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Contemporary and historic factors influence differently
genetic differentiation and diversity in a tropical palm

C da Silva Carvalho1,2, MC Ribeiro2, MC Côrtes2, M Galetti2 and RG Collevatti1

Population genetics theory predicts loss in genetic variability because of drift and inbreeding in isolated plant populations;

however, it has been argued that long-distance pollination and seed dispersal may be able to maintain gene flow, even in highly

fragmented landscapes. We tested how historical effective population size, historical migration and contemporary landscape

structure, such as forest cover, patch isolation and matrix resistance, affect genetic variability and differentiation of seedlings in

a tropical palm (Euterpe edulis) in a human-modified rainforest. We sampled 16 sites within five landscapes in the Brazilian

Atlantic forest and assessed genetic variability and differentiation using eight microsatellite loci. Using a model selection

approach, none of the covariates explained the variation observed in inbreeding coefficients among populations. The variation in

genetic diversity among sites was best explained by historical effective population size. Allelic richness was best explained by

historical effective population size and matrix resistance, whereas genetic differentiation was explained by matrix resistance.

Coalescence analysis revealed high historical migration between sites within landscapes and constant historical population sizes,

showing that the genetic differentiation is most likely due to recent changes caused by habitat loss and fragmentation. Overall,

recent landscape changes have a greater influence on among-population genetic variation than historical gene flow process. As

immediate restoration actions in landscapes with low forest amount, the development of more permeable matrices to allow the

movement of pollinators and seed dispersers may be an effective strategy to maintain microevolutionary processes.

Heredity advance online publication, 15 April 2015; doi:10.1038/hdy.2015.30

INTRODUCTION

Population genetics theory predicts that detrimental effects of habitat

loss and fragmentation will increase population genetic structure

(Young et al., 1996), although many empirical studies in plants have

not observed significant changes after habitat loss (e.g., Collevatti et al.,

2001; Côrtes et al., 2013). Habitat loss and fragmentation may lead to

marked reductions in population size and increase the spatial isolation

of populations (Fahrig, 2003). The isolation of populations may raise

inbreeding levels by increasing the probability of mating between

closely related individuals and self-pollination because of, for example,

changes in the composition and behavior of pollinators. Isolation may

also limit the dispersal among populations, reducing gene flow and

population connectivity (Young et al., 1996). This may cause disrup-

tion of the migration–drift equilibrium, because alleles lost by random

genetic drift may not be rescued by gene flow (Young et al., 1996).

Ultimately, the loss of genetic variability may reduce individual fitness

and the ability to cope with environmental changes (Bijlsma and

Loeschcke, 2012).

However, different factors can influence the detection of fragmen-

tation effects on plant genetic structure, such as life history traits (e.g.,

mating system and pollination and seed dispersal modes) and time-lag

effects (Collevatti et al., 2001; Kramer et al., 2008). For example,

insect-pollinated plants are more likely to lose genetic variability

because of fragmentation than bird-pollinated species because birds

are more likely to move (and disperse pollen) over longer distances

than insects (e.g., Kramer et al., 2011). Pollinators can also be

adaptable and resilient to habitat loss and fragmentation (e.g., White

et al., 2002), resulting in high gene flow and low genetic differentiation

among plant populations as a consequence of high rates of pollen

flow. Likewise, self-compatible plants may be less affected by

habitat loss and fragmentation than obligate outcrossing plants

(Aguilar et al., 2008).

Adults and seedlings can also show distinct responses to habitat loss

and fragmentation (Van Geert et al., 2008). Genetic variability and

differentiation of adults of perennial plants often show responses to

past landscape conditions but not to recent habitat changes (Collevatti

et al., 2001; Kramer et al., 2008). Nevertheless, several studies found

decreasing genetic variability and increasing inbreeding coefficients in

the progeny (seedlings), suggesting that there may be a time lag before

ongoing habitat fragmentation is observed in the genetic structure of

adults (Kettle et al., 2007; Aguilar et al., 2008; Van Geert et al., 2008).

Therefore, assessing genetic variability in seedlings instead of adults in

fragmented landscapes is useful when evaluating the ongoing effects

of habitat loss and fragmentation on genetic variability and

differentiation.

Although studies emphasize the effects of habitat loss and frag-

mentation on genetic variability, most of them compare patterns

across sites or only focus on a given landscape (Keyghobadi et al.,

2005a; Balkenhol et al., 2013). This approach, however, does not

provide direct insights into the factors affecting genetic variability
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(Storfer et al., 2010). One effective way to address the impact of

habitat loss and fragmentation on genetic variability and differentia-

tion at the landscape scale is comparing multiple landscapes while

taking into account the influence of landscape structure (Keyghobadi

et al., 2005a; Storfer et al., 2010). This approach is particularly

important in human-modified landscapes with high levels of biodi-

versity, such as the Atlantic forest in Brazil (Ribeiro et al., 2009).

The Atlantic forest has been reduced to o12% of its original 150

million ha (Ribeiro et al., 2009), resulting in islands of wild habitat

surrounded by crops, pastures and urban matrix. Because of marked

habitat loss, 84% of remnants are small (o50 ha), highly isolated

(average distance between patches is 1440m) and negatively influ-

enced by edge effects (half of remaining forest is o100m from the

edge; Ribeiro et al., 2009). One of the dominant plant species of this

biome is the keystone palm Euterpe edulis. Although once abundant,

this palm species is currently endangered and locally extinct in many

areas owing to illegal harvesting of the edible meristem (heart of palm;

Galetti and Fernandez, 1998). E. edulis is a self-compatible mono-

ecious species, but with predominant outcrossed reproduction

(Gaiotto et al., 2003) and pollination performed mainly by small-

sized bees (e.g., Trigona spinipes; Reis et al., 2000). Their fruits are

eaten by more than 58 birds and 20 mammalian species but are

dispersed mostly by large frugivorous birds (e.g., bellbirds Procnias

nudicollis, toucans Ramphastos spp.) and thrushes (Turdus spp.; Galetti

et al., 2013).

We analyzed the effect of historical effective population size and

different landscape structure metrics on population genetic variability,

inbreeding and genetic differentiation of E. edulis populations.

Concomitantly, we also assessed the relative contribution of geo-

graphic distance to the variability of genetic differentiation between

patches. Because plants and their mutualists (pollinators and seed

dispersers) are likely to decline after loss of natural habitat and animals

are less likely to cross unsuitable matrix habitats, our hypotheses are

that inbreeding and genetic differentiation will be higher leading to

reduced genetic variability in landscapes with lower forest amount,

higher patch isolation and higher matrix resistance.

MATERIALS AND METHODS

Landscapes and sites selection
The study was carried out in five landscapes of the Atlantic forest in São Paulo

state, Southeast Brazil (Figure 1a). The fragmentation of Atlantic forest in São

Paulo dated from the nineteenth century, with the establishment of coffee

plantations. Currently, the forest remnants are surrounded by different matrix

types such as sugar cane, cattle pasture, forest plantations (Eucalyptus spp. and

Pinus spp.) and coffee. The heterogeneous matrix is made of patches that can

be more or less permeable to propagule movement, leading to high variation in

the influence of matrix on the genetic variability and genetic differentiation

among populations of the focal species.

We sampled a total of 16 sites within the five landscapes distributed in a

gradient of forest cover from 5 to 75% (Figure 1). Each landscape has two to

four sites with populations of E. edulis (see Supplementary Information and

Supplementary Table S1 for details). The sites can be distinct forest fragments

in the case of very fragmented landscapes or more than one sampling position

within the same fragment for landscapes containing large forest remnants (i.e.

large forest reserves). Each landscape was defined by a circle of 2 km radius

around a midpoint among the sites where E. edulis were sampled (Figure 1b).

We chose this radius because foraging distance of potential pollinators, such as

Plebleia droryana and Trigona spinipis, can reach 540 and 840m, respectively

(Zurbuchen et al., 2010) and seed dispersal distances by large bird species

taxonomically related with the dispersers of E. edulis are likely to be shorter

than 600m (Holbrook, 2011). Using this experimental design, we were able to

assess the effects of landscape structure and geographic distance between sites

on genetic variability and genetic differentiation among sites within landscapes.

Seedling sampling
We sampled ~ 30 seedlings in each of the 16 sites (total of 463 individuals, see

Supplementary Information and Supplementary Table S1). We used seedlings

instead of adults to minimize the effect of time lag on genetic responses,

because adult individuals may respond to past landscape structure (Kramer

et al., 2008). To minimize the effects of spatial genetic autocorrelation, seedlings

were sampled at 10m of distance owing to significant spatial autocorrelation in

Figure 1 (a) Atlantic forest remnants (gray) and the location of five sampled landscapes where E. edulis is present within São Paulo state, Southeast Brazil.

(b) Representation of four of our sampled landscapes (2 km radius) illustrating the gradient of Atlantic forest cover (5, 20, 45 and 75%).
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relatedness below that distance (Carvalho, 2010). Leaf tissues were dried in

silica gel and stored at − 80 °C.

Genetic analysis
For genetic data analysis, genomic DNA extraction followed the CTAB

(cetyltrimethyl ammonium bromide) procedure and all individuals were

genotyped using eight highly polymorphic microsatellite loci (EE5, EE8,

EE25, EE43, EE45, EE47, EE52 and EE63), following PCR protocol described

by Gaiotto et al. (2001). DNA fragments were sized in ABI Prism 3100

automated DNA sequencer (Applied Biosystems, Foster City, CA, USA) using

GeneScan ROX 500 size standard (Applied Biosystems), and were scored using

GeneMaper v.4.1 software (Applied Biosystems). Ten percent of all individuals

were genotyped two times in independent PCR amplifications to calculate

genotyping error (alleles dropout and null alleles).

Genetic variability and genetic differentiation
The analyses of landscape structure effect on genetic parameters were

performed at the node and link levels (see Wagner and Fortin, 2013). At the

node level (genetic variability within each site), we estimated genetic diversity

(He—expected heterozygosity under Hardy–Weinberg equilibrium, following

Nei, 1978), AR based on rarefaction analysis (AR; Mousadik and Petit, 1996)

and inbreeding coefficient (FIS, obtained from the analysis of variance of allelic

frequency; Weir and Cockerham, 1984). Analyses were carried out using the

software FSTAT 2.9.3.2 (Goudet, 2002). We also used the software INEST

(Chybicki and Burczyk, 2009) to estimate a corrected FIS accounting for the

potential impacts of null alleles. To conduct this analysis, we used the model

based on a Bayesian approach (IIM), with 5 00 000 Markov chain Monte Carlo

interactions and burn-in of 50 000.

At the link level, we estimated genetic differentiation among all pairs of sites

nested within landscapes using three distinct measures: Wright’s FST, obtained

from an analysis of variance of allele frequencies (Weir and Cockerham, 1984);

GST' (Hedrick, 2005), based on FST, but taking into account observed diversity

within population and number of sub-populations; and Jost's D (Jost, 2008),

based on effective number of alleles instead of expected heterozygosity.

All measures have their advantages and drawbacks, for example, FST is

influenced by heterozygozity; however, it is a widely used parameter and, as

recommended by Meirmans and Hedrick (2011), should appear in all studies to

allow comparisons with other studies. Jost's D is less suited for inferences about

demography because it is insensitive to population size. One advantage of GST'

is that it can be applied to every FST analog for which the maximum value can

be obtained. Measures of genetic differentiation were calculated using the

package ‘mmod’ (Winter et al., 2014) implemented in R software (R

Development Core Team, 2013).

Because microsatellite markers may follow the stepwise mutation model, we

estimated Slatkin's RST and tested the hypothesis that FST=RST using

permutation test implemented in Spagedi (Hardy and Vekemans, 2002). A

significant difference between RST and FST implies that stepwise-like mutations

contributed to population differentiation and that, in that data set, RST
performs better than FST to estimate population differentiation (Hardy et al.,

2003).

Landscape mapping and explanatory covariates
We mapped the five landscapes using visual digitalization and manual

classification at the scale of 1:5000 using high-resolution 1x1m2 images

available at Google Earth (http://earth.google.com). QGIS (http://www.qgis.

org) software was used to access the images with the OpenLayer plugin (http://

www.openlayers.org). Land use in each landscape was originally classified in

13 different classes: (i) advanced forest; (ii) intermediate forest succession;

(iii) pioneer forest; (iv) initial forest regeneration; (v) Eucalyptus spp. plantation;

(vi) sugar cane; (vii) coffee plantation; (viii) swamp; (ix) swamp with isolated

trees; (x) pasture, (xi) pasture with isolated trees; (xii) mining areas and (xiii) rural

household (see Supplementary Information and Supplementary Figure S1 for one

example of land use classification and mapping).

For each analysis level (node and link), we calculated several landscape

metrics related to forest amount, matrix resistance, site isolation and geographic

distance. We performed Pearson’s correlation analysis to choose only

biologically meaningful landscape metrics, excluding those with correlation

coefficients o0.5.

At the node level, we calculated the percentage of forest cover in the vicinities

of the focal site (search radius of 500m) and patch size to represent forest

amount. To calculate matrix resistance (the resistance that a landscape offers to

pollinators and seed dispersers to disperse from one site to another), we used

the software LORACS (Pinto et al., 2012). This software estimates the cost

(matrix resistance) using multipatch (i.e. multiple corridors) biological flow

based on graph theory. LORACS simulates multiple routes between two points

(sampling sites) using a resistance surface, which was built by assigning

resistance values to each land use type. These values represent the degree to

which the land cover type facilitates or inhibits the movement and dispersal of

individuals. We generated the resistance surface file for pollinators and seed

dispersers of E. edulis. This was carried out using the approach proposed by

Mühlner et al. (2010), based on expert opinion. Two ornithologists and one

entomologist were interviewed about the potential resistance of different land

uses to the movement of pollinators and seed dispersers, respectively (the list of

pollinators and seed dispersers can be found in the Supplementary

Information). Each expert independently attributed resistance values (from 0

to 5) to each type of land use, considering each pollinator and seed disperser.

As we had the opinion of two ornithologists, we calculated Pearson’s

correlation between the weights given by these experts to control the

consistency in resistance classification. Correlations between the resistances of

each land use type were high between the ornithologists (40.6, see

Supplementary Information and Supplementary Table S2), showing consistency

between expert opinions. Thus, for the following analyses, we used the mean

resistance value of each land use given by the ornithologists for each seed

disperser. For the resistance value given by the entomologist, we used the raw

data. We performed a principal component analysis with the data set of

resistance value of each land use for each pollinator and seed disperser and

ranked the value of the first principal component from 1 to 100 to obtain the

final resistance weight of each land use type (Supplementary Information and

Supplementary Table S3). We used the first principal component, which

corresponds to 71% of the cumulative variance (see Supplementary

Information and Supplementary Figure S16 for principal component analysis

plot). From the analysis performed using the software LORACS, we obtained

the cost of movement between pairs of sites within landscapes (multiple

shortest path), which corresponds to the matrix resistance between pairs of

sites. Because the source and target sites must be indicated for resistance

analysis using the software LORACS, we calculated the mean matrix resistance

of a selected site (source) in relation to all sites (target) to estimate the matrix

resistance of one site.

To calculate site isolation, we used two landscape metrics: site isolation and

proximity index. The site isolation was defined as the mean geographic

distance, from border to border, between all paired sites within each landscape.

The proximity index considers the size (m2) and proximity (m) of all sites in

which a border exists within the search radius of focal site. This metric is

calculated by summing the size of all sites whose borders are within the search

radius of the focal site and dividing by the square of the distance from the focal

site. It was calculated using the V-late extension within ArcGis 9.3, with a

searching radius of 2000m.

At the link level, we calculated the forest amount drawing a buffer of 500m

around a straight line between paired sites and calculating the percentage of

forest within the buffer. To estimate the matrix resistance between sites, we

followed a similar protocol used for node level but estimating the matrix

resistance between site A (source) and site B (target) and between site B

(source) and A (target), and calculated the mean matrix resistance between

sites. Geographic distances between all site pairs within each landscape were

calculated using Euclidean distance (in m), from border to border.

Many landscape metrics presented high correlation with each other (see

Supplementary Information, Supplementary Tables S4 and S5). For example,

patch size metrics were not used as a landscape feature in our model because of

high correlation with other landscape metrics (Supplementary Table S4). Thus,

for node-level analysis, we used the following landscape metrics: mean matrix

resistance of the focal site and site isolation. For analyses at the link level, we

used: mean matrix resistance and geographic distance between site pairs.

Landscape metrics related to forest amount and matrix resistance were
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negatively correlated (ro− 0.7; Supplementary Tables S4 and S5), and thus

we used the matrix resistance as a proxy to discuss habitat loss and

fragmentation.

Genetic variability and differentiation may reflect not only contemporary

landscape structure but also historical processes such as past gene flow and

population fluctuations (Zellmer and Knowles, 2009). Thus, along with

contemporary landscape metrics, we also calculated historical effective popula-

tion size in each site (metric for node-level analyses) and historical genetic

connectivity among sites (metric for link-level analyses), because of their

potential effect on current genetic diversity and genetic differentiation. The

historical effective population size (Ne) was calculated using coalescent analysis

under the isolation with migration model (θ= 4 μNe, coalescent or mutation

parameter for a diploid genome). We assessed historical connectivity among

populations estimating the migration parameter (M= 4Nem/θ) to decouple the

effects of historical and current connectivity in genetic differentiation. Finally,

we also estimated the exponential growth parameter g (θt= θnow exp(− gt),

where t is the time to coalescence in mutational units) to detect historical

reduction in effective population size. The analyses were performed using a

Markov chain Monte Carlo approach implemented in the Lamarc 2.1.9

software (Kuhner, 2006). The analyses were run with 10 initial chains of

10 000 and two final chains of 100 000 steps; the chains were sampled every 100

steps following 10 000 steps burn-in. We used the default settings for the initial

estimate of θ. We ran the analyses three times to assess convergence and

validate the results. Then, we generated combined results using Tracer v.1.4.1

and considered the results only when effective sample size was ⩾200.

Landscape structure effects on genetic variables
We modeled the genetic response variables in relation to explanatory covariates

using generalized linear mixed model. Models were defined according to the

genetic response variables (see Figure 2 for expected relationship between

genetic response variables and explanatory covariates) as node level (estimated

for each site: He, AR and FIS) or link-level analyses (between sites within

landscapes: FST, GST' and Jost's D).

To account for the presence of autocorrelation at node-level analyses, we

tested models with distinct spatial covariance structures (Gaussian, exponential

and spherical) using the restricted maximum-likelihood method in a general-

ized linear mixed model and compared with a model without spatial covariance

structure. These models contained all explanatory covariates as fixed effects and

landscapes and sites as random effects, to account for landscape non-

independence and pseudoreplication of sites within landscape. To find the

best spatial covariance structure, we compared the models using Akaike

information criteria (AIC—see the explanation below). Using the best spatial

covariance structure and landscape and sites as random effect, we finally tested

a set of models using the package ‘nmle’ (Pinheiro et al., 2014) in the R

software (R Development Core Team, 2013).

For the analyses at the link level, it is expected that the data within the same

landscape are not independent (pairwise differentiation and landscape metrics),

which would require a Mantel and Partial Mantel test. However, owing to the

many cases of missing data between landscapes, we performed a generalized

linear mixed model using landscapes as random effect to account for non-

independence between landscapes. We also used the maximum-likelihood

population-effects parameterization, in which the covariate structure is fit for

the specific dependence between values in a matrix, to account for pairwise data

non-independence (Clarke et al., 2002). The models for link level were fitted

using SAS PROCMIXED (SAS University Edition) and the covariance structure

was coded through toeplitz(1) (Selkoe et al., 2010). All models (for link and

node levels) were fitted using the maximum-likelihood method, which is the

best for assessing the influence of fixed effects, for a given random structure

(Bolker et al., 2009).

For the node and link levels, we built a set of nested models that comprised

all combinations of one to two explanatory covariates. We used a maximum of

two variables in our models because of the limited sample size (n= 16 for the

node and n= 19 for the link levels). We also built a null model without

covariates to compete with the set of nested models. All models had normally

distributed residuals, which we confirmed using the Shapiro–Wilk

normality test.

Figure 2 Predicted effects of landscape structure on genetic response variables at the node and link levels of E. edulis. Genetic parameters are on the y axis

and landscape metrics are on the x axis. For the node level, the black continuous line represents He and AR, and the dotted line represents the FIS. For the

link level, the dotted line represents the pairwise genetic differentiation (FST, GST' and Jost's D).
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We calculated AIC corrected for small sample sizes (AICc) and the difference

of each model and the best model: ΔAICci (where i represents each model). We

also estimated Akaike’s weight of evidence (wAICc) as the relative contribution

of model i to explain the observed pattern, given a set of competing models

(Burnhan and Anderson, 2002). Models with ΔAICco2 or wAICc40.1 were

considered as equally plausible to explain the observed pattern (Zuur et al.,

2009). The AIC-based analyses and the coefficient plots of the best-fitted

models were obtained using R software (R Development Core Team, 2013).

The coefficient plots of the best-fitted models were calculated to verify the

significance of coefficient values associated with each explanatory covariate.

RESULTS

Genetic variability, differentiation and demography history

All pairs of microsatellite loci were in linkage equilibrium (all P40.05)

and there was no evidence of genotyping errors or null alleles (results

not shown). All loci presented high genetic variability (Supplementary

Information and Supplementary Table S6), but the observed hetero-

zygosity differed from the expectation under Hardy–Weinberg equili-

brium for all loci (all Po0.001).

He and AR were high in all populations ranging from 0.716 to 0.864

and 6.2 to 9.2, respectively (Table 1). FIS was also high and significant

for all populations, ranging from 0.101 to 0.295; and the FIS
accounting for the potential impacts of null alleles ranged from

0.024 to 0.148 (Table 1). Populations were significantly differentiated

(FST= 0.116, s.e.= 0.012, Po0.001, GST'= 0.524, 95% confidence

interval= 0.498–0.548, Jost's D= 0.461, 95% confidence interval=

0.437–0.484) with pairwise FST ranging from 0.002 to 0.200, GST'

ranging from 0.03 to 1 and Jost's D ranging from 0.026 to 1 across

landscapes (Supplementary Information and Supplementary Table S7).

Slatkin's RST (RST= 0.077, s.e.= 0.048) was not significantly different

from FST (P= 0.852), thus we followed the analyses using the FST
parameter. The coalescence analysis showed that historical population

sizes were constant in all sites (Table 1), as the confidence intervals of

the exponential growth parameter include zero. It also showed high

historical genetic connectivity between sites within landscapes

(Supplementary Information and Supplementary Table S10), support-

ing the assumption that genetic diversity was relatively homogeneously

distributed within landscapes before fragmentation.

Landscape structure effects on genetic variables

Node-level analyses: genetic variability. For the node-level analyses,

ΔAICc and wAICc indicated that models without a spatial covariance

structure were considerably better for modeling He, AR and FIS than

those with spatial covariance structures (Gaussian, exponential and

spherical) (Supplementary Information and Supplementary Table S11).

He was best explained by the model that contained historical

effective population size alone (wAICc= 0.83; Table 2), with sites with

Table 1 Genetic variability in 16 sites of Euterpe edulis in Atlantic forest remnants in São Paulo state, Southeast Brazil

Landscape Site N He Ho AR FIS Ne g g–95% Interval

Caetetus, 45% forest cover CA1 30 0.815 0.695 9.0 0.032 21.39 −284.37 −499.93 to −68.83

CA2 30 0.781 0.702 7.5 0.024 12.61 −228.97 −494.65 to 21.05

CA3 30 0.786 0.631 9.2 0.046 24.56 −205.18 −472.18 to 29.33

CA4 31 0.799 0.651 7.4 0.057 14.76 −225.31 −494.71 to 24.21

Carlos Botelho, 75% forest cover CB1 30 0.766 0.564 8.8 0.075 17.95 −230.23 −481.91 to 31.32

CB2 30 0.808 0.571 8.6 0.118 17.95 −220.78 −470.00 to 8.02

CB3 30 0.797 0.591 8.6 0.148 18.97 −247.76 −497.53 to 32.37

Corumbatai, 20% forest cover CO1 14 0.864 0.661 9.0 0.098 26.23 −245.73 −493.08 to 23.28

CO2 28 0.736 0.631 6.9 0.052 18.19 −200.27 −467.13 to 26.13

CO3 28 0.799 0.627 8.3 0.028 16.71 −184.81 −497.63 to 10.15

CO4 30 0.729 0.597 6.3 0.066 12.43 −208.08 −497.93 to 21.14

Dinamérica, 15% forest cover DI1 30 0.794 0.633 8.6 0.030 22.93 −236.77 −498.60 to 13.30

DI2 30 0.724 0.629 7.5 0.027 12.73 −260.06 −484.04 to 3.17

Tambaú, 5% forest cover TA1 31 0.716 0.551 6.2 0.047 11.19 −255.52 −485.29 to 1.00

TA2 31 0.724 0.524 6.4 0.142 11.81 −201.82 −468.93 to 54.57

TA3 30 0.816 0.581 8.3 0.057 15.13 −240.42 −483.55 to 9.76

Abbreviations: AR, allelic richness; FIS, inbreeding coefficient accounting for the potential impacts of null alleles; g, exponential growth parameter; He, expected heterozygosity; Ho, observed
heterozygosity; N, number of sampled individuals; Ne, historical effective population size.
For site details see Supplementary Information and Supplementary Table S1.

Table 2 Model selection for He (genetic diversity), AR and FIS
(inbreeding coefficient accounting for the potential impacts of null

alleles) in 16 sites of Euterpe edulisa

Model He AR FIS

K ΔAICc wAICc K ΔAICc wAICc K ΔAICc wAICc

Site isolation+matrix resistance 6 14.8 o0.01 6 17.1 o0.01 6 6.2 0.01

Site isolation+Ne 6 4.6 0.08 6 5.4 0.04 6 6.2 0.01

Matrix resistance+Ne 6 5.3 0.06 6 0.0 0.65 6 6.1 0.01

Site isolation 5 10.5 o0.01 5 16.6 o0.01 5 0.9 0.21

Matrix resistance 5 9.5 o0.01 5 12.9 o0.01 5 1.1 0.19

Ne 5 0.0 0.83 5 1.5 0.31 5 0.8 0.22

Null model 5 8.6 0.01 5 17.2 o0.01 5 0.0 0.33

Abbreviations: AR, allelic richness; ΔAICc, Akaike corrected for small samples; FIS, inbreeding
coefficient accounting for the potential impacts of null alleles; He, expected heterozygosity;
K, number of estimated parameters for each model; N, number of sampled individuals;
Ne, historical effective population size; wAICc, Akaike’s weight of evidence.
In bold are highlighted the best model for each genetic response (He, AR and FIS). The null
model represents the absence of an effect.
aWithin Atlantic forest landscapes in São Paulo state, Southeast Brazil.
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higher historical effective population size showing higher genetic

diversity (Figure 3a). The slope coefficient of historical effective

population size was positive and statistically significant (see

Supplementary Figure S2 for coefficient plot).

AR was best explained by a model that combined historical

effective population size and matrix resistance (wAICc= 0.65;

Table 2). The slope coefficients were statistically significant for

both explanatory covariates (see also Supplementary Information

and Supplementary Figure S3 for coefficient plot), but historical

effective population size had stronger effects on AR. The AR was

higher in sites with higher historical effective population size and

lower matrix resistance (Figures 3b and c). Although sites with high

matrix resistance showed enormous variation in AR, sites that were

inside landscapes with high percentage of forest cover presented

similar results. The model with historical effective population size

alone also explained the variation observed in AR (wAICc= 0.31),

presenting a statistically significant slope coefficient (see also

Supplementary Information and Supplementary Figure S4 for

coefficient plots). The variation observed in inbreeding coefficients

(FIS) was not explained by any of our competing models (Table 2),

with the null model being plausible to explain the observed patterns

(ΔAICc o2 and wAICc 40.1).

Link-level analyses: genetic differentiation. Results of the models

containing FST, GST' and Jost's D were consistently similar, that is,

explanatory covariates contributed similarly to the models. Matrix

resistance was the most influential factor, as it was the only

explanatory covariate that appeared in all best models (Table 3).

Matrix resistance was important when it was the only factor in the

models (wAIC for FST= 0.57, GST'= 0.68 and Jost's D= 0.68), but was

also important in models with additive effects of historical migration

(Nem, wAIC for FST= 0.31, GST'= 0.18 and Jost's D= 0.18) and

geographic distance (wAIC for FST= 0.12, GST'= 0.14 and Jost's

D= 0.14). The models containing matrix resistance, together with

historical migration and geographic distance, and matrix resistance

alone, had cumulative wAICc of 100% to explain all genetic

differentiation measures (Table 3). Historical migration (Nem) and

geographic distance, however, did not present statistically significant

coefficients (see Supplementary Information and Supplementary

Figure S5). The resistant matrices presented positive relationship with

genetic differentiation (Figure 3d, GST' and Jost's D results are in

Supplementary Information and Supplementary Figures S14 and S15,

as they are very similar to FST results) and a statistically significant

slope coefficient (see Supplementary Information and Supplementary

Figures S5 and S13). Indeed, landscapes with high forest cover had
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similar genetic differentiation values; on the other hand, landscapes

with little forest cover showed variation in this genetic response.

DISCUSSION

Our hypothesis that inbreeding and genetic differentiation would be

higher and genetic variability lower in more disturbed landscapes

(lower forest amount, higher patch isolation and higher matrix

resistance) was partially corroborated. As expected, we found that

current landscape structure influences genetic differentiation, with

matrix resistance being the most important predictor. The high

historical migration between sites within landscapes showed that

populations of E. edulis shared a common evolutionary history until

very recently, and the genetic differentiation is most likely because of

recent changes caused by habitat loss and fragmentation. In fact, the

number of migrants per generation between pairs of populations was

correlated neither to any landscape covariate nor to any measure of

genetic differentiation, reinforcing that the genetic differentiation

detected here is most likely due to present landscape structure.

Genetic variability (heterozygosity and AR), however, was more

strongly determined by historical effective population size. This

indicates that genetic variability is more strongly influenced by the

legacy left by populations in the past than by contemporary processes

occurring at the landscape scale. Overall, our findings corroborate the

hypothesis that fragmentation and habitat loss are negatively affecting

genetic differentiation of seedlings while the genetic variability of

seedlings is less affected.

Genetic variability

Despite the long anthropogenic disturbance and fragmentation of the

Atlantic forest, our results show that E. edulis still presents high levels

of genetic diversity in all analyzed populations. High genetic diversity

and AR has been reported for E. edulis in other regions (Gaiotto et al.,

2003; Conte et al., 2008).

The lack of consistent association between habitat loss and

fragmentation and genetic diversity may be because of the relatively

recent fragmentation of the Atlantic forest relative to the species life

cycle (Collevatti et al., 2001; Kramer et al., 2008) and also high

historical effective population size of this species (Galetti et al., 2013).

Historical effective population size may have a strong influence on

genetic diversity (Frankham, 1995), as this covariate has a high

probability of best explaining the observed patterns in expected

heterozygosity. The effects on genetic diversity of past population

demography rather than contemporary processes occurring at the

landscape scale has been observed in other organisms. In alpine

butterfly, for example, genetic diversity was related to historical

processes rather than contemporary forest cover (Keyghobadi et al.,

2005b). In addition, the assessment of genetic variability using highly

variable microsatellite loci may mask the reduction in heterozygosity

because fragmentation can take longer to affect heterozygosity

(Collevatti et al., 2001). Moreover, it is possible that habitat loss and

fragmentation have not yet reduced the population size to a point that

markedly changes the processes maintaining genetic diversity (Kramer

et al., 2008). E. edulis occur in swampy areas and in high densities in

fragment remnants (Matos et al., 1999). Indeed, we observed historical

constant population sizes for all sites.

Inbreeding was important in shaping the genetic variability in

seedlings of E. edulis. Despite the outcrossed mating system (tm= 0.94,

Gaiotto et al., 2003) and high genetic diversity, we found moderate

inbreeding coefficients in all populations. For self-compatible species,

outcrossing rate may be highly variable among populations because of

differences in pollinator availability and flowering phenology (Barrett,

2002). Therefore, it is most likely that high frequency of mating

between closely related individuals occurs in certain landscapes, as

observed for other Neotropical tree species pollinated by animals (e.g.,

Caryocar brasiliense; Collevatti et al., 2001). Moreover, E. edulis is

pollinated mainly by small-sized bees, which present relatively short

flight distance (o840m; Zurbuchen et al., 2010). Flight distance in

small bees can be reduced by habitat fragmentation and isolation, even

at short isolation distances (Zurbuchen et al., 2010), increasing

inbreeding within fragments. However, inbreeding was not explained

by historical effective population size or by any landscape metrics

considered in this study.

Notwithstanding, the AR was affected by habitat loss and fragmen-

tation. The different pattern in the effect of landscape features may be

because of a higher temporal lag in genetic diversity and inbreeding in

comparison with AR (Keyghobadi et al., 2005a). AR tends to respond

faster than genetic diversity, because of the loss of rare alleles due to

marked reduction in habitat (Young et al., 1996; Keyghobadi et al.,

2005a). AR was influenced by historical effective population size and

matrix resistance. This result shows that, although AR is strongly

influenced by historical factors (historical effective population size),

habitat loss, fragmentation and matrix type may also have an

important role in shaping this genetic variable. Defaunation due to

forest fragmentation also caused phenotypic changes in seed size of

E. edulis in the same region, affecting seed dispersal (Galetti et al.,

2013). Thus, allele loss may be a result of random genetic drift as well

as limited gene flow due to reduction of abundance and mobility of

pollinators and seed dispersers.

Table 3 Model selection for genetic differentiation pattern measured by pairwise FST, GST' and Jost's D among 16 sites of Euterpe edulisa

Model FST GST' Jost's D

K ΔAICc wAICc K ΔAICc wAICc K ΔAICc wAICc

Matrix resistance+geographic distance 6 3.1 0.12 6 3.2 0.14 5 3.2 0.14

Matrix resistance+Nem 6 1.2 0.31 6 2.6 0.18 5 2.6 0.18

Geographic distance+Nem 6 18.2 o0.01 6 20.4 o0.01 5 20.4 o0.01

Matrix resistance 5 0.0 0.57 5 0.0 0.68 4 0.0 0.68

Geographic distance 5 17.7 o0.01 5 18.4 o0.01 4 18.2 o0.01

Nem 5 14.5 o0.01 5 16.6 o0.01 4 16.8 o0.01

Null model 5 18.4 o0.01 5 18.7 o0.01 4 19.1 o0.01

Abbreviations: ΔAICc, Akaike corrected for small samples; wAICc, Akaike’s weight of evidence; K, number of estimated parameters for each model; Ne, historical effective population size.
The best model for each genetic response (FST, GST' and Jost's D) is highlighted in bold. The null model represents the absence of an effect.
aWithin Atlantic forest landscapes in São Paulo state, Southeast Brazil.
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Genetic differentiation

Differently from genetic diversity, the genetic differentiation between

sites within landscapes is most likely due to recent changes caused by

habitat loss and fragmentation. Some organisms showed the same

patterns as found in our study (Keyghobadi et al., 2005b; Zellmer and

Knowles, 2009), whereas others showed the opposite (Orsini et al.,

2008). These results highlight the importance of accounting for

historical patterns, such as past landscape structure and historical

demography, when analyzing the effect of contemporary landscape

structure on genetic diversity and differentiation.

Landscape structure affected genetic differentiation (FST, GST' and

Jost' D) between sites within landscapes. Pairs of sites with high matrix

resistance were more highly differentiated. The coalescent analysis

showed that the high genetic differentiation between sites within

landscapes may be a result of ongoing fragmentation effects since these

sites were historically connected (high historical number of migrants

per generation) and had historical constant population growth. Our

findings may be the result of disruption of gene flow due to lower

mobility of the resilient pollinators and seed dispersers of E. edulis,

reduction of current effective size and the decline in genetic variability

(AR) because of fragmentation and habitat loss. These may cause a

disruption of the migration–drift equilibrium, as alleles lost by

random genetic drift may not be rescued by gene flow.

As commented above, results published elsewhere show important

effects of defaunation owing to fragmentation in E. edulis seed size

and, consequently, in seed dispersal (Galetti et al., 2013). In addition,

E. edulis’ pollinators may be strongly affected by fragmentation and

habitat isolation, which here are partially represented by matrix

resistance. Matrix resistance has been pinpointed as an important

factor affecting the mobility of individuals and also abundance,

occurrence and genetic variability (Eycott et al., 2012; Lange et al.,

2012). The change in forest cover may also change the abundance and

richness of seed dispersers and pollinators (e.g., González-Varo et al.,

2009; Martensen et al., 2012). Most fragments in the studied region of

the Atlantic forest are too small (o50 ha; Ribeiro et al., 2009) to

support populations of large forest-dwelling frugivorous birds that can

move over large distances, such as toucans and cotingas (Galetti et al.,

2013). These animals are important for long-distance dispersal

(Nathan, 2006; Holbrook, 2011), and their loss can limit the gene

exchange among populations, together with random genetic drift,

leading to an increase in genetic differentiation among populations.

Although others studies also found habitat loss effects on genetic

structure of seedlings (e.g., Kattle et al., 2007), as far as we know this is

the first study that reports the effects of matrix resistance on genetic

differentiation of seedlings across multiple landscapes.

Although isolation by distance (i.e. geographic distance) is historically

the most used hypothesis to explain genetic differentiation, geographic

distance between pairs of sites within landscapes did not explain the

variation in pairwise FST, GST' and Jost' D in this study. This means that

matrix resistance is more biologically meaningful to explain genetic

differentiation in seedlings, at least for forest-based ecological processes.

In fact, given the scale of our analyses, Euclidean distance may be less

important than matrix resistance in explaining genetic diversity and

differentiation (see Lange et al., 2012 for similar results).

CONCLUSION

In conclusion, our results showed that even the human-modified

Atlantic forest can harbor high genetic diversity. It is evident, however,

that matrix quality and habitat loss determine genetic differentiation of

a palm seedlings. Habitat loss and fragmentation effects on genetic

diversity and inbreeding (He and FIS) are less important, or harder to

detect, compared with those effects on AR and genetic differentiation

(AR and FST, GST' and Jost' D). Others studies also show correlation

between genetic differentiation and contemporary landscape features,

and between genetic diversity and historical factors (i.e. Keyghobadi

et al., 2005a). Matrix resistance was the most important factor

explaining variation in AR and genetic differentiation (AR and FST,

GST' and Jost' D). Our results highlight the importance of including

landscape variables along with geographical distance in landscape

genetics studies, such as matrix resistance, when seeking to understand

the key ecological processes associated to dispersal, as these variables

can shape microevolutionary processes. Moreover, our results give a

warning about reduced genetic variability and increased genetic

differentiation in seedlings due to habitat loss and fragmentation. As

immediate restoration actions, the maintenance of landscapes with

forest cover 450% (Tambosi et al., 2014) and permeable matrices to

mobility of pollinators and frugivores may be an effective strategy to

maintain microevolutionary processes.
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