenetic distance (see Table 2; for oth-
er phylogenetic distances, see Supplemental Table S1).

In a second step, we created and analyzed in silico data by
mixing randomgenotype profiles from the currently best available
mtDNA phylogeny derived from Phylotree Build 17 (code on
GitHub). The overall performance of haplocheck depends on a
good classification of samples into haplogroups even from noisy
variant calling data sets. Therefore, we initially created input pro-
files for each displayed haplogroup, amounting to 5426 profiles
in total. Each input profile consists of a list of polymorphisms
from the tree reference (rCRS) to the actual node (or haplogroup).
Our test data consist of 500,000 unique mixtures of pairwise hap-
logroup profiles derived from the overall phylogeny comprising
5500 haplogroups (250,000 contaminated, 250,000 not-contami-
nated samples) and 100,000mixtures from the haplogroup H-sub-
tree, including 977 haplogroups. The generation of in silico data
from the H-subtree allows us to test the performance of samples
showing a smaller phylogenetic distance.

To account for noisy input data, we artificially added random
variants to each input profile. This has been performed by remov-
ing expected variants from the input profile and adding random
variants available within Phylotree. The amount of noise varies
from zero to eight variants for each mixture. The proportion of
added versus removed variants is calculated randomly. To make
it further restrictive, we only added phylogenetic relevant variants
from Phylotree. Variants that are not present in Phylotree (i.e., so

far unknown in the phylogeny) would not affect the contamina-
tion estimation. Finally, three data sets (noise 0, 4, 8) derived
from two different trees (complete tree, haplogroup H subtree)
have been generated, each consisting of 500,000 and 100,000mix-
tures respectively. The F1-score, defined as (2 ×precision× sensitiv-
ity)/(precision+ sensitivity), has been calculated for each mixture
to analyze the overall accuracy of haplocheck.

To determine the best haplocheck configuration regarding ac-
curacy, we tested different setups for all six data sets. Each setup in-
cludes a different threshold for (1) the amount ofmajor andminor
polymorphic sites, (2) the minimum allowed phylogenetic dis-
tance between two profiles, and (3) the haplogroup classification
model (Kulczynski, Hamming, Jaccard). The six best setups have
been tested to determine the optimal trade-off between noise, hap-
logroup distance, and the overall F1-score (see Supplemental Fig.
S2). In our experiments, setup 3 showed the best trade-off between
haplogroup distance and overall accuracy. This setup allows us to
detect contamination of samples with a phylogenetic distance of
at least two and has been used as the final setup for the contami-
nation method. Table 3 summarizes the F1-score statistics for
Setup 3. The result indicates that haplocheck is able to accurately
detect contamination of two samples also in the case in which
noise is included in the input profiles and the distance between
the two haplogroups is small.

In a last step, we also evaluated the performance of haplo-
check as a tool to extrapolate the nDNA contamination level
from mtDNA data. Therefore, we generated four whole-genome
in silico samples from two random The 1000 Genomes Project
Consortium samples showing no signs of contamination based
on the VerifyBamID score (Supplemental Table S2). To analyze
the impact of the mitochondrial copy number (mtCN), four sam-
ples with different amounts of mtCN were chosen from The 1000
Genomes Project Consortium sample collection. The mtCN has
been inferred using the formula (mtDNA coverage)/(nDNA cover-
age × 2) (Ding et al. 2015). For each sample, again four different in

Table 1. Four mixtures (M1–M4) have been analyzed using haplo-
check with varying coverage

Coverage M1 (50%) M2 (10%) M3 (2%) M4 (1%)

60,000 46.4% 12.6% 2.3% 1.1%
30,000 46.3% 12.1% 2.3% 1.1%
6000 46.2% 11.8% 2.3% 1.1%
3000 46.2% 11.5% 2.5% 1.1%
2500 46.5% 11.4% 2.6% 1.1%
2000 46.3% 10.9% 2.4% 1.1%
1800 46.4% 11.1% 2.5% 1.2%
1500 46.7%a 11.6% 2.5% 1.2%
1200 46.4% 11.3% 2.5% 1.2%
900 46.1% 10.6% 3.1% 1.3%
600 45.8% 10.6% 3.0% 1.2%a

300 45.4%a 10.0% 3.4%a ND
120 44.7%a 11.3% ND ND
60 43.9%a 14.3%a ND ND
30 40.7%a ND ND ND
15 ND ND ND ND

The first column (coverage) indicates the down-sampled coverage;
columns one to four (M1 to M4) indicate the level of each mixture. Each
cell in the table includes either the actual detected contamination level
in percentage reported by haplocheck or ND (not detectable) in case
the contamination could not be detected by haplocheck.
aThe detected haplotypes by haplocheck differ from the expected haplo-
types. Nevertheless, haplocheck is still able to detect the contamination.

Table 2. Four in silico MiSeq mixtures (S1–S4) have been generated
and analyzed using haplocheck with varying coverage

Mean coverage

Mixtures (%)

S1: 50% S2: 10% S3: 2% S4: 1%

4009 48.4% 10.3% 2.1% 1.2%
2409 49.4% 10.7% 2.2% 1.0%
2024 49.3% 10.2% 1.9% 1.3%
1620 49.1% 10.4% 1.4% 0.9%
1223 46.9% 9.8% 2.2% 1.2%
1021 48.6% 8.3% 1.9% 0.9%
819 50.0% 9.0% 2.8% 1.4%
613 48.4% 10.2% 2.2% ND
415 46.7% 9.3% 2.0% ND
207 48.6% 8.7% ND ND
83 48.4% 6.9% ND ND
74 44.0% 13.3% ND ND
49 41.3% ND ND ND
25 ND ND ND ND
8 ND ND ND ND

To create the simulated data set, two samples showing a phylogenetic
distance of 13 (haplogroups U5a2e and H1c6) have been used. The first
column (coverage) indicates the coverage, and columns one to four
(S1–S4) indicate the level of each mixture. Each cell in the table includes
either the actual detected contamination level in percentage reported
by haplocheck or ND (not detectable) in case the contamination could
not be detected by haplocheck.
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silico whole-genome mixtures between 1% and 10% have been
created and analyzed using VerifyBamID2 (for nDNA) and haplo-
check (for mtDNA). Table 4 summarizes the findings, whereby
each sample cell includes the average delta between the calculated
and the expected value for all four different mixtures per sample.
Levels obtained from VerifyBamID2 and haplocheck correlate if
the copy number (CN) for each haplotype in the sample is similar
(see samples 1 and 2). Values obtained from sample 3 still correlate,
because themain haplotype shows a highermtCN and is therefore
less affected by the lowermtCN of haplotype 2. In aworst-case sce-
nario (sample 4), in which the main haplotype has a lower mtCN
and theminor haplotype a highermtCN, the values obtained from
haplocheck and VerifyBamID2 differ substantially.

A drastic shift in the CN is atypical for a large sequencing
project. In work by Zhang et al. (2017), the CN of 1500 women
aged 17–85 have been analyzed and show that most samples are
within a range of 100–300 (mean, 169; DNA source, whole blood).
In work by Fazzini et al. (2019), the mtCN has been analyzed in a
cohort of 4812 chronic kidney disease patients, also showing only
moderate differences (mean, 107.2; SD, 36.4; DNA source, whole
blood).

Contamination detection in The 1000 Genomes Project

Consortium

To evaluate haplocheck on aWGS study, we extracted the mtDNA
genome reads (labeled as chromosomeMT) from samples (Phase 3,
low-coverage) from The 1000 Genomes Project Consortium (ftp://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/), resulting in a sam-
ple size of 2504 and a total file size of 95 GB. As an initial check,
we compared variants detected by mutserve to the official The
1000 Genomes Project Consortium data release using callMom

(https://github.com/juansearch/callMom) and determined the
haplogroup using HaploGrep 2. Overall, 98% of the samples (n=
2504) result in an identical haplogroup (see Supplemental Fig.
S3). The downloaded BAM files were then used as an input for
haplocheck to test for contamination. Based on themitochondrial
genome, 5.07% (127 of 2504) of all samples show signs of contam-
ination on mtDNA (see Supplemental Table S3). As previously
shown, the performance of haplocheck as a proxy for nDNA
is dependent on the mtCN. Because this is uneven for the low-
coverage data from The 1000 Genomes Project Consortium, we
looked at the tissue source used for DNA extraction. As depicted
in Table 5 and Supplemental Figure S4, there is a significant differ-
ence in the mtCN owing to the two tissue types used within The
1000 Genomes Project Consortium (P<2.2 ×10−16, independent
t-test).

Because of the different mtCN, we split The 1000 Genomes
Project Consortium samples into two groups and calculated the
Pearson correlation coefficient (R) separately. Group 1 (mtCN≥
300, n=2004) shows a correlation of R =0.72 between the contam-
ination levels of VerifyBamID2 and haplocheck, with the contam-
ination levels reported by haplocheck ranging from 0.8% to 4.8%
(see Supplemental Table S4). The levels are in a very similar range
as the VerifyBamID estimates for The 1000 Genomes Project
Consortium, because only samples showing a VerifyBamID level
of <3% are included. Group 2 (mtCN<300, n= 500) shows a corre-
lation of only R= 0.31, and contamination levels reported by hap-
locheck are between 1.8% and 25.5% (see Supplemental Table S5).
Because of the higher mtCN, samples of group 1 are more stable,
and contamination levels are in a similar range. Samples with a
lower mtCN (group 2) differ substantially, because a contamina-
tion with a sample showing a higher amount of mtCN affects
the mtDNA contamination level. Therefore, group 2 shows a
much higher discrepancy in the contamination level compared
with VerifyBamID2.

To verify the feasibility of haplocheck in WGS studies
with only moderate differences between the samples, we down-
loaded the mtDNA (labeled as chromosome chrM) of the deep-
sequenced The 1000 Genomes Project Consortium sample
collection (30× coverage; ftp://ftp-trace.ncbi.nlm.nih.gov/1000ge
nomes/ftp/1000G_2504_high_coverage/), amounting to 176 GB.
Compared to the previously analyzed low-coverage sample collec-
tion, the mtDNA coverage is much more homogeneous for the
high-coverage data (see Fig. 2). Haplocheck detected only minor
mtDNA contamination in seven samples (0.9%–1.7%) (see
Supplemental Table S6); all spuriously detected contamination
in the low-coverage data owing to the different mtCN have
vanished.

Table 3. F1-Score for different noise categories using the finally cho-
sen setup 3

In silico simulation
Setup 3: distance: 2; polymorphic sites: 2, Kulczynski metric

Metric Noise 0 Noise 4 Noise 8

F1-score complete phylogenetic tree 0.999 0.993 0.971
F1-score H phylogenetic tree 0.995 0.976 0.899

Noise 0–Noise 8 include the amount of added/removed variants from
the input profile. The two experiments based on different trees (mixtures
derived from the complete phylogenetic tree and mixtures derived from
the haplogroup H subtree only) show that haplocheck is capable of de-
tecting sample contamination accurately.

Table 4. Four samples including two different haplotypes, in which each haplotype shows a different amount of mtCN have been created (see
mtCN ratio)

mtCN ratio

VerifyBamID2
Haplocheck

HGPD_100 K HGDP_10 K 1000G_100 K 1000G_10 K Phylotree 17

Sample 1 1:1 −0.85% −0.51% −0.34% 0.11% 0.45%
Sample 2 1:0.8 −0.26% −0.08% −0.49% −0.12% 1.32%
Sample 3 10:1 −0.66% −0.66% −0.50% −0.61% −3.70%
Sample 4 1:10 −0.03% −0.06% −0.22% −0.36% 20.85%

Each cell contains the average delta of the contamination level for four different mixtures (1%–10%). The level has been calculated for both
VerifyBamID2 (nDNA data) and haplocheck (mtDNA data). The values indicate that mtDNA estimates work well as a proxy for nDNA for the first two
sample samples (ratio 1:1 and 0.8) and differ with a larger mtCN ratio between the two haplotypes. Sample 4 (ratio 1:10) differs substantially from
sample 3 (ratio 10:1) because the main haplotype includes a low mtCN, whereas the second haplotype has a high mtCN (vice versa for sample 4).
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In the last step, we looked at samples that have been excluded
from The 1000 Genomes Project Consortium sample collection
(nDNA contamination level >3% using VerifyBamID). In total,
four samples have been excluded by VerifyBamID using its se-
quence-only method (free-mix parameter) and seven samples us-
ing its sequence and array methods (chip-mix parameter).
Haplocheck was able to identify these samples as contaminated
with a correlation of 89% between the nDNA and mtDNA level
(Supplemental Table S7).

nDNA of mitochondrial origin

nDNA of mitochondrial origin (NUMT) can result either in a cov-
erage drop on mtDNA sites owing to the alignment of mitochon-
drial reads to NUMT or in false-positive polymorphic calls owing
to the alignment of NUMT reads to the mitochondrial genome
(Maude et al. 2019). Approaches exist (Goto et al. 2011; Samuels
et al. 2013) that exclude reads mapping to the nDNA but overall
reduce coverage and may result in false negatives (Albayrak et al.
2016). In work by Weissensteiner et al. (2016a), we annotated mi-
tochondrial sites coming from an NUMT reference database (Li
et al. 2012; Dayama et al. 2014), although limited to known
NUMTs. For contamination detection with haplocheck, false-pos-
itive polymorphic sites owing to NUMTs are expected to only have
aminor effect because they typically do not resemble the complete
mitochondrial haplotypes. Nevertheless, sufficient coverage for
the haplogroup defining variants is still required when dealing
with NUMTs. In a study conducted by Maude et al. (2019), an in
silicomodel has been set up to analyze the homology betweenmi-
tochondrial variants and NUMTs. They show that 29 variants rep-
resenting haplogroups A, H, L2, M, and U did not cause loss of
coverage, but nevertheless, a substantial loss of coverage has
been identified for specific sites (e.g., G1888A, A4769G). In a re-
cent work, the presence of a mega-NUMT that could mimic con-
tamination on mitochondrial haplogroup level is described
(Balciuniene and Balciunas 2019). This indicates that in very rare
cases, NUMTs could indeed resemble complete mitochondrial
haplotypes and yield to a false-positive contamination result
(Salas et al. 2020; Wei et al. 2020). Although we did not observe
NUMT-related issues in the validation of The 1000 Genomes
Project Consortium, we cannot entirely rule out possible NUMTs
effects on contamination detection.

Runtime and performance

Haplocheck scales linearly with the data size (i.e., sequence reads).
For the complete sample collection of The 1000 Genomes Project
Consortium in BAM format, the contamination estimate has been

calculated within 5.95 h using a single core (Intel Xeon CPU 2.30
GHz) and 1 GB RAM and 1.85 h using four cores and 4 GB RAM,
respectively.

Table 6 includes the runtime for 26 samples in BAM format
for VerifyBamID2 (input WGS data, varying amounts of markers
and cores) and haplocheck (input mtDNA only).

Contamination source

Haplocheck always reports both the major and minor haplotypes
for each sample. Therefore, possible sources of contamination
can be investigated. For example, sample HG00740 from The
1000 Genomes Project Consortium low-coverage data set shows
a contamination level of 2.74% on nDNA (using VerifyBamID2)
and 3% onmtDNA (using haplocheck). By looking at the phyloge-
netic tree that is created for each sample by haplocheck, the con-
taminating minor haplogroup B2b3a can be identified. The
identical haplogroup is also assigned to sample HG01079, which
has been analyzed in the same center with a similar mtCN. Such
phylogenetic information provided within the interactive HTML
report can help in identifying the source of contamination for all
three types of contamination.

Discussion

There are many examples in the literature showing the negative
impact of artifacts on mtDNA data sets in different areas of re-
search, including medical studies, forensic genetics, and human
population studies (He et al. 2010; Bandelt and Salas 2012; Just
et al. 2014; Ye et al. 2014). The approach described in this paper
takes advantage of the mitochondrial phylogeny and is capable
of detecting sample contamination based on mitochondrial hap-
lotype mixtures. By creating several in silico data sets and analyz-
ing The 1000 Genomes Project Consortium samples, we show
that haplocheck can be used both in studies using targeted ampli-
fication of mtDNA and in those using WGS data. We also investi-
gated the influence of the mtCN and advise taking the mtCN into
consideration when using mtDNA estimates for extrapolating
nDNA levels.

Table 5. Tissue cell types of all 2504 samples from The 1000
Genomes Project Consortium (low-coverage data set)

Tissue cell type

1000 Genomes Phase 3
samples (n = 2504) Blood LCL Not specified

Samples 364 (14.5%) 506 (20.2%) 1634 (65.3%)
mtCN mean 49.3 747.1 566.9

Significant differences in the mtCN between The 1000 Genomes Project
Consortium samples can be seen. Each cell includes the absolute (rela-
tive) number of samples. (LCL) Lymphoblastoid cell lines.

Figure 2. Violin plot representing themean coverage over all 2504 sam-
ples in the two The 1000 Genomes Project Consortium data sets (high-
coverage and low-Coverage). Because of different tissues in the low-cover-
age data, different clusters of coverage can be observed, resulting inwrong
mtDNA contamination estimates for nDNA. It can be seen that the second
peak within the low-coverage group vanishes for the high-coverage data,
resulting in better estimates for extrapolation.
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Several other methods for contamination detection exist. For
nDNA sequences, VerifyBamID2 (Zhang et al. 2020) offers an an-
cestry-agnostic DNA contamination estimation method and is
widely used in WGS studies. For ancient studies, schmutzi
(Renaud et al. 2015) provides a contamination estimation tool
by using sequence deamination patterns; the approach presented
in Fu et al. (2013) includes a likelihood-based method to estimate
the frequency of present-day human mtDNA haplotypes in the
contaminator population. A further approach was suggested by
Dickins et al. (2014), describing a pipeline for contamination
detection accessible through the Galaxy online platform (Afgan
et al. 2018).

Some limitations apply to the phylogenetic-based contami-
nation check proposed in the present investigation, previously ap-
plied in a semi-automaticmanner (Li et al. 2010; Avital et al. 2012).
There is currently a publication bias in favor of the European
mtDNA haplogroups that provide the most phylogenetic details,
whereas especially African haplogroups are underrepresented
(626 African haplogroups compared to 2546 European hap-
logroups in Phylotree 17). Although themajor changes in the phy-
logeny were performed during the initial growing process of the
tree, the last few years showed only refinements of lineages and
branches. Therefore, major changes are no longer expected in
the human phylogeny, but data from upcoming sequencing stud-
ies will help to refine existing groups. Further, contamination
detection based on mitochondrial genomes is not applicable in
scenarios in which samples belong to the same maternal line
(e.g., mother–offspring) owing to an identical haplogroup. The ap-
plication of haplocheck to ancient DNA studies is limited due the
required coverage for detecting polymorphic sites. Importantly, it
has also been previously shown for ancient studies that the
mtDNA-to-nDNA ratio influences the accuracy of extrapolating
nDNA contamination levels from mtDNA estimates (Furtwängler
et al. 2018).

Overall, we showed that haplogroup-based contamination
detection as performed by haplocheck can be used systematically
as a quality measure for mtDNA data. Such kind of analysis could
become effective before data interpretation and publication of
mtDNA sequencing projects.

Software availability

Haplocheck is available at GitHub (https://github.com/genepi/
haplocheck) under the MIT license and requires Java 8 or higher
for local execution. All generated data, scripts, and reports
are available within this repository. The web service can be
accessed via Mitoverse (https://mitoverse.i-med.ac.at). The com-

plete source code from GitHub has been uploaded to the
Supplemental Material as Supplemental Code.
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