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Contemporary connectivity is sustained by wind-
and current-driven seed dispersal among seagrass
meadows
Leonardo Ruiz-Montoya1,2,3*, Ryan J Lowe1,3,4 and Gary A Kendrick2,3

Abstract

Background: Seagrasses are clonal marine plants that form important biotic habitats in many tropical and
temperate coastal ecosystems. While there is a reasonable understanding of the dynamics of asexual (vegetative)
growth in seagrasses, sexual reproduction and the dispersal pathways of the seeds remain poorly studied. Here we
address the potential for a predominantly clonal seagrass, P. australis, to disperse over long distances by movement
of floating fruit via wind and surface currents within the coastal waters of Perth, Western Australia. We first
simulated the dominant atmospheric and ocean forcing conditions that are known to disperse these seagrass seeds
using a three-dimensional numerical ocean circulation model. Field observations obtained at 8 sites across the study
area were used to validate the model performance over ~2 months in summer when buoyant P. australis fruit are
released into the water column. P. australis fruit dispersal trajectories were then quantified throughout the region
by incorporating key physical properties of the fruit within the transport model. The time taken for the floating fruit
to release their seed (dehiscence) was incorporated into the model based on laboratory measurements, and was
used to predict the settlement probability distributions across the model domain.

Results: The results revealed that high rates of local and regional demographic connectivity among P. australis

meadows are achieved via contemporary seed dispersal. Dispersal of seeds via floating fruit has the potential to
regularly connect meadows at distances of 10s of kilometres (50% of seeds produced) and infrequently for
meadows at distances 100 s km (3% of seeds produced).

Conclusions: The spatial patterns of seed dispersal were heavily influenced by atmospheric and oceanographic
conditions, which generally drove a northward pattern of connectivity on a regional scale, but with geographical
barriers influencing finer-scale connectivity pathways at some locations. Such levels of seed dispersal infer greater
levels of ecological and genetic connectivity and suggest that seagrasses are not just strongly clonal.
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Background
Quantifying population connectivity within coastal eco-

systems is a crucial component of the management and

conservation of many marine populations, especially

when it becomes necessary to forecast how increasing

environmental pressures such as water quality degrad-

ation, species invasions and climate change will impact

these ecosystems [1]. In order to accurately assess mar-

ine connectivity, it is imperative to understand the dom-

inant physical transport processes in a region (e.g., tides,

waves, wind, etc.) and how the biological dispersal cap-

abilities of different species interact with these physical

dynamics. It is ultimately these biophysical interactions

that determine how the spatial connectivity pathways of

marine populations are influenced over a broad range of

spatial scales, depending on transport mechanisms that

are present, as well as the physical characteristics of the

propagule that is being dispersed [2-4].

Seagrasses are marine plants with the ability to repro-

duce both asexually (clonally) and sexually (via seeds).
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There is a reasonable understanding of the dynamics of

asexual seagrass reproduction that has led to the devel-

opment of meadow expansion models based on rates of

linear growth [5,6], nonlinear models of seagrass growth

[7,8] and even three-dimensional (3D) models of struc-

tural formation of meadows (e.g. [9]). Conversely, sexual

reproduction, seed dispersal and recruitment in sea-

grasses remain much more poorly studied [10]. Seed dis-

persal is the process governed by the movement from

the initial release of a fruit by the parent plant to the

time when the seed settles to a location where it may re-

cruit. This trajectory is affected by different physical and

biological components (see Levin et al. [11] for a general

review of seed dispersal). In the coastal and estuarine

environments that seagrasses inhabit, flow generated by

currents and waves generate bed shear stresses capable

of transporting seeds in the bottom boundary layer

[4,12,13]. However, the positively buoyant fruit of some

seagrass species are transported at the air-water interface

by surface ocean currents as well as direct wind forces,

which can provide a mechanism for long distance dis-

persal [10,14-16]. Ultimately these seeds must also settle

in favourable substrata and in suitable environmental

conditions for recruitment to be successful [15].

For seagrasses, most attempts to quantify dispersal dis-

tances have tended to be only very crude estimates, e.g.,

as derived from rough (order-of-magnitude) measures of

background ocean currents and seed lifecycle character-

istics, or inferred from genetics [17]. Kendrick et al. [10]

emphasised the wide ranges of dispersal distances that

have been reported for different seagrass species. Dispersal

distance estimates vary from only a few meters for the

negatively buoyant seeds of Zostera marina when on the

sediment surface [13], to hundreds of kilometres in studies

of the fruit of Thalassia obtained by a genetic metapopu-

lation study [18] and estimates of surface travel of Enhalus

and Thalassia fruit by extreme events (e.g., typhoons)

[15,16]. Despite the importance of dispersal to demo-

graphic connectivity in seagrasses, there are still major

gaps in our understanding of the spatial implications of

the connectivity of distant populations and the importance

of locally- versus regionally-derived recruitment processes

on individual populations [17]. To develop a predictive

understanding of demographic connectivity in seagrasses,

we thus need to know: 1) seed production estimates and

the rate at which these propagules are released from the

parent plant, 2) the physical vector responsible for dispersal

or where these seeds are transported to and over what time

scale, and 3) the survival rates of seeds once they settle.

We can estimate seed production (e.g. [19,20]), investigate

germination and survival rates under controlled conditions

(e.g. [21-23]) and sometimes even observe natural recruit-

ment [15,24,25]. However, for the most part we still do not

know where seeds are ultimately transported to in most

seagrass ecosystems, and hence where new recruits that

may structure seagrass populations originate from.

The use of process-based models that incorporate both

predictions of the key hydrodynamic transport mecha-

nisms as well as the physical characteristics of seeds and

fruit have the capability to advance our understanding of

dispersal pathways in complex coastal systems [1]. This ap-

proach has only been used for seagrasses in a very limited

number of studies, focusing on dispersal of the European

populations of Zostera marina. Källström et al., [26] empir-

ically estimated a maximum dispersal distance of ~150 km

from wind fields acting on rafting shoots bearing seeds.

However, wind was the only forcing mechanism consid-

ered in the model and hence no hydrodynamic information

was incorporated. Erftemeijer et al., [27] used a 3D ocean

model to simulate the trajectories of Z. marina shoots re-

leased inside a large estuary and predicted dispersal dis-

tances of up to 130 km over a 3–4 week period. However,

transport was due to the surface currents but there was no

data to accurately account for additional transport from

windage. In general, this class of particle tracking model-

ling has proven to be successful for predicting the trans-

port of seagrass shoots, fish larvae (e.g. [28,29]) and corals

[30], although the accuracy is dependent on how well the

properties of the dispersing propagule are known.

Ruiz-Montoya et al., [4] have already described how

dispersal propagules of P. australis move under different

wind and current forcing, forming the basis for parameter-

izing our modelling of seed dispersal in this study.

The southwest region of Australia has one of the highest

diversities of temperate seagrasses in the world through-

out a 2500 km coastline [31]. The dominant genera in the

region are Posidonia and Amphibolis, and they create

large mono-specific meadows with smaller species as

understorey [31,32]. The fruit of P. australis are released

during the austral summer (November-December), and

because these fruit are less dense than seawater, they rap-

idly float to the water surface where they are transported

by ocean surface currents and wind drag (‘windage’) acting

on their air exposed surface. This flotation period lasts

until dehiscence (seed release) occurs, which can take up

to ~5 days [4]. After dehiscence, the negatively buoyant

seed settles at ~10 cm s−1 and once it reaches the seafloor,

requires shear stresses greater than ~100 mPa to be

moved. This energy is not likely to be reached by unidirec-

tional currents in the region (e.g. due to wind and tide),

but oscillatory wave-driven flows may further mobilize the

seeds over short distances, especially during storm condi-

tions [4].

The Perth coastal area is a relatively shallow environ-

ment (~20 m) with some islands and several rocky reefs

running parallel to the coast (Figure 1). The region expe-

riences a diurnal tidal regime with a microtidal range of

only ~0.6 m. The offshore (shelf ) waters are dominantly
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forced by an alongshore pressure gradient that produces

a southward flow known as the Leeuwin Current (LC).

The presence of the LC shifts the tropical bioregion

along Western Australia south, and despite some weak-

ening of its strength in summer, it is often significant

year round [33,34]. Although the Leeuwin current has a

strong influence on the circulation of the shelf (i.e.,

depths >100 m), Ruiz-Montoya and Lowe [35] found

that the inshore coastal circulation was opposite (i.e.,

dominantly northward) throughout the summer period,

which was driven by the strong northward winds present

that also kept the water column in the coastal region

well-mixed during this period.

In this study we hypothesize that Posidonia australis

populations throughout the south-western margin of

Australia have a potential for high contemporary con-

nectivity over large distances due to their floating

fruit. We investigate this potential connectivity by

modelling the two-dimensional dispersal patterns of P.

australis fruit in the coastal waters of Perth, Western

Australia, driven by a combination of transport by

modelled ocean surface currents as well as direct

windage.

Results

Hydrodynamic model performance

Overall, the 3D hydrodynamic model provided robust pre-

dictions of the dominant transport processes throughout

the study region (Figure 2). The current and water level

time series were quantitatively compared with the field

observations at all 8 sites during the 2 month hindcast ex-

periment period. The experiment-averaged current vec-

tors predicted by the model (both depth-averaged and

surface) generally showed good agreement with the field

observations (Figure 2a,b). Both the field observations and

model predictions reveal that the relatively consistent

northward winds during this summer study period drove

a mean northward flow in the coastal waters off Perth. At

some locations the model slightly overpredicted this

northward transport (Figure 2a,b). This discrepancy is

most evident at sites P1, P4 and V3.

At site P2 in the semi-enclosed embayment of Cock-

burn Sound, the depth-averaged flow is relatively weak

(<0.02 m s−1); hence resulting in a very weak depth-

averaged signal. However, the surface currents were

much more accurately predicted (Table 1). The modelled

current variance ellipses are also generally in very good

Figure 1 Study area showing a) the unstructured model grid with increasing resolution in the shallow coastal areas and b) Seagrass

meadow locations representing both fruit release sites and potential settlement areas. The green dots represent how the release was
random within the cell. The instruments used were: ADV which stands for Acoustic Doppler Velocimeter and ADCP for Acoustic Doppler
Current Profiler.
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Figure 2 Comparison of: a) the modelled (red) and observed (blue) depth-averaged current vectors averaged over the ~2 month

experiment period; b) the surface currents at the deeper sties; c) the depth-averaged current variance ellipses; and d) the surface

current variance ellipses with radii representing one standard deviation of the flow.
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agreement with the observations, both in terms of their

magnitudes and orientations, including for both the

depth-averaged and surface currents (Figure 2c,d). The

orientations of these ellipses are strongly influenced by

the local bathymetry of the sites.

Water level variability across the study domain was

reproduced by the model with very high Skill, i.e. aver-

aging 0.95 among the sites (Table 1; Figure 3d,h). Both

the depth-averaged and surface subtidal velocity compo-

nents were also generally well predicted by the model at

all sites, especially for the most dominant north–south

velocity component (~0.75), which at most sites roughly

coincides with the major axis of the current variance

(see Table 1). Figure 3 shows a detailed time series com-

parison of the field observations and model results of

the currents at two representative sites, including: an

offshore site P3 at the edge of the Perth lagoon and a

nearshore site at V3. For most of the period there was

good model agreement, except for a period around the

20 of December when there is a relatively large discrep-

ancy. As detailed in Ruiz-Montoya and Lowe [35], during

this time a large coastally-trapped wave train generated by

a tropical low ~1000 km north had a substantial influence

on the circulation of this coastal region; this transient off-

shore forcing is not included in the model. Nevertheless,

seed dispersal simulations detailed below were only con-

ducted during the most likely release period (thus ending

on 15 Dec) so this event would have no influence on the

dispersal results.

Dispersal results

Northward transport of seagrass fruit reached ~90 km

whilst the maximum southward transport was only ~5 km

(Figure 4). In the cross-shore (east–west) direction, the

fruit could be transported ~40 km offshore. Combining

the alongshore (~90 km) and cross-shore (~40 km)

transport distances suggests a potential dispersal

shadow of ~4000 km2 at offshore release sites. For in-

shore areas, where release sites are sheltered and flow

decreases, the dispersal shadow is halved (~2000 km2).

These dispersal areas were restricted by the size of our

domain, as some particles were lost out of the domain

through the northern boundary. In these simulations

there were also some notable responses to local (fine-

scale) water circulation patterns. For example, many

seeds were lost from the domain at sites such as Rottn-

est (R_PP) (Figure 4a) and WP1 (Figure 5b), resulting

in a relatively low probability of settlement inside the

domain. In contrast, WP2, which is only ~500 m away

from WP1, presents a much broader area of high prob-

ability settlement due to its orientation with land facing

to the east. Safety Bay (SB, Figure 4c) is adjacent to

land at the north; however the water movement induced

by the open embayment allowed some fruit to be exported

with some southward transport. Overall, although some

fruit were capable of travelling long distances, the majority

(~60%) of the fruit were predicted to dehisce within the

first 20 km or less, given that dehiscence most likely oc-

curred during the first couple of days.

The particles reached distances of ~90 km during the

5 day period; however, a fraction left the domain before

this time so larger dispersal distances would also be pos-

sible (this is discussed further below). Model runs without

the extra windage significantly reduced these transport

distances by ~15 km on average, but the response varied

among sites (Table 2). At many of the nearshore release

sites, fruit were transported to shore by dominant winds

blowing from the southwest, especially in the afternoon

due to the strong and regular sea breeze cycle in this re-

gion. This is apparent by the smaller median distances ob-

served from sites close to shore (SB, WP1) when windage

was included in the model (Table 2). However, a large

quantity of seeds also travelled to the west (i.e., towards

Rottnest Island) due to the strong winds blowing from the

east (mainland) that tend to prevail in the early morning

during summer.

Geographical barriers were found to play an important

role on the local circulation patterns, and therefore the

Table 1 Model Skill computed via Eq. (1) for the subtidal depth-averaged currents, subtidal surface currents and water

levels

Site Depth- averaged
(east)

Depth- averaged
(north)

Depth- averaged
speed

Surface
(east)

Surface
(north)

Surface
speed

Water
level

P1 0.19 0.79 0.58 0.41 0.76 0.51 0.95

P2 0.44 0.37 0.28 0.64 0.62 0.30 0.93

V1 0.75 0.85 0.76 ——— ——— ——— ———

P3 0.59 0.87 0.74 0.35 0.79 0.75 0.96

P4 0.76 0.80 0.67 0.81 0.78 0.61 0.96

V2 0.42 0.81 0.74 ——— ——— ——— 0.95

P5 0.42 0.78 0.60 0.53 0.69 0.53 0.95

V3 0.64 0.76 0.65 ——— ——— ——— 0.94

A value of 1 represents perfect agreement while a value of zero, total disagreement.
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fine-scale connectivity patterns, among sites. The hydro-

dynamic model demonstrated that Garden Island and its

connecting bridge to the mainland have isolated the south-

ern seagrass populations (SB and PP) from sites within

Cockburn Sound, resulting in greater local connectivity

(albeit still weak) with populations towards the south

(Figure 4c). The sheltered sites inside Cockburn Sound

are thus connected with a gradient of dispersal towards

the north. Mangles Bay (MB) located at the lower end

of this embayment, is a prime source area; providing

Figure 3 Comparison between measured and modelled subtidal depth averaged velocities at site P3 (a,b,c) and V3 (e,f,g). A comparison
of the measured versus modelled water levels at the same two sites (d,h).
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Figure 4 Maps showing settlement probability locations for different sources. a) Offshore site at Rottnest Island (R_PP) sheltered on the
west and north with very high loss of fruit, b) Exposed site at Carnac Island (CI) over a deeper meadow (~10 m), allowing greater flows to carry
fruit away with high probabilities of dehiscence over larger areas. c) Coastal site within Safety Bay (SB), where local circulation transported the
fruit rapidly offshore, thus facilitating LDD. d) For this coastal sheltered site (MB) in the Cockburn embayment wind surface currents also allowed
for broad dispersal with limited interruptions to the northward flow.
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Figure 5 Comparison of probability of settlement at two adjacent sites near Woodman Point separated by only ~500 m; a) western

facing location (WP1) with significant export due to westward winds driving fruit offshore into exposed waters, b) southward facing

site (WP2) with high loss of fruit stranded on the beach and only occasional export (thereby acting as a sink).

Table 2 Statistics of the dispersal distances predicted from the model with (left) and without windage (right)

Windage No Windage

Percentile Left Percentile Left

Mean(km) Median(km) (90th)(km) domain(%) Mean(km) Median(km) (90th)(km) domain(%)

LB 24(38) 20(32) 44(70) 70 24(56) 21(56) 32(81) 95

R_PP 11(17) 1(1) 47(65) 25 10(10) 1(1) 36(36) 0

FBH 31(34) 32(32) 60(67) 26 33(34) 38(38) 57(64) 24

CI 54(70) 55(61) 65(116) 59 53(55) 56(56) 62(67) 44

PMB2 47(56) 56(57) 67(91) 41 52(54) 58(58) 61(71) 41

PMB1 41(46) 49(49) 66(80) 31 48(50) 57(57) 61(68) 45

WP2 35(37) 34(34) 65(71) 20 35(35) 36(36) 59(64) 18

WP1 9(9) 0(0) 45(45) 2 25(25) 20(20) 58(58) 6

GI2 53(64) 59(62) 66(100) 50 55(57) 60(59) 64(72) 9

GI1 54(59) 60(60) 69(88) 36 50(51) 53(53) 65(65) 37

SF 43(45) 49(49) 71(71) 17 40(40) 41(41) 60(60) 0

MB 46(48) 51(51) 73(77) 15 41(41) 43(43) 60(60) 0

PP 20(20) 3(3) 72(71) 5 39(39) 38(38) 65(65) 0

SB 21(21) 7(7) 66(66) 2 29(29) 25(25) 58(58) 0

Average 35(40) 34(36) 62(77) 28 38(41) 39(42) 57(63) 23

Refer to Figure 1b for the release locations. Values in parenthesis extrapolate travel distances of particles that left the domain from the velocity of the last

12 hours before exiting the domain.
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fruit to most of these study sites (Figure 4d). The geo-

graphical barriers on the coastal circulation at this

southern site causes it to not receive fruit from adjacent

meadows to the north, i.e. most of its seedlings would

likely be self-recruited (Figure 6). The meadows located

offshore near the centre of Cockburn Sound, e.g. Par-

melia Bank (PMB 1 & 2) and Carnac Island (CI), are

more open and more heavily influenced by the stronger

and more consistent northward circulation. Dehiscence

potential from these sites thus extends to greater dis-

tances towards the north (40% up to ~30 km) and there

is also substantial east–west transport (~10 km). The

central location of these sites also makes them good

sink (settlement) sites, i.e., they may readily receive

seeds from many sites to the south (Figure 6).

Discussion

Dynamics driving dispersal

Within our study area, dispersal distances were greater

for offshore meadows, as the fruit were able to be trans-

ported in the stronger ocean currents located offshore

and were also less likely to be deposited on land when

winds switched onshore during the afternoon. Although

a northward gradient of potential connectivity is evident,

especially when taking into account LDD, within shel-

tered sites the dispersal processes were heavily influ-

enced by the local hydrodynamics. These fine-scale

circulation patterns caused some sites to have a domin-

ant southward transport that opposed the northward

wind stresses. This reflects the importance of local water

circulation within nearby meadows in the region, which

may also influence finer-scale population genetic struc-

ture [36]. Coastal landmasses also restricted connectivity

among meadows when they affected northward trans-

port; thus, these populations might present differences

in terms of shared genotypes, resulting in a subpopulation

structure when isolated from the dominant northward

transport. Other external factors known to influence dis-

persal in seagrasses are extreme events such as storms

and hurricanes (e.g. [16,37]). Locally, storms typically

occur during the winter and lead to strong winds; whereas

summer conditions are relatively calmer but with more

consistent wind forcing. Therefore, storm effects are not

likely to influence average dispersal distance for P.

australis in this region. However, remote tropical

storms as far as ~1000 km from the study area can

generate large coastal trapped waves [35,38], which

can episodically lead to large cross- and along-shore

flows that may also contribute to seed dispersal along

this coast.

Long distance dispersal

This study demonstrates that fruit dispersal in the sea-

grass Posidonia australis is a regional phenomenon.

Every year seeds have the capacity to be transported over

distances ranging from metres to 100 km or more, sup-

porting the suggestion that in some species of seagrasses,

seagrass populations living within these distances should

have high demographic connectivity [10]. Dispersal is an

essential process in plant population dynamics, where

heavy investment in different seed characteristics has im-

proved adaptation to different dispersing agents [39]. In

terrestrial environments, this has resulted in specialized

mechanisms that are known to efficiently disperse seeds

over different spatial scales, depending on the seed charac-

teristics and on the dispersing agents such as wind, water

and different animal species (see [40]). These strategies in

terrestrial plants have historically been fairly well-studied,

although these have mainly focused on average dispersal

distances that only imply a typical dispersal scale of a

population [41]. A great effort is being put into elucidating

long distance dispersal (LDD), connectivity and metapop-

ulation ranges for terrestrial angiosperms (see [42] and

references within), which ultimately relates to a popula-

tion’s survival and evolution [43-45].

The atmospheric and oceanographic conditions in the

region result in northward LDD for P. australis of at

least ~100 km from individual reproductive events. So

despite the low probability for reaching these distances,

the abundant production of seeds is likely to provide

enough recruits to make this an important event over

multiple years. This result highlights the importance of

reproduction and LDD for this seagrass as well as other

seagrasses with floating fruits or propagules [10]. Our

estimates of LDD are similar to other seagrass species

such as Zostera marina that have suggested a dispersal

potential of ~100-150 km on rafting shoots bearing

seeds (see [26,27]).

Regional connectivity

On the western coastline of Australia, the climatic and

oceanographic context results in a northward trajectory

of long distance dispersal. This dependence on wind-

generated currents, direct windage, and the location of

coastal landmasses that act as barriers to fruit move-

ment, determines contemporary or demographic con-

nectivity and presumably the evolutionary connectivity

of populations of Posidonia australis. Our simulations

suggest important probabilities (~40%) of ‘local’ con-

nectivity (1–15 km) between adjacent meadows, as a re-

sult of the exponential decay in the probability of fruit

dehiscence over time. This level of dispersal and popula-

tion connectivity is supported by population genetic evi-

dence (see [46]) that found chaotic genetic patchiness,

evidence of active sexually derived recruits, high genetic

diversity in local populations and some shared multi-

locus genotypes over distances of 8 to 12 kilometres, at

the same locations we have modelled. Our results are
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also supported by observations from other seagrasses.

For example, in the tropical seagrass species (Thalassia

testudinum), Van Dijk et al. [18] estimated dispersal

from extrapolation of velocities of tracked floating fruit

and inferred distances of up to ~350 km. Their results

were also supported by genetic metapopulation distances

in the same order [18]. Collectively, these results ac-

knowledge the importance of long distance dispersal

to the regional dynamics of seagrass populations with

floating fruit or propagules.

There was substantial contemporary dispersal among

most populations in this study, clearly suggesting a high

level of demographic connectivity among these populations,

although this connectivity was generally highly directional

towards the north. The exception is the offshore site at

Rottnest Island (R_PP), located in a bay protected from the

west and facing land to the north. Therefore, this sheltered

site acted largely as a sink, opposite to the rest of the sites,

as most of the fruit are either self-recruited or entirely lost

from the domain; however, there is still some small likeli-

hood that this site receives seeds from most of the south-

ern release sites. Interestingly, this site could present high

genetic diversity acquired through a very slow recruiting

process from many of the surrounding sites. Successful

recruitment from seed dispersal increases gene flow

among populations, resulting in greater diversity within

local populations, which can also confer resilience to dis-

turbances [47]. Also, high diversity is especially important

for threatened ecosystems as it improves adaptation to

changing environmental conditions [48]. The ability of

marine angiosperms to reproduce vegetatively at high

rates, originally led to the idea that seagrasses very seldom

recruited from seed. However, observations of greater

expansion of meadows than expected from measured

clonal growth (e.g. [49]), the high numbers of seeds

produced (e.g. [50]), occasional observed recruited

seedlings (e.g. [25,51]) and large genetically related

metapopulations with high genetic diversity within and

among populations (e.g. [52,53]), all suggest that suc-

cessful seed dispersal events are not rare and continu-

ously contribute to seagrass populations of P. australis

in southwest Australia.

Next steps

This exercise allowed us to gain new insight into the

range of dispersal that Posidonia australis seeds likely

experience and thus a more complete picture of con-

nectivity among local populations. Despite every effort

Figure 6 Connectivity probability matrix: columns are for the release sites, ordered from south to north (left to right) and rows

represent the settlement sites from south to north (bottom to top). The colour scale represents the probability of connectivity between
pairs of sites. Overall there is a dominant northward pattern, as reflected by probabilities in the top left half of the matrix. The rectangles
represent: a) southward transport due to local coastline configuration and resulting circulation pattern, and b) westward transport and the
importance of westward winds in the morning.
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put into modelling the dispersal of the fruit as accurate

as possible based on the known biology and the physical

processes, the size of model domain (~100 km) still con-

strained estimates of the actual maximum long distance

dispersal distances, given that a small percentage of

particles left the northern boundary. Thus, even for this

relatively large model domain, the connectivity of these

local seagrass populations with regions extending fur-

ther to the north of the study area remains unknown.

In addition, our simulations were run for the summer

of 2010, and although the general patterns of dispersal

are expected to be very similar during other years, the

strength of the Leeuwin Current does display some

inter-annual variability (i.e. due to the El Niño - La

Niña cycle) [34], and hence the overall dispersal dis-

tances could vary slightly between years. As with every

modelling simulation, there is also always scope to include

additional processes, and while we are quite confident that

the results of this buoyant transport phase are realistic, for

future work we would like to incorporate secondary trans-

port of the seeds at a finer resolution to better understand

the dynamics that directly affect post settlement. This

study presents the first estimates of local population con-

nectivity through sexual reproduction; however, it does

not account for successful recruitment into the reproduct-

ive adult population. Further research is also needed to

better understand the factors that contribute to successful

recruitment in the region, which would provide a compre-

hensive picture of the full life cycle of this important sea-

grass species, from reproduction, to seed dispersal, to

recruitment, and finally to the successful establishment of

new meadows.

Conclusions
Population dynamics in seagrasses result from a complex

balance between vegetative expansion and seed recruit-

ment. Our capacity to infer population dynamics through

sexual recruitment depends on our ability to first under-

stand dispersal. In this study we show the strong influence

of local wind over the movement of P. australis floating

fruit. Additionally, this coupling with regional to fine scale

hydrodynamic processes highlights the importance of

local circulation in places where complex water transport

is present, such as very shallow coastal areas or semi-

enclosed embayments. For surface driven transport, dis-

persal distances on the order of a few km’s to ~100 km or

more are generally predicted, with large distances reached

over exposed areas with directionally defined flows. These

distances are likely to result in a well-connected south to

north corridor along the dominant direction of dispersal.

Ultimately an understanding of the dispersal process to-

gether with the conditions that favor recruitment and

seedling survival can provide us with better strategies to

understand and manage these threatened ecosystems.

Methods
Hydrodynamic model setup

A numerical circulation model MIKE3 [54] was used to

solve the 3D incompressible Reynolds averaged Navier–

Stokes equations and was applied to simulate the circu-

lation dynamics in the coastal waters of Perth, Western

Australia. The model domain extended ~100 km along

the coast with the northern boundary located near Two

Rocks (−31.49° S), the southern boundary near Mandurah

(−32.53° S), and the western boundary located roughly

40 km offshore where the depth reached just over 100 m

(Figure 1a). The size of the domain was chosen as the

maximum area allowed by our computational power with-

out compromising resolution for the small scale processes.

The study region also included three major islands:

Rottnest, Garden and Carnac. This model domain was

gridded with an unstructured triangular mesh (~50000

elements), with the grid resolution increasing roughly

proportional to the local depth in order to keep the

local barotropic Courant numbers less than 0.8 for the

typical barotropic time step (~20 s) used in the simulations.

The typical (average) grid cell resolution was thus ~140 m

in shallow coastal areas (depths <20 m). In the vertical, 10

sigma (terrain-following) layers were used and were distrib-

uted uniformly throughout the water column.

A series of hindcast simulations were conducted to

validate the hydrodynamic model predictions, which fo-

cused specifically on a ~2 month period during the aus-

tral summer (November-December) when the fruits of

Posidonia in Perth’s coastal waters are released [4] and

when hydrodynamic data from an extensive field experi-

ment in the region were also available [35]. In this experi-

ment, currents were measured at 8 stations throughout the

study area (Figure 1a) and included 5 acoustic Doppler

current profilers (ADCPs) that recorded current profiles at

the deeper sites (>10 m) and 3 acoustic Doppler velocime-

ters (ADVs) that recorded currents at a fixed height above

the bed at the shallow inshore sites [for details of the in-

struments and their configurations refer to 35]. We note

that the results from this experiment showed that the cir-

culation on both the inner shelf and the Perth coastal la-

goon region further inshore (depths <100 m) were not

significantly influenced by local stratification (i.e. buoyancy

forcing contributions to the circulation were negligible); as

a result, density gradients were ignored in the model

configuration.

The three open boundaries were forced using a linear

interpolation of hourly water levels predicted by the

Global Tide Model Data based on TOPEX/POSEIDON

altimetry [55]. The water level boundary conditions were

also modified to include the typical magnitude of the

southward-directed alongshore pressure gradient of

2x10−7 m that drives the offshore Leeuwin Current fol-

lowing Godfrey and Ridgway [56] and Smith et al. [57].
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Surface wind forcing in the model was based on obser-

vations recorded at a local weather station (available

every minute from Rottnest Island near the centre of the

model domain) by the Bureau of Meteorology and was

applied uniformly across the domain using surface drag

coefficients from Smith and Banke [58]. The bottom

stresses were computed in the model assuming a loga-

rithmic profile in the bottom boundary layer with a hy-

draulic bottom roughness length scale of zo = 0.01 m

(the appropriateness of this roughness value was also in-

vestigated by initially conducting a series of sensitivity

tests of the influence of bottom roughness on the model

results – see below). Horizontal diffusion of momentum

was modelled using a Smagorinsky formulation with an

eddy viscosity of 0.55 m2 s−1 and a k-ε turbulence clos-

ure scheme in the vertical. Finally, Coriolis forcing was

included in the model and allowed to spatially vary

across the domain. The reader is encouraged to see the

software log for one of these simulations presented as an

Additional file 1.

Both the field data and model output were interpo-

lated onto a common hourly time base. The data was

then compared with a quantitative measure of model

‘Skill’, e.g. Warner et al. [59]:

Skill ¼ 1−

X

Xmodel−Xobsj j2

X

Xmodel− �Xobs
�

�

�

�þ Xobs− �Xobs
�

�

�

�

� �2

ð1Þ

where X represents the variable to be analysed, either

as predicted by the model (Xmodel) or the observations

(Xobs), and where the overbars denote time-averaged

values. For Eq. (1), perfect model-data agreement thus

results in value of one whereas a value of zero implies

complete disagreement. The Skill was computed at each

of the observation sites and was applied by separately

comparing both the depth-averaged flows (Ud,Vd), as well

as the surface flows (Us,Vs) at the deeper sites (Figure 1a).

We note that we focus on evaluating the performance of

the model to predict the subtidal component of the circula-

tion since this had by far the greatest influence on the net

transport of seeds fruit the five day dehiscence wind period.

Given the weak oscillatory tidal currents in Perth’s coastal

waters [35], the maximum tidal excursion lengths are typic-

ally <500 m. Nevertheless, in all of the particle dispersal

simulations, tidal currents were still included. In addition,

water levels computed from the ADCP and ADV bottom-

mounted pressure sensors corrected for local atmospheric

pressure, were also compared to the model output. To as-

sess the current variability at each site, for both the field

data and model predictions, a principal component analysis

was performed on the variance of the easterly (U) and

northerly (V) velocity components [60]. The time series of

both the observed and modelled currents were then rotated

into the major and minor axes of the variance; in most

cases these defined the alongshore and cross-shore flow di-

rections, respectively (see below).

Fruit particle tracking (dispersal and connectivity

simulations)

Output from the hydrodynamic transport model was

used to drive a Lagrangian particle tracking model that

advected particles with the fruit characteristics and sim-

ulated dispersal as a random walk process. In the ran-

dom walk, horizontal dispersion coefficients were based

on a scaled horizontal eddy viscosity from the Smagor-

insky formulation (a typical value of 0.01 was used for

the scaling factor, although the results were advection-

dominated and negligibly influenced when this param-

eter was varied over more than an order of magnitude).

For this application the dispersal of P. australis floating

fruit were treated as passive particles transported at the

sea surface. In addition to the transport of particles by

the ocean surface current vectors from the hydrodynamic

model, the additional transport by windage on the floating

P. australis fruit, as detailed in Ruiz-Montoya et al. [4],

were included in the model. The windage consisted of

1.2% of the local wind speed and was added to the surface

transport, which was based on field studies of the response

of tracked P. australis fruit to different wind forcing condi-

tions (refer to [4]). These coupled hydrodynamic-particle

tracking simulations focused specifically on the period

from the 24th of November to the 15th December 2010,

when local P. australis fruit were observed to be released

in the coastal waters of Perth (see the Additional file 1 for

the model settings). Fruit release in the region occurs an-

nually and the environmental regime is quite consistent

with easterly winds during the morning and strong seab-

reezes in the afternoon [35,61]. The transport of fruit was

assessed from fourteen meadows chosen for fruit release

(Figure 1b). These sites spanned the full study area; how-

ever there were more sites within Cockburn Sound, firstly

because these populations are among the best mapped

along Perth [62], and secondly because most of these sites

coincided with genetic sampling studies by Sinclair et al.

[46,63] that can be utilised in future work. Each release site

consisted of 30 by 30 m zones over which the seagrass

fruit were randomly released. Twenty five particles per site

were released every hour during the study period (~12,500

per site), which is likely an under estimate of the seeds

produced and released in these areas by a factor of ~4

(M. Waycott, personal communication). This maximum

number of simulated particles was based on the com-

putational limitations of the particle tracking; however,

they will have a negligible influence on the actual prob-

ability distributions of dispersal that are the focus here.

Each particle (fruit) was allowed to travel for up to
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5 days (based on results from [4]). Any particles that

left the model domain during this period were recorded

as lost; however an extrapolation on the velocity of the

last 12 hours before leaving the domain was applied for

the remaining time until final dehiscence, to investigate

LDD potential. From Ruiz-Montoya et al. [4] where

~1200 fruit were monitored, the percent of remaining

(non-dehisced) fruit were empirically fit to y = a exp
(−bt), where t represents time in days, y the dehiscence

percentage of the studied sample, which gave a = 117

and b = 0.78 d−1 (see [4]). This expression represents an

exponential distribution of a continuous random vari-

able; hence its probability density function (PDF) of de-

hiscence was defined as P(t) = 0.781exp(−0.781t). After

each particle tracking simulation, the individual particle

trajectories were analysed based on their positions

every second hour. Using the dehiscence probability P(t)
curve, the settlement locations of individual seeds were

then recorded. Horizontal transport during the rapid

settlement phase was not incorporated, due to the fast

settling velocity of P. australis seeds; for example, a

transport of only 15 m would result in a maximum

depth of 20 m from a current speed of 0.075 m s−1,

which is considered relatively fast in the study area (see

[35]). The probabilities for settlement were then

spatially assigned among a 500 m × 500 m grid of the

entire study area, thereby producing a settlement prob-

ability map. This process was carried out for the 14 dif-

ferent release sites. Finally, this information was used

to quantify the connectivity between the different sam-

ple sites by computing a connectivity matrix for the re-

gion, where the rows represent the meadow receiving

the seed and intersect columns that represent the

meadow sourcing the fruit [1].
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Additional file 1: Supplementary Material.
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