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We illustrate the contemporary application of Dyson-Schwinger equations using
two examples the calculation of pseudoscalar meson masses, an =ociated model-
independent mass formula and the approach to the heavy-quark limit; and the
study of nucleon observable, including a calculation of its mass via a covariant
Fadde’ev equation and an estimate of pion-loop contributions to this mass.

Introductory Remarks. Just in case anyone remains uninformed,the
Dyson-Schwinger equations (DSES) are an analo~e in quantum field theory of
the Euler-Lagrange equations in classical field theory. They are an enumerable
infinity of coupled integral equations whose solutions are then-point Schwinger
functions (Euclidean Green functions). These Schwinger functions are also
the matrix elements estimated in numerical simulations of lattice-QCD. The
coupliig between equations is a nuisance, of course: it necessitates a truncation
in order to define a tractable problem. A weak coupling expansion provides
one systematic method and reproduces perturbation theory. However, it also
makes nonperturbative phenomena inaccessible, and something else is needed
for the study of strongly interacting systems and bound state phenomena.

This is a situation familiar from many body theory, in which case the
Hartree-Fock truncation often yields reliable information. There is an ana-
logue in QCD: the renormalisation-group-improved rainbow-ladder truncation,
which is phenomenologically efficacious, as is clear from Ref. [1] wherein the
power of a single-parameter model of the infhred behaviour of the effective
quark-quark interaction is illustrated. (The ultraviolet behaviour is fixed and
model-independent because the DSES reproduce perturbation theory.) The
successes and failures of such a model can be understood once it is appreci-
ated that the rainbow-ladder truncation is the leading order in a systematic,
Ward-Takahsshi identity preserving I/NC-like expansion? But this demonstra-
tion is just one small step toward a rigorous foundation for contemporary DSE
modelling.

One of the beauties of a model is that its simplicity makes possible a rapid
comparison between theory and experiment. Another is that it can be wrong:
an Ansatz is intuitively motivated and explored, and, if it is widely successful,
its failures can point to unanticipated phenomena. Irrespective therefore of the
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difficulties that remain in providing a rigorous foundation for the application
of DSES in QCD, their phenomenological application plays an important part
in attempts to elucidate nonperturbative phenomena.

This is nowhere clearer than in the study of dynamical chiral symmetry
breaking (DCSB). The DSES provide the simplest and most direct means of
understanding the dichotomy of the pion as both a Goldstone mode and a

bound state of a massive dressed-quark and -antiquark~’4 and the result is
model-independent. The analysis reIies on the interplay between the QCD gap
equation, the DSE for the dressed-quark propagator, and the inhomogeneous
Bethe-Salpeter equation (BSE) for the axial-vector vertex. This interplay is a
consequence only of the axial-vector Ward-Takahashi identity. Furthermore, a
key quantitative conclusion follows:5*6 in order to reproduce observed charac-
teristics of the spectrum, the kernel in the QCD gap equation must exhibit a
significant enhancement on the domain A2QCDs k2 S 2 GeV2. Identi&ng the
origin of that enhancement; i.e., whether it is a feature of the dressed-gluon
propagator alone or of the contraction of this propagator with the dressed-
quark-gluon vertex, is currently an important focus$’7’8

In the last decade the use of DSES in QCD has attracted renewed interest
and they have been applied to a broad range of phenomena, as is clear from the
detailed summaries in Refs. [9,10]. The approach hss moved far beyond the
calculation of indigent approximations to fzand the vacuum quark condensate.
Herein we illustrate this by focusing on two topics: pseudoscalar meson masses
and their evolution with the current-quark mass; and a description of the
nucleon, its interactions and the calculation of its mass.

2. PseudoscaIar Meson Masses. Meson masses can be cal~ulated by
solving the renormalised homogeneous BSE:

where: T ,...,U represent colour-, Dirac- and flavour-matrix indices and H iden-
tifies the meson under consideration, P is the total momentum and P2 = -mfi

is the eigenvalue condition for a solution; XH(q; P) := S(q+) rH(~; P) S(q_) is
the Bethe-Salpeter wave function, with rH(g; P) the filly-amputated Bethe-
Salpeter amplitude and S = diag(SU, S’d,S,,...) the dressed-quark propaga-

tor flavour matrix, q+ = g + 7P F’, q_ = q – (1 – qp) P;” and K(q, k; P) is

the renormalised, fully-amputated quark-antiquark scattering kernel, which is

“VP G [0,1] is the momentum partitioning parameter. It appears because in a Poincar&
covariant approach the definition of the relative momentum is arbitrary. Observable quan-
tities must be independent of qp.
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two-particle-irreducible, with respect to the quark-antiquark pair of lines, and
does not contain quark-antiquark to single gaug~boson annihdation diagrams,
such as would describe the Ieptonic decay of a pseudoscalar meson. In Eq. (1)

f; ‘= J* ~4~/(2704 represents mnemonically a ~r’~z’~i”~’z~v-i~”’~u~~ %-
u arisation of the integral, with A the reg@risation mass-scale, and in this
particular case the r.h.s. of the renormalked equation is cutoff-independent.
(A+ w is the final step in all calculations.)

For a pseudoscalar meson the solution of Eq. (1) has the form

[
17~(G P) = TH75 iEii(q; P) + ~ “p~H(q; P) (2)

1+-/- qq”p G~(q; p) +~/w@v~H(q;p) ,

where TH is the flavour matrix that specifies the mesonic channel under consid-
eration; e.g., TKf = (1/~2) (A4 + iA5), with {Ai,i = 1,..., 8} the GelI-Mann

matrices. The amplitude is canonically normalked by requiring that the bound
state contribution to the fully-amputated qu~k-antiquark scattering matrix
.M=K+K(SS)K +..., have unit residue and the constraint that ensures
th~ is giverq e.g., in Ref. [4].

Equation (1) is the equation satisfied by the residue of the meson pole
in the inhomogeneous BethAkilpeter equation. Using: the inhomogeneous
Bethe-Salpeter equations for the a.xbl-vector and pseudovector vertices; the
dressed-quark DS~ and the fact that a nonperturbative Ward-Takahashi iden-
tity preserving truncation of the DSES is possible, it was shown in Ref. [3] that,
for flavour nonsinglet pseudoscalar mesons,

fH??Z& = M&T~ , (3)

with ML := trfla.ou,[M(Cl {TH, (TH)’}], where M(c) = diag(m~,m$rn$,...)

and (“)t indicates matrix transpose, so that M: is proportional to the sum of
the constituents’ current-quark masses. This is a model-independent identity,
which is valid for all current-quark masses, irrespective of their magnitude, and
therefore provides a single formula that unifies both the light- and heavy-quark
regimes.

In Eq. (3), fH is the Ieptonic decay constant, which the derivation proves
is given by

(4)

where 22 = Z2(~, A) is the dressed-quark wave function renormalisation con-
stant, with ~ the renormalkation point. This multiplicative factor of 22 on
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the r.h.s. ensures that fH is gauge-invariant, and independent of the renor-
malisation point and regularisation mass scal~ i.e., that it is an observable?
Equation (4) yields fH asthe pseudovector projection of the meson’s Bethe-
Salpeter wave function at the origin in configuration space; i.e., this equation
provides afield theoretical ana.logue of the “wave function at the origin,” which
describes the decay of bound states in quantum mechanics.

The remaining term in Eq. (3) is

(5)

where 24 = Z4(~, A) is the dre.wed-quark mass renormalisation constant. The
gauge dependence of 24 is just that necessary to ensure that the r.h.s. of Eq.
(3) is gauge invariant; its cutoff dependence ensures that the r.h.s. is indepen-
dent of the cuto~ and its renormalisation point dependence ensures that the
product on the r.h.s. is independent of the renormalisation point: r~ is the
pseudoscalar projection of the meson’s BetheSalpeter wave function at the
origin in configuration space.

In asymptotically free theories the chkal limit is unambiguously defined3*4
by setting T%= O, where fi is the renormalisation point independent current-
quark mass. In this limit3

(6)

where fHoisobtained by taking the chmal limit in Eq. (4) and the vacuum
quark condensate is

J
A-(fjq): = Z* N= trD [%a=O(d] , (7)

q

with Sfi=o obtained as the chiral Iiit solution of the dressed-quark DSE~ this
is the gauge-invariant and cutoff-independent expression for the condensate.
Using Eq. (6), Eq. (3) yields

with f1,2Iabelling the flavour of the dressed-quark constituents; i.e., as a corol-
lary Eq. (3) yields what is commonly known as the Gell-Mann-Oakes-Renner
relation.

%ee, e.g., Eq. (1) of Ref. [1] with m + O on the r.h.s.

4



‘e

As remarked above, Eq. (3) is also valid for arbitrarily large current-quark
masses and an analysis of its heavy-quark limit is facilitated by writing PY =

m~ VP= (~fQ + EH), where fiQ is a constituent-heavy-quark massll and EH
is a “binding energy.” Following this the dressed-heavy-quark propagator takes
the form

(9)

where k is the momentum of the lighter constituent, and the canonically nor-
ma.lked Bethe-SaIpeter amplitude can be expressed as

r~(k; P) = firyqk;q , (lo)

where I’fw(k; P) is pointwise Mite in the limit mH + w. Using Eqs. (9) and
(10) in Eq. (4) yieldsll

c

‘*=&’ (11)

with #f. a calculable and finite constant, which reproduces a well-knovtn con-
sequence of heavy-quark symmetry. Applying the same analysis to Eq. (5) one
finds12

TH = c; fi (12)

and this, along with Eq. (11) in Eq. (3), proves12’13 that in the heavy-quark
limit

mH = ~M~; (13)
CH

i.e., that the mass of a heavy pseudoscalar meson rises linearly with the mass
of its heaviest constituent.

In Ref. [13] it was shown that Eq. (11) is not valid until current-quark
masses m z mb. The c-quark lies well-outside thk domairq e.g., if a constant
of proportion~lty is chosen so as to reproduce the value of fB,then fDobtained
from this formula is z 40% too large. Thu is consistent with the calculated
magnitude13 of the violations of heavy-quark symmetry in b +. c transitions
(~ 30%).

Using the results reported in Ref. [1], obtained using the renormalisation-
group-improved rainbow-ladder truncation of Ref. [14], one can study the evo-
lution of meson masses as the current-quark mass is increased. Consider fist
pseudoscalar mesons whose constituents have equal current-masses, for which
the calculated evolution is described by the interpolating formulal

mH. = 1.04 fi+0.21X, (14)
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where X = mc/AQCD, with ~ = 19 GeV and AQCD = 0.234. This for-
mula was determined via an unconstrained fit to the masses calculated by
sohring the Bethe-Salpeter equation. A comparison with Eq. (8) shows that
B$ := ~2/(2AQCD) = -(@~/& and, using the model’s ~culated due of
j~O = 0.088 GeV, one infers a value of (ijq)~ = (-0.26 GeV)3 from this corre-
spondence. That can be compared with the value (-0.27)3 calculated directly
in this model from Eq. (7). This near equality indicates that the interpolating
formula in Eq. (14) can provide reliable estimates.

Equation (14) indicates that a flavour nonsinglet, ~1 = f= f2pseudoscaku
meson with a mass mH = 1 GeV would be composed of quarks with mass
tii.f = 0.32 AQCD = 2.3%.. At this current-quark mass, which corresponds to

X = 0.68, the w term still provides 86% of the meson’s mass. Thus one
is still well away from the linear trajectory, in spite of the fact that in the
neighborhood of X = 0.68 a tangent to the curve in the left panel of Fig. 2,
Ref. [1], is nearly indktinguishable horn the curve itself within the resolution
of that figure. lhrthermore one finds easily from Eq. (14) that

= 2.2 (15)

in agreement with the result obtained in recent lattice simulations.ls Thus, in
addkion to being phenomenologically efficacious, the renormalisation-group-
improved rainbow-ladder truncation of Ref. [14] predicts a mass-evolution that
is confirmed by lattice simulations. These results support a scenario of dynam-
ical chiral symmetry breaking in which the vacuum quark condensate is lame;-.

1‘=V ‘>>fHo .i.e., B.
Reference [1] also provides an interpolation of the kaon-like u-q trajectory:

mHK = 0.083+ 0.5 fi + 0.31 X, (16)

and while the BSE studies reviewed in Ref. [14] have not directly addressed
heavy-light nor heavy-heavy bound states (systems with tif >3.5 h= have
not been studied) one may, as a preliminary step, ask whether Eq. (16) can be
used to obtain reliable mass-estimates via extrapolation? Using Eq. (16), one
reproduces mD E 1.9 GeV, mB E 5.3 GeV with m~Gev = 1.1 GeV, m~G=v z
4.2 GeV, and since these current-quark masses are in agreement with other
estimates18 then Eq. (16) can be a useful tool. In th~ application one finds
that the linear term provides 50% of mD and 67% of mB. Thus, like the
conclusion drawn on the valkiity of Eq. (11) for fH,the heavy-quark limit
in Eq. (13) is not Mld until current-quark masses satisfy m ~ mb, and the
c-quark lies well below thk lower limit.
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3. A Model of the Nucleon. The success of the rainbow-ladder trunca-
tion in describing meson observable motivates’ a treatment of the nucleon
aa a bound state of a dressed-quark and nonpointlike diquark via a covariant
Fadde’ev equation. The feasibility of this approach was demonstrated in Ref.
[18] and the most extensive study to date is described in Ref. [19]. The ap-
proach assumes only that the colour-~ quark-quark scattering matrix can be
approximated by a sum of diquark pseudoparticle terms: scaIar + pseudovec-
tor +..., whose properties can be determined independently. The Fadde’ev
equation then describes the nucleon as a quark-diquark composite, which is
bound by the repeated exchange of roles between the dormant and diquark-
participant quarks, and the complete nucleon amplitude is a sum of three
terms:

IU=W1+VZ+V3, (17)

where the subscript identifies the dormant quark and; e.g., !J11,2are obtained
from ll?3 via a cyclic permutation of all the indices WI = u3(.&;), !Z2 =

~3(+!?:).
The simplest such model retaina only the contribution of the scalar diquark

to the quark-quark scattering matrix, in which case

W3@~;Ct~jTj;CYjT)=

e.,.,., 6“3AO~ K( )Fo+(:P[12];K)12:2143(& ~) W) > (18)

where: (i? . P + M)u(p) = O, with P = pl + ~ + p3 =: p{123}the nu-
cleon’s total momentum and M its mass; eCICzCais the colour-singlet factor;
K =PI +~ =: P{Iz}, PIIz] :=PI ‘Pz, t = (n –P{14)/2; (~i, z) = the quark

spinor and isospin labels, and (a, -r) are those of the nucleon. In Eq. (18), AO+ is
the pseudoparticle propagator for a scalar diquark formed from quarks 1 and 2,
and ro+ is a Bethe-Salpeter-like amplitude describing their relative momentum
correlation. Both these quantities are determined by studying the quark-quark
scattering matr”w. The remaining element, 43, is a Beth&Salpeter-like ampli-
tude that describes the relative momentum correlation between the third quark
and the diquark’s centr~of-momentum. It satisfies a renorrnalked Fadde’ev
equation, which in the isospin symmetric limit assumes the form

J
A

?J3(k;P) = –2 AO+(Kt) ro+(k + 1/2; K)
t

x S(tex)t ~o+((? + k/2; -KJ S(Q ~~(~ P) , (19)

with K~ = -t+ (2/3)P, .?== -1-k- F’/3, .fI = 4+P/3. The general solution
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for a positive energy nucleon takes the form

lJ3(t~) =W9J-+ (i7”t-t” P9f2(m (20)

with ~2 = -1 and where fl,zdescribe, respectively, the upper/lower comp~
nent of the dressed-nucleon spinor.

The nucleon amplitude in Eqs. (17), (18) has been used with success to
calculate a wide range of Ieptonic and nonleptonic nucleon form factors.20-22 In
those calculations solving the Fadde’ev equation was side-stepped by employing
the following simple parametrisations for the functions that appear in Eqs. (18),
(20):

(21)

(22) “

with f2= Itfl,where R is a constant of proportionality that gauges the relative
importance of the lower component of the nucleon spinor. In these equations
C = ~2~4 is the charge conjugation matrix, %(g)= (1 - e-3)/y, and Af@,No+
are calculated, canonical normalisation constants.

The parameters in this model are Wo+, nzo+, WV: c&+ = l/wo~ measures
the quark-quark separation in the diquarlq to+ = l/me+ is the diquark corr~
lation length or mean free path; and ~ = l/oJv measures the quark-diquark
separation.’ Their values have been determined by requiring a good irnpulse-
approximation fit to the proton’s charge form factor on Q2 c [0,3] GeV2 and
this procedure yields

The scalar diquark parameter values determined in these unconstrained fits
are within 10% of those obtained in the BSE studies of Ref. [23].

CA description of the nucleon in th~ form can only be internally cons”~tent if do+ < ~
and .fO+< d+; i.e., the diquark is smaller than the nucleon and can’t propagate over distances
larger than the nucleon.
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Figure 1: Neutron electfic fomfxtor cdcdated tiththree &fferentdu=of R. Data
from Ref. [24], extracted using the Argonne V18 potentials G& is very sensitive to the
strength of ~z. (NB. The contribution of the pseudovector diquark - not included in
these calculations.)

Using the values in Eq. (24) a wide rmge of observable can be calculated
and herein we exempli~ the results via

T: (fm2) & (~2) PP(PN) h (PIV) ka/lJp &rNN 9A
Emp. (0.87)2 -(0.34)2 2.79 -1.91 –0.68 13.4 1.26
talc.~~ (0.78)’ -(0.34)2 .2.82 –1.62 -0.57 14.61.27 ’25)
talc.~~,~5 (0.81)2 -(0.37)2 2.85 –1.63 -0.57 14.5 1.12

and the neutron electric form factor in Fig. 1. One significant feature, apparent
in Eq. (25), is that ]pn/~1 >0.5, which is only possible because the impulse
approximation explicitly includes diquark breakup contributions. Another is a
prediction for the ratio ppG~(q2)/G& (gz) that is in semi-quautitative agree
ment with recent results from TJNAF?6 As shown explicitly in Ref. [9], the
impulse approximation requires five terms when the dlquark is composite, a
fact also appreciated in Ref. [27]. It also requires an explicit form for the
dressed-quark propagator but that is well-known from studies of meson ob-
servable and is given; e.g., in Refk. [20,21].
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o+
()+ & 1+

()+ & 1+

()+ & 1+

()+ & 1+

W(J+ mo~ Wl+ ml+

0.68 0.64 - -
0.68 0.64 0.68 0.82
0.68 0.64 0.40 0.82
0.40 0.64 0.40 0.82
0.68 0.54 0.40 0.69

R w~, WV, M
1.11 0.40 0.43 1.48
0.62 0.38 0.41 1.28
0.73 0.32 0.35 1.16
1.11 0.29 0.31 1.14
0.54 0.31 0.36 0.94

Table 1: Nucleon m=s and R = f2/fl ratio determined by solving the Fadde’ev equation.
W+fl, W*,2 are the widths of a least-squares fit to jl, 12 aasu&g they are p&twise

well-approximated by S(t2/wti, ). (They actually fall f.Mer with increasing k2 but these
widths are neverthekss useful for comparison with Eq. (25).) The first row gives the results
obtained with the scalar dlquark afone while the others were obtsined with the inclusion of
a pseudovector dlquark correlation. All dimensioned quantities are given in GeV.

Hitherto the choice of R is arbitrary. However, its value is fixed by solv-
ing the Fadde’ev equation. To exempli& that we have solved the Fadde’ev
equation, Eq. (19), with the values of Wo+,mo+ in Eq. (24) and assuming that
~~(~ P) = ~i(~). This yields the results in Table L As anticipated in Ref.
[21], a reduction of 1/3 is required in the calculated mass for agreement with
experiment and here the inclusion of a pseudovector diquark can help?g

To explore that we added such a correlation to Eq. (18):

where: {Ti=(+,O,_) = (To4- r3)/fi, rl, (To - r3)/fi}, r. = diag(l, 1), are the
symmetric isospin-triplet matrices,

with a; = a? = a~, a; = a; = ~ in the isospin symmetric limit; and

(28)

and extended Eq. (19) to include the coupling to this channel.
The results obtained in this case are also presented in Table 1. In the

calculations we chose the value of ml+ /mo+ from Ref. [23] and, initially, Wl+ =
Wo+, to find, as anticipated, that the pseudovector diquark provides additional
attraction and reduces the calculated mass by 11%. Reducing Wl+ increases the
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pseudovector dlquark coupling via an increase in l/Afl+, hence the calculated
mass is reduced: a 4070 reduction in q+ reduces M by 107o. Reducing wo~
by the same amount has very little effect, reducing M by only an extra 2%.
However, in agreement with intuition, decreasing the &lquark masses reduces
the calculated nucleon mass: a 21% decresse yields a 19% reduction in M. It is
clear from the table that an internally consistent description of the nucleon is
possible using only scalar and pseudovector dlquark correlations, just as found
in Ref. [19]. Furthermore, it is clear from the table that a well-constrained
scalar diquark model shotid employ R in the range 0.5-0.7.

A question that remains unaddressed is the role of pion loops. The rNN
coupling is strong and hence it is conceivable that such loops might generate
large self energy corrections to the nucleon’s mass. We have made an estimate
using a model DSE for the nucleon seIf energy:d

G-l(p) =i7.p+M+3
1

* A.(P – k) g~~~((p– k)2, k2) 75G(h)75 , (30
(27r)4

where An(4) = l/(.@ +nz~) and gx~~((p-k)2, k2) is the momentum-dependent
TNN coupliig. The t= -(p – k)2-dependence of this coupling wss calculated
for on-shell nucleons in Ref. [21], with the result

!hrNN(t, k2 = –&f2) %
%rNN

(l_ ~,A%)2 , IL= o.96Gev, (31)

where grjVj’i is given in Eq. (25). This is not quite sufficient for our present
purpose because the nucleon in the loop is not on-shell. Therefore to complete
an estimate we employ a simple product Ansat.z

‘“N~(p; ‘) = (1+ Id + k21/A~)2 (1 + ~~+ M21 + lk2 + M21)/A;)2 ‘ ’32)

to approximate the angular-average of the coupling, which is active in the
integral equation. , With the parameters in the last row of Table 1 we find
that the pion loop adds 10 MeV to the nucleon’s mass; i.e., it provides only a
1% increase. The detailed form of Eq. (31) is not important but the off-shell
suppression is.

4. Epilogue. Two short summaries is all we have room for here. In large part,
the light-quark meson sector is well understood. The renormalisation-group-
improved rainbow-ladder truncation provides reliable information in many
channels and where it doesn’t the reasons why are understood? Understand-
ing the nucleon: it’s mass and interactions, is. a contemporary focus and

~The positive gi~ on the r.h.s. is correct and entails that the m= shift k positive.
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progress is rapid. Success there will open many new phenomenological applica-
tions, such as the calculation of quark distribution fimctions, which are merely
parametrised in analyses of deep inelastic scattering. That the DSES can pro-
vide valuable insight here is demonstrated by a calculation of the valence quark
d~tribution in the pion~8 which itself is measurable given a high-luminosity
electron-proton collider?g

Acknowledgments. CDR is grateful for the hospitality and support of the
Erwin Schr6dinger Institute for Mathematical Physics, Vienna, which helped
to make possible KMparticipation in this workshop, and to the organisers of “
Quark Confinement and the Hadron Spectrum ~ SMS is ~atefid for finan-
cial support from the A. v. Humboldt foundatio~ and we acknowledge useful
communications with J.C.R. B1och and P. Maris. This work was supported by
the US Department of Energy, Nuclear Physics Division, under contract. no.
W-31-1C)9-ENG-38, the National Science Foundation under grant no. INT-
9603385, and benefited from the resources of the National Energy Research
Scientific Computing Center.

References

1.
2.
3.
4.
5.
6.

7.

8.

9.

, 10.

11.

P. Maris, “Continuum QCD and Light Mesons,” this volume.
A. Bender, C.D. Roberts and L. v. Smekal, Phys. Lett. B 380 (1996) 7.
P. Maris, C.D. Roberts and P.Cl. Tandy, Phys. Lett. B 420 (1998) 267.
P. Maris and C.D. Roberts, Phys. Rev. C 56 (1997) 3369.
F.T. Hawes, P. Maris amd C.D. Roberts, Phys. Lett. B 440 (1998) 353.
C.D. Roberts, “Continuum Strong QCD: Confinement and Dynamical
Chiral Symmetry Breaking,” nucl-th/0007054.
L. v. Smekal and R. Alkofer, “What the Inbred Behavior of QCD
Green Functions can tell us about Confinement in the CoVariant
Gauge: this volume.
A.G. WMia&, “Lattice Studies of Confinement and Chiral Symmetry
Breaking in a Covariant Gauge; th~ volume.
C.D. Roberts and S.M. Schmidt, “Dyson-Schwinger equations: Density,
temperature and continuum strong QCD~ nucl-th/0005064, to appear
in Prog. Part. Nucl. Phys. 45 (2000).
R. Alkofer and L. v Smekal, “The infrared behavior of QCD Green’s
functions: Confinement, dynamical symmetry breaking, and hadrons as
relativistic bound states? hep-ph/OO07355.
M.A. Ivanov, Yu.L. Kahovsky, P. Maris and C.D. Roberts, Phys. Lett.
B 416 (1998) 29.

12



12.

13.

14.
15.

16.
17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

P. Maris and C.D. Roberts, “QCD bound states and their response to
extremes of temperature and density,” in Proc. of the Workshop on
Nonperturbative Methods in Quantum Field Theory, edited by A.W.
Schreiber, A.G. Williams and A.W. Thomas (World Scientific,
Singapore, 1998) pp. 132-151.
M.A. Ivanov, Yu.L. Kalinovsky and C.D. Roberts, Phys. Rev. D 60
(1999) 034018.
P. Maris and P.C. Tandy, Phys. Rev. C 60 (1999) 055214.
K. C. Bowler et al. [UKQCD Collaboration], Phys. Rev. D 62 (2000)
054506.
Particle Data Group (D.E. Groom et al.), Eur. Phys. J. C 15,1 (2000).
R.T. Cahii, C.D. Roberts and J. Praschiflca, Austral. J. Phys. 42
(1989) 129.
C.J. Burden, R.T. Cahill and J. Prsschifka, Austral J. Phys. 42 (1989)
147.
G. Hellstern, R. Alkofer, M. Oettel and H. Reinhardt, Nucl. Phys. A
627 (1997) 679.
J.C.R. Bloch, C.D. Roberts, S.M. Schmidt, A. Bender and M.R. lkmk,
Phys. WV. C 60 (1999) 062201.
J.C.R. Bloch, C.D. Roberts and S.M. Schmidt, Phys. Rev. C 61 (2000)
065207.
M.B. Hecht, C.D. Roberts and S.M. Schmidt, “DSE Ha&on
Phenomenology~ nucl-th/0005067.
C.J. Burden, L. Qian, C.D. Roberts, P.C. Tandy and M.J. Thomson,
Phys. Rev. C 55 (1997) 2649.
S. Platchkov et al., Nucl. Phys. A 510 (1990) 740.
R.B. Wlringa, private communicatioxy R.B. Wiriiga, V.G. Stoks and
R. Schiavilla, Phys. Rev. C 51 (1995) 38.
M.K. Jones et al. [Jefferson Lab Hall A Collaboration], Phys. Rev.
Lett., 84, 1398 (2000).
M. Oettel, M. Pichowsky and L. v Smekal, Eur. Phys. J. A 8 (2000)
251.
M.B. Hecht, C.D. Roberts and S.M. Schmidt, “Valenc&quark
distributions in the pion~ nucl-th/0008049.
R.J. Holt and P.E. Reimer, “Structure of the Goldstone Bosons~
ANL-preprint.

13

I


