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Abstract— Sketch portrait generation benefits a wide range of
applications such as digital entertainment and law enforcement.
Although plenty of efforts have been dedicated to this task,
several issues still remain unsolved for generating vivid and
detail-preserving personal sketch portraits. For example, quite a
few artifacts may exist in synthesizing hairpins and glasses, and
textural details may be lost in the regions of hair or mustache.
Moreover, the generalization ability of current systems is some-
what limited since they usually require elaborately collecting a
dictionary of examples or carefully tuning features/components.
In this paper, we present a novel representation learning frame-
work that generates an end-to-end photo-sketch mapping through
structure and texture decomposition. In the training stage, we
first decompose the input face photo into different components
according to their representational contents (i.e., structural and
textural parts) by using a pre-trained convolutional neural
network (CNN). Then, we utilize a branched fully CNN for
learning structural and textural representations, respectively.
In addition, we design a sorted matching mean square error
metric to measure texture patterns in the loss function. In the
stage of sketch rendering, our approach automatically generates
structural and textural representations for the input photo and
produces the final result via a probabilistic fusion scheme. Exten-
sive experiments on several challenging benchmarks suggest that
our approach outperforms example-based synthesis algorithms
in terms of both perceptual and objective metrics. In addition,
the proposed method also has better generalization ability across
data set without additional training.

Index Terms— Sketch generation, representation learning, fully
convolutional network.

I. INTRODUCTION

S
KETCH portrait generation has widespread utility in many

applications [1]–[3]. For example, in the law enforcement,

when it is impossible to get the photo of criminal, a sketch
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Fig. 1. Illustration results of existing methods and the proposed approach.
(a) Photos. (b) Ours. (c) MRF[1]. (d) SSD[2]. (e) SRGS[3].

portrait drawn based on the description of eyewitness may

help the policemen to quickly identify the suspect by utilizing

automatical sketch-based retrieval in the mug-shot database.

In digital entertainment, people like to render their photos into

sketch style and use them as the avatars on social media for

enjoyment.

Despite the widespread applications of sketch portrait, it

remains a challenging problem to generate vivid and detail-

preserved sketch because of the great difference between

photo and sketch. To the best of our knowledge, most of

existing approaches generate sketch portraits based on the

synthesis of training examples. Given a photo patch, these

methods find similar patches in the training set and use

their corresponding sketch patches to synthesize the sketch of

input photo. Although impressive results have been received,

there remains several issues in these methods. As shown in

Fig. 1, the synthesis results of non-facial factors of these

example-based methods are not satisfied, such as hairpins and

glasses [1], [3]. Because of the great variations in appearance

and geometry of these decorations, it is easy to involve artifacts

in the synthesis results. Besides some methods [2], [3] average

the candidate sketches to generate smoothed results. They may

produce acceptable sketches for face part, but always fail to

preserve textural details, such as the hair region. Finally, the

performance of these example-based methods are only accept-

able when training and test samples originate from the same

dataset, however, this situation is rarely happened in practice.

1057-7149 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 2. Illustration of the pipeline of sketch portraits generation via the proposed framework. Our approach feeds an input photo into the branched fully
convolutional network to produce a structural sketch and a textural sketch, respectively. Guided by the parsing maps, the two sketches are fused to get the
final result via a probability fusion method.

Aiming at alleviating the aforementioned problems, we pro-

pose to learn sketch representations directly from raw pixels

of input photos, and develop a decompositional representation

learning framework to generate an end-to-end photo-sketch

mapping through structure and textural decomposition. Given

an input photo, our method first roughly decompose it into

different regions according to their representational contents,

such as face, hair and background. Then we learn structural

representation and textural representation from different parts

respectively. The structural representation learning mainly

focuses on the facial part, while the textural representation

learning mainly targets on preserving the fine-grained details

of hair regions. Finally, the two representations are fused to

generate the final sketch portrait via a probabilistic method.

Specifically, in the training stage, we first adopt a pre-

trained parsing network (P-Net) to automatically output a

probability parsing map, which assigns a three-dimensional

vector to each pixel of input photo to indicate its probability

belonging to face, hair, and background. With the probabil-

ity parsing map we can easily obtain the face regions and

hair regions. We then utilize a branched fully convolutional

network (BFCN), which includes a structural branch and

a textural branch, to learn the structural representation and

textural representation respectively. We select patches of face

part when training the structural branch and adopt mean square

error (MSE) as its objective function.

For the textural branch, we feed it with patches selected

from hair regions. As to the loss function of textural branch,

we do not use MSE which is used in the training of struc-

tural branch. The reason is that different from structural

regions, textural regions usually possess periodic and oscil-

latory natures [4]–[6], and a point-to-point matching, such

as MSE, is not effective enough to measure the similarity

of two similar textural regions. Thus, directly applying MSE

for textural branch learning can not well preserve the fine-

grained textural details. To solve this problem, we propose a

sorted matching mean square error (SM-MSE) for the training

of textural branch of BFCN. SM-MSE can be regarded as

applying an ascending sort operator before calculating MSE.

Compared with MSE, it can effectively evaluate the similarity

of two textural patterns. The detail of SM-MSE is described

in Section III.

In the testing stage, given an input photo, we first use BFCN

to learn its structural representation and textural representation.

Then, the two representations are fused to generate final sketch

portrait guided by the probability parsing maps. The pipeline

of generating sketch portraits via BFCN is illustrated in Fig. 2.

The key contribution of this work is a task-driven deep

learning method that achieves a new state-of-the-art perfor-

mance for personal sketch portrait generation. Our framework

is capable of learning the photo-sketch mapping in an end-to-

end way, unlike the traditional approaches that usually require

elaborately collecting a dictionary of examples or carefully

tuning features/components. Moreover, the proposed SM-MSE

metric is very effective to measure texture patterns during the

representation learning, improving the expression of sketch

portraits through capturing textural details.

The remainder of this paper is organized as follows.

Section II reviews related works about sketch synthesis and

convolutional neural networks. Section III describes the pro-

posed decompositional representation learning framework for

sketch portrait generation in detail. Extensive experimental

results are provided in Section IV. Finally, Section V concludes

this paper.

II. RELATED WORK

In this section, we first review the example-based sketch

synthesis methods proposed in previous work. Then, we dis-

cuss different strategies which produce dense sketch outputs

via neural networks.

A. Sketch Portrait Generation via Synthesis-By-Exemplar

Most works in sketch portrait generation focus on two

kinds of sketches, namely profile sketches [7] and shading

sketches [8]. Compared with the former, the shading sketches

can not only use lines to reflect the overall profiles, but

also capture the textural parts via shading. Thus, the shading

sketches are more challenge to be modeled. We mainly study

the automatic generation of shading sketches in this paper.
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In most previous works, sketch portrait generation is usually

modeled as a synthesis problems with assumption that similar

photo images have similar sketch images. Tang and Wang [8]

proposed a sketch portrait generation method based on eigen

transformation (ET). For each test photo image, this method

searches similar photo images in a prepared training set, and

then uses the corresponding sketch images to synthesize the

sketch. The photo-to-sketch mapping is approximated as linear

transform in ET-based method. However, this assumption may

be too strong, especially when the hair regions are included.

Liu et al. [9] proposed a nonlinear method using locally

linear embedding (LLE), which partitions the image into

several overlapping patches and synthesizes each of these

patches separately. Recent works also partition the images

into patches for further synthesizing. To fulfill the smoothness

requirement between neighboring patches, Wang and Tang

proposed a multiscale Markov Random Fields (MRF)

model [1]. But it is too computationally intensive to be applied

in realtime situations. To reduce the synthesized artifacts,

Song et al. [2] improved the LLE-based method [9] by

considering synthesis as an image denoising processing. How-

ever, the high-frequency information is suppressed in their

results. To enhance the generalization ability, Zhang et al. [3]

designed a method called sparse representation-based greedy

search (SRGS), which searches candidates globally under a

time constraint. However, their results are inferior in preserv-

ing clear structures.

Several methods add a refinement step to recover vital

details of the input photo to improve the visual quality and

face recognition performance. Zhang et al. [10] applied a

support vector regression (SVR) based model to synthesize

the high-frequency information. Similarly, Gao et al. [11]

proposed a method called SNS-SRE with two steps, i.e.,

sparse neighbor selection (SNS) to get an initial estimation

and sparse representation based enhancement (SRE) for further

improvement. Nevertheless, these post processing steps may

brought in side effects, e.g., the results of SNS-SRE are out of

sketch styles and become more likely to be natural gray level

images.

B. Dense Predictions via Convolutional Neural Networks

The convolutional neural network (CNN) has been widely

used in computer vision. Its typical structure contained a

series of convolutional layers, pooling layers and full con-

nected layers. Recently, CNN has achieved great success

in large scale object localization [12], [13], detection [14],

recognition [15]–[18] and classification [19], [20].

Researchers also adopted CNNs to produce dense predic-

tions. An intuitive strategy is to attach the output maps to the

topmost layer for directly learning a global predictions. For

examples, Lin et al. [21] adopted these strategy for generic

object extraction, and Luo et al. [22] applied a similar config-

uration for pedestrian parsing. Nevertheless, this strategy often

produces coarse outputs, since the parameters in networks

grow dramatically when enlarging the output maps. To produce

finer outputs, Sermanet et al. [12] applied another network

which refined coarse predictions via information from local

patches in the depth prediction task. A similar idea was also

proposed by Wang et al. [23], which separately learns global

and local processes and uses a fusion network to fuse them

into the final estimation of the surface normal. Surprisingly,

the global information can be omitted in some situations, e.g.,

Dong et al. [24], [25] applied a CNN only included three

convolutional layers for image super resolution. Though this

network has a small receptive field and is trained on local patch

samples, it works well for the strict alignment of samples in

this specific task.

III. SKETCH GENERATION VIA DECOMPOSITIONAL

REPRESENTATION LEARNING

In this paper, we propose a representation learning frame-

work for an end-to-end photo-sketch mapping via structure and

texture decomposition. Given an image, it can be decomposed

into structural components and textural components [26]. The

geometric and smoothly-varying component, referred to as

structural component or cartoon, is composed of object hues

and boundaries, while the texture is an oscillatory component

capturing details and noise. Thus, in the proposed framework,

we separately learns the structural and textural representations

of photo portrait.

In the training stage, by using a probability parsing map,

a photo is automatically decomposed into different semantic

parts, i.e., face, hair, and background. Then, we utilize a

branched fully convolutional network (BFCN) to learn the

structural and textural representation respectively. Patches

from face region are fed to BFCN to train the structural

branch, while patches from hair region are fed into BFCN to

train its textural branch, respectively. In the test stage, given

a test photo, BFCN automatically learns a structure-preserved

sketch and a texture-preserved sketch, which are further fused

to generate the final sketch portrait via a probabilistic method.

In the following, we will first introduce the probability

parsing map, and then describe the architecture and the specific

training strategy of BFCN. The probabilistic fusion method is

presented at the end of this section.

A. Probability Parsing Map

Inspired by previous works [27], [28], we design a fully

convolutional network pre-trained on Helen dataset to auto-

matically parse a face photo into semantic regions of face, hair

and background. This network is called parsing net (P-Net),

which consists of eight convolutional layers with ReLUs as

activation functions. The first three convolutional layers are

followed by pooling layers and local response normalization

layers [19]. An average probability map of the face, hair, and

background, is also adopted as nonparametric priors to provide

a global regularization. In the inference stage, we feed this

network with the full-size (200 × 156) photo. Then P-Net

generates three maps of the size (100 × 78), corresponding

to the probability distributions of face, hair and background

of pixels in the photo respectively.

We adopt a softmax classifier on the top of P-Net to learn the

probabilistic parsing probability maps. For an input image X,

we use Y to denote its ground truth probability parsing map.
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Fig. 3. The architecture of Branched Fully Convoluational Neural Network. A photo and global prior are taken as the input. They are fed into three shared
convolutional layers with the kernel sizes (5 × 5), (5 × 5) and (1 × 1), and then they pass through two branches with additional three convolutional layers
with the kernel sizes (1 × 1), (3 × 3) and (3 × 3). The two output layers are connected with specific objective functions for predictions of structures and
textures, respectively.

For each pixel y ∈ Y, and its receptive field is denoted as x.

Let wp denote the parameters of P-Net. Then the topmost

output of P-Net can be denoted as h = f (x, wp).

Thus the predictions of softmax classifier can be formulated

as

P(y = l|h, w) =
ex p

(

(wl)Th
)

∑3
l=1 ex p

(

(wl)Th
)

, (1)

where l = {1, 2, 3} indicating the class labels of y, i.e.,

face, hair and background, w denotes the weight of softmax

classifier, and wl denotes the weight for the l-th class. Thus,

for a single image X and its corresponding probability parsing

map Y, we can formulate the objective of P-Net as

Lp(X, Y, wp, w)

= −
1

|Y|

∑

y∈Y

3
∑

l=1

l(y = l) log P(y = l|h, w), (2)

where l(·) is the indicator function.

B. Branched Fully Convolutional Network

We utilize a branched fully convolutional neural network,

i.e., BFCN, to learn the structural and textural representations

of photo portrait respectively. The architecture of BFCN is

shown in Fig. 3. BFCN consists of six convolutional layers

of rectified linear functions (ReLUs [29]) as the activation

functions. We share the features of first three layers in BFCN

for computational efficiency, and adopt two sibling output

layers to produce the structural and textural predictions. As

the receptive field of BFCN is small, it may fail to predict

satisfactory results via small local information. Thus we add

a nonparametric prior to provide a global regularization as

introduced in previous work [28]. More precisely, we average

of all the aligned ground truth sketches to get an average sketch

portrait and attach it after color channels as the network input.

Though we only feed BFCN with patches in the training stage,

this network can be fed with full size images in the testing time

due to the translation invariance of the convolutional operator.

There are two sibling branches in BFCN, i.e., structural

branch and textural branch. In the training stage, patches from

face part are fed to structural branch to learn the structural

representations, while patches from hair region are fed into

textural branch for textural representation learning. We adopt

different objective functions to train the two branches. Let Lg

denotes the total objective function of BFCN. Then, Lg can

be formulated as

Lg = Ls + αLt , (3)

where Ls denotes the structural objective function, Lt denotes

the textural objective function, and α is a scaling factor to

balance the two objective function terms. In the following, we

describe the definition of Ls and Lt and the training strategies

respectively.

1) Structural Branch Training: Patches from the face

regions are fed to BFCN for the structural representation, and

we apply MSE as the objective function of structural branch.

Let (ps, ss) denote a structural training patch pair, and wg

and ws denote the parameters in the shared layers and the

structural branch. The structural objective function Ls can be

formulated as

Ls =
1

|Ps |

∑

ps∈Ps

MSE(ŝs , ss), (4)

where ŝs = f (ps, wg, ws) denotes the structural prediction

of ss , and |Ps| denotes the total number of training photo

patch set Ps . The MSE(·) in Eq. (4) can be formulated as

MSE(ŝs , ss) =
1

|ss |

∑

s i
s∈ss

(

ŝi
s − si

s

)2
, (5)

where si
s denotes the i -th ground truth pixel of a structural

sketch patch ss , and ŝi
s ∈ ŝs denotes the corresponding

prediction.

In the training set, each photo and its corresponding sketch

are cropped into small patches in the same size to form the

training photo-sketch patch pairs. However, as the photo and

its corresponding sketch are only roughly aligned by facial

landmarks, there are a lot of structurally unaligned patch

pairs [1]. Those unaligned patch pairs will greatly degrade

the visual quality of final results. Thus, it is necessary to filter

them before structural representation learning.

We assume that a photo patch and a sketch are aligned if

they have high structural similarity. To measure their structural



IE
E
E
 P

ro
o

f

ZHANG et al.: CONTENT-ADAPTIVE SKETCH PORTRAIT GENERATION BY DECOMPOSITIONAL REPRESENTATION LEARNING 5

Fig. 4. Illustration of sorted matching. After applying the sort operator,
two chessboard texture patterns in (a) and (b) become identical in (c);
(d) Comparison of MSE and SM-MSE on textural pattern measurement.

similarity, we first utilize the Sobel operator to exact the

edge maps of two patches, and then adopt the Structural

Similarity (SSIM) [30] index to evaluate the similarity between

the two edge maps. Then, we filter out the patch pairs with

SSIM indexes lower than a threshold (e.g., ≤ 0.6 in this paper).

2) Textural Branch Training: Patches from hair regions

are fed to BFCN for textural representation. Portrait textures

usually contain fine-scale details with periodic and oscillatory

natures. For example, the patches in Fig. 4 (a) and 4(b) have

visible point-by-point difference, but they are in the same

texture pattern. In this situation, directly applying a point-to-

point objective function, e.g., mean square error (MSE), is

difficult to evaluate the similarity of these similar textural pat-

terns. Although extensive studies have been made on metrics

of texture similarity [31]–[34], and many metrics has been

proposed, they are difficult to be integrated into the neural

network. For examples, the formulation of STSIM [33] is

quite complex and hard to calculate the derivatives for back-

propagation algorithm.

To deal with this situation, we design a Sorted Matching-

Mean Square Error (SM-MSE) metric for textural represen-

tation learning. SM-MSE can be viewed as adding an extra

ascending sort operator before comparing two textural patches

using MSE. We give an intuitive example of the comparison of

adopting MSE and SM-MSE in Fig. 4(d). We crop two close

patches on the hair regions. Generally, those two patches are

in the similar textural pattern. We apply the MSE and SM-

MSE to evaluate the similarity of these patches respectively.

As we can see, the result of SM-MSE is much smaller

than those of directly applying MSE. Thus, by using SM-

MSE, the similarity of two textural patches can be easily

measured. Besides, it is very straightforward to integrate SM-

MSE into BFCN. We only need to mark down the index of

each pixel before applying the sort operator, and then networks

can find paths for back-propagating the derivatives, which

is analogous to implement the back-propagation of the max

pooling operator.

To train the textural branch of BFCN, we mainly adopt the

combination of SM-MSE and MSE. Let (pt , st ) denote a train-

ing patch pair for textural representation learning, wg denote

the parameters in shared layers and wt denote parameters in

the textural branch, respectively. Then the textural objective

function Lt can be formulated as

Lt =
1

|Pt |

∑

pt ∈Pt

MSE(ŝt , st ) + βSM(ŝt , st ), (6)

where ŝt = f (pt , wg, wt ) denotes the textural prediction of st ,

β is used to balance the MSE(·) and SM(·) term. The MSE(·)

term can be regarded as a regularizer. Then, the MSE(·) and

SM(·) in Eq. 6 can be formulated as

MSE(ŝt , st ) =
1

|st |

∑

s i
t ∈st

(

ŝi
t − si

t

)2
, (7)

SM(ŝt , st ) =
1

|st s |

∑

s i
ts∈sts

(

ŝi
t s − si

t s

)2
, (8)

where si
t denotes the i -th ground truth pixel of a textural sketch

patch st , and ŝi
t ∈ ŝt denotes its prediction. The st s and ŝt s =

fs(pt , wg, wt ) are obtained by applying the ascending sort

operator on st and ŝt . si
t s denotes the i -th sorted ground truth

pixel of a textural sketch patch st s , and ŝi
t s ∈ ŝt s denotes the

i -th sorted prediction.

C. Probabilistic Fusion

By using the parsing maps, we propose a probabilistic

fusion scheme to fuse the structural and textural sketches

directly to generate sketch portrait in the inference stage. The

fusion process is guided by the probability parsing map of test

photo I of size m × n. Let P f , Ph , Pb denote the probabilities

of pixels in I belongs to face, hair and background respectively.

We can obtain a binary map Pl which indicates whether pixels

in I belongs to the hair or not, which can be formulated as

Pl = l(Ph ≥ P f and Ph ≥ Pb), (9)

where l(·) denotes the indicator function. We then use Pl to

fuse the structural sketch Ss and textural sketch St as

S = (1m×n − Pl) · Ss + Pl · St . (10)

where S denotes the final sketch portrait.

However, the above fusion process does not consider the

border effect between the face and hair. Thus it may bring

artifacts into final fusion results as shown in Fig. 5(a). We

can find sudden change between the border of face and

hair. To overcome this problem, we propose a soft fusion

strategy. Instead of using the binary labels, the soft fusion

adopt probability parsing maps to evaluate a weighted average

between the structure-preserved sketch and texture-preserved

sketch as:

S = (1m×n − Ph) · Ss + Ph · St , (11)

where (·) refers to element-wise product. By using soft fusion,

the border between face and hair can be greatly smoothed.
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Fig. 5. Comparison of different fusion strategies: (a) results of direct fusion,
and (b) results of soft fusion.

A slice of samples of soft fusion are shown in Fig. 5(b).

Compared with Fig. 5(a), we can see the border effects have

been well removed.

D. Implementation Details

We adopt the Caffe [35] toolbox to implement both BFCN

and P-Net. For BFCN, the training samples are first cropped

into size of (156 × 200) to exclude the influence of the black

regions around the borders. Then, we crop the photo and its

corresponding sketch into overlapping (32 × 32) patches to

avoid overflow while keeping a high computational efficiency.

In the training stage, filter weights of the two networks

are initialized by drawing random numbers from a Gaussian

distribution with zero mean and standard deviation 0.01, and

the bias are initialized by zero. We set α = 1 and β = 10

for the hyper-parameters of the objective function in Eq. (4)

and Eq. (6). With the learning rate set as 10−10, BFCN needs

about 150 epoches to converge. For the P-Net, it requires about

100 epoches to converge with learning rate 10−3.

In the inference stage, we adopt the (200 × 250) photos

as input. In order to avoid the border effect, we do not use

any paddings in the BFCN. Thus, the generated results will

be shrunk to the size (188×238). Compared to most previous

methods, our approach is very efficient (over 10 fps when

processing aligned photos on a powerful GPU).

IV. EXPERIMENTAL RESULT

In this section, we first introduce the datasets and implemen-

tation setting. Then, we conduct considerable experiments to

show performance of our approach. The comparison results

with some of existing methods are also discussed in this

section.

A. Dataset Setup

For the sake of comparison with existing methods, we

take the CUHK Face Sketch (CUFS) dataset [1] for exper-

imental study. The total samples of CUFS dataset is 606,

which includes 188 samples from the Chinese University of

Hong Kong (CUHK) student dataset, 123 samples from the AR

Fig. 6. Samples from the CUFS dataset. The samples are taken from the
CUHK student dataset (the first row), the AR dataset (the second row), and
the XM2VTS dataset (the last row).

dataset [36], and 295 samples from the XM2VTS dataset [37].

For each sample, there is a sketch drawn by an artist based

on a photo taken in a frontal pose, under the normal lighting

condition. Some samples from the CUFS dataset are shown in

Fig. 6. We take the 88 samples in CUHK student dataset as the

training set, while the rest 518 samples are used as the testing

set, including 123 samples from AR dataset, 295 samples from

XM2VTS dataset and the reset 100 samples in CUHK student

dataset.

We adopt the Helen dataset [38] and its additional annota-

tions [39] to train the P-Net. We manually choose 280 samples

in a roughly frontal pose assuming that the photos have been

aligned by the landmarks.

B. Photo-to-Sketch Generation

In this subsection, we evaluate the proposed framework on

the CUFS dataset. We also compare our method with six

recently proposed example-based synthesis methods, including

Multiple Representations-based method (MR) [40], Markov

random field (MRF) [1], Markov weight field (MWF) [41],

spatial sketch denoising (SSD) [2], and sparse representation-

based greedy search (SRGS) [3].

The comparison results are shown in Fig. 7. The first

column corresponds to the input photos from CUHK, AR and

XM2VTS, and the rest columns correspond to the sketches

generated by MR [40], MRF [1], MWF [41], SRGS [3],

SSD [2] and our method respectively. We can see that the

visual effects of competing methods are not satisfactory. First,

these methods can not handle decorations well, such as the

hair pin in the first example and the glasses in the third

and sixth examples. Besides, only our result exactly keeps

the pigmented naevus in the input photo of the second row.

Second, the competing methods can not preserve the fine-

grained textural detail well. Especially when there are many

texture regions in the sketch, e.g., the mustache and the hair

regions. Compared with other methods, our approach can not

only catch the significant characteristics of input photo portrait,

but also preserve the fine-scale texture details to make the

sketch portraits more vivid.

Another superiority of the proposed method is its general-

ization ability. In Fig. 7, the results of the first two rows are
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Fig. 7. Comparison of sketches generated by different methods. (a) Input Photo. (b) MR [40]. (c) MRF [1]. (d) MWF [41]. (e) SRGS [3]. (f) SSD [2].
(g) Our method.

more or less acceptable, while the rest results of other methods,

i.e., images from the third row to the last row, are much worse

in visual quality. This is because that the first two test photos

are selected from CUHK student dataset, which shares the

same distribution with the training samples, while the rest

examples are taken from the AR and XM2VTS datasets, with

different distributions from CUHK student dataset. Neverthe-

less, our method performs well on all input photos, showing

its excellent generalization performance.

Besides, the proposed decompositional representation learn-

ing based model can produce clearer structure and handle the

non-facial factors better. For example, in Fig. 7, the results

produced by our method have clearer and sharper outliers of

face, and preserve subtle structure of eyebrow, eyes, nose, lips,

nose and ears. Take ears as example. The results generated by

our method are satisfying, with fairly perfect shape and subtle

detail preserved, while those produced by other methods are

nearly unrecognizable. Meanwhile, only SRGS [3] and our

methods can produce the non-facial factors, such as hairpin.

However, SRGS loses much fine-grained textural detail, such

as the hair region of samples in Fig. 7(e). In contrast, our

method performs well in handling the fine-scale textural detail

which makes our result much more vivid than those

of SRGS.
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Fig. 8. Comparison on subjective voting. More people prefer the results
generated by our approach.

Fig. 9. Comparison on the Rank-1 and Rank-10 Cumulative Match Score of
sketch-based face recognition task. Best view in color. (a) Rank-1 Cumulative
Match Score. (b) Rank-10 Cumulative Match Score.

Referring to [2] and [11], we adopt subjective voting for

the sketch image quality assessment. We present the candi-

date photos and the corresponding sketches produced by our

method and other methods, including MR [40], MRF [1],

MWF [41], SSD [2] and SRGS [3], and shuffle them.

Fig. 10. Comparison of the robustness to lighting and pose variations of
different methods.

We invited 20 volunteers to select the results that they prefer.

The result is shown in Fig. 8, in which the blue bars refer to the

percentage of votes selecting other methods, while the orange

bars indicate the vote rate of our method. The statistic results

show that much more people prefer our method. Specifically,

for the CUHK dataset, our approach obtain over a half of all

the votes. For other datasets, our superiority becomes more

obvious, reaching 91% and 78% in AR and XM2VTS datasets,

respectively.

C. Sketch-Based Face Recognition

The performance on sketch-based face recognition [8] can

also be used to evaluate the quality of sketch portraits. In this

subsection, we will show that the generated sketches of our

proposed approach can not only get a high visual quality, but

also can significantly reduce the modality difference between

photos and sketches, which means our model can perform well

on sketch-based face recognition task.

The procedures of a sketch-based face recognition can be

concluded in two steps : (a) convert photos in testing set into

corresponding sketches; (b) define a feature or transformation

to measure the distance between the query sketch and the

generated sketches.

We adopt PCA for face feature extraction and cosine simi-

larity for distance measurement. Following the same protocol

in [8], we compare our approach with previous methods

on cumulative match score (CMS). The CMS measures the

percentage of ‘the correct answer is in the top n matches’,

where n is called the rank. We merge the total 518 samples

from the CUHK, AR and XM2VTS datasets together to form

a challenging sketch based recognition test set. In Fig. 9(a), we

plot the Rank-1 recognition rates of the comparison methods.

The result of our method can get an accuracy of 78.7% for
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Fig. 11. Results generated by our framework in unconstrained environment. (a) Input portraits. (b) aligned portraits. (c) parsing map. (d) structural sketches.
(e) textural sketches. (f) fused sketches.

the first match when using an 100-dimension PCA-reduced

features, which is much better than the second place method

(SRGS method [3], 53.2%). When the feature dimensions

increase to 250, the Rank-1 CMS of our method also increases

to 80.1%. As shown in Fig. 9(b), our method can reach to a

accuracy of 93.2% in ten guesses, while the best result of other

methods is around 85%.

D. Robustness to Lighting and Pose Variations

The lighting and pose variations are also challenging in the

sketch generation problem [42]. Some of previous methods

only work under well constrained conditions and often fail

when there are variations of lighting and pose. For example,

Fig. 10(b) shows the samples of sketches synthesized by

MRF [1] methods with lighting and pose variations. The

results of the first and second rows are obtained under dark

frontal lighting and dark side lighting, while the results of the

third and fourth rows are synthesized under pose variations in

range of [−45°, 45°]. The results show that MRF often lose

some details under lighting and pose variations. For example,

in the sketch of the forth row of Fig. 10(b), the profile and ear

is missed, and the sketch in the second row is dramatically

confused. Zhang et al. [42] further improved MRF (named as

MRF+ in this paper) to handle the lighting and pose variations.

However, MRF+ involves much additional operations which

make it rather complicated and inefficient. The results of the

MRF+ are shown in Fig. 10(c). We can see that the visual

effect of the MRF+ is improved, however, the results still lack

some details, e.g., part of the ear marked in the forth row of

Fig. 10(c).

Our proposed method learns the sketch from the raw pixels

of photo portrait, and it is rather robust to the pose variation as

shown in the third and forth row of Fig. 10(d) and (e). Besides,

we can adopt a simple strategy to handle the lighting variation.

Specifically, we first translate the input photos to HSV colors

pace, and then randomly multiple the index of V channel

by a factor in the range [0.625, 1.125] during the training.

The sketch results are shown in the first and second row

of Fig. 10(e). Compared with the corresponding sketches of

Fig. 10(d), the visual effects are marginally improved.

E. Portrait-to-Sketch Generation in the Wild

In this section, we conduct experiments to explore gener-

ation ability of our model on an unconstrained environment.
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Fig. 12. Comparison on models trained without/with decompositional
representation learning (DRL). (a) Input photos. (b) Results without DRL.
(c) Results with DRL.

We select some generated sketch portraits and show them in

Fig. 11 with corresponding intermediate results. It indicates

that the representation learned by our model is more general

and more robust to handle the complex background (e.g., the

left arm of the woman in the first row, and the batten behind

the man in the third row).

F. Analysis and Discussion

We also analysis the effectiveness of the decompositional

representation learning and parsing maps in the proposed

method. Besides, we also discuss some considerations when

designing the probabilistic fusion and the architecture of

BFCN.

1) The Effectiveness of Decompositional Representation

Learning: We conduct experiments to verify the effectiveness

of decompositional representation learning on handling the

structures and textures. Specifically, we disable the structurally

unaligned filter in the data preparing stage, and set β = 0 to

remove SM(·) term in Eq. (6) when training the BFCN. Under

this setting, the two branches of BFCN are trained equally with

the same loss function. Then we retrain the model under this

condition. The results are depicted in the second column of

Fig. 12. For comparison, we also depict the result with normal

setting in the third column. Obviously, the sketches in the third

column are more attractive. The textures are much clearer,

since SM-MSE metric can correctly evaluate similar textures

to learn a better representation. Meanwhile, the structures are

sharper, since the structurally unaligned filter only retains the

aligned patch pairs, which help to capture the main structures

and suppress the noises.

2) The Effectiveness of Nonparametric Prior in Training

BFCN: As we mentioned in Section III, in the training of

BFCN, we add the average of ground truth of sketch as

nonparametric prior to provide a global regularization to our

model. Here, we evaluate the role of this nonparametric prior

via comparing the sketches generated by the models with and

without this prior respectively. The comparison results are

presented in Fig. 13. We can see that after embedding the

nonparametric prior into our model, some mistakes caused

by the locally predictions are corrected and the sketches are

more lively.

Fig. 13. Comparison results of model trained without/with the nonparametric
prior. (a) Input photos; (b) Results without global prior; (c) Results with global
prior.

TABLE I

INFERENCE TIME FOR SINGLE IMAGE OF UNSHARED AND SHARED

PARAMETERS OF SHALLOW LAYERS (ON A NVIDIA

TITAN BLACK GPU)

TABLE II

COMPARISON OF INFERENCE TIME OF SINGLE FACE IMAGE

OF DIFFERENT METHODS

3) Shared vs. Unshared Parameters of Shallow Layers: The

low-level feature learned by SRCNN [24] is likely to be edges,

which can be shared in most of the computer vision tasks.

Inspired by previous works [24], [43], we share parameters

of the first three convolutional layers (called shallow layers)

of BFCN and we find that this strategy is both effective and

efficient. For comparison, we retrain a model without sharing

the parameters, i.e., we adopt two isolated networks to learn

the structures and textures. Experimental results show that

sharing the shallow layers is much more efficient. As shown

in TABLE I, if we don’t share the weights, testing procedure

will be significantly slowed down by over 110%, since most of

the computational cost comes from the shallow convolutional

layers. Besides, we also compared the computation cost of

proposed BFCN with other methods, i.e., MRF [1], SSD [2],

SRGS [3], MR [40], MWF [41] to evaluate its efficiency. For

fair comparison, all of these methods are run on a PC with

Intel Core i7 3.4GHz CPU without GPU acceleration. The

comparison results are list in Table II show that our method

is much more efficient than other methods.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel decompositional repre-

sentation learning framework to learn from the raw pixels of

input photo for an end-to-end sketch portrait generation. We

utilize a BFCN to map the photo into structural and textural
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components to generate a structure-preserved sketch and a

texture-preserved sketch respectively. The two sketches are

fused together to generate the final sketch portrait via a prob-

abilistic method. Experimental results on several challenging

benchmarks show the proposed method outperforms existing

example-based synthesis algorithms in terms of both percep-

tual and objective metrics. Besides, the proposed approach also

has favorable generalization ability across different datasets

without additional training.

Currently, in the training BFCN, a face image and its cor-

responding sketch are roughly aligned by eyes. Then patches

of face image and its corresponding sketch patches are fed

into BFCN to train a photo-sketch generation model. In other

words, the performance of BFCN is partially rely on the

face alignment algorithm. If the face images have large pose

variations or drastic lighting change, the results of current

face alignment method may be not good. Thus the sketches

generated by BFCN may be not satisfied. In the future, we

will design more robust face alignment algorithm to replace

current strategy, and make the BFCN more robust to the pose

and lighting variations.
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Content-Adaptive Sketch Portrait Generation by

Decompositional Representation Learning
Dongyu Zhang, Liang Lin, Senior Member, IEEE, Tianshui Chen, Xian Wu, Wenwei Tan,

and Ebroul Izquierdo, Senior Member, IEEE

Abstract— Sketch portrait generation benefits a wide range of
applications such as digital entertainment and law enforcement.
Although plenty of efforts have been dedicated to this task,
several issues still remain unsolved for generating vivid and
detail-preserving personal sketch portraits. For example, quite a
few artifacts may exist in synthesizing hairpins and glasses, and
textural details may be lost in the regions of hair or mustache.
Moreover, the generalization ability of current systems is some-
what limited since they usually require elaborately collecting a
dictionary of examples or carefully tuning features/components.
In this paper, we present a novel representation learning frame-
work that generates an end-to-end photo-sketch mapping through
structure and texture decomposition. In the training stage, we
first decompose the input face photo into different components
according to their representational contents (i.e., structural and
textural parts) by using a pre-trained convolutional neural
network (CNN). Then, we utilize a branched fully CNN for
learning structural and textural representations, respectively.
In addition, we design a sorted matching mean square error
metric to measure texture patterns in the loss function. In the
stage of sketch rendering, our approach automatically generates
structural and textural representations for the input photo and
produces the final result via a probabilistic fusion scheme. Exten-
sive experiments on several challenging benchmarks suggest that
our approach outperforms example-based synthesis algorithms
in terms of both perceptual and objective metrics. In addition,
the proposed method also has better generalization ability across
data set without additional training.

Index Terms— Sketch generation, representation learning, fully
convolutional network.

I. INTRODUCTION

S
KETCH portrait generation has widespread utility in many

applications [1]–[3]. For example, in the law enforcement,

when it is impossible to get the photo of criminal, a sketch
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Fig. 1. Illustration results of existing methods and the proposed approach.
(a) Photos. (b) Ours. (c) MRF[1]. (d) SSD[2]. (e) SRGS[3].

portrait drawn based on the description of eyewitness may

help the policemen to quickly identify the suspect by utilizing

automatical sketch-based retrieval in the mug-shot database.

In digital entertainment, people like to render their photos into

sketch style and use them as the avatars on social media for

enjoyment.

Despite the widespread applications of sketch portrait, it

remains a challenging problem to generate vivid and detail-

preserved sketch because of the great difference between

photo and sketch. To the best of our knowledge, most of

existing approaches generate sketch portraits based on the

synthesis of training examples. Given a photo patch, these

methods find similar patches in the training set and use

their corresponding sketch patches to synthesize the sketch of

input photo. Although impressive results have been received,

there remains several issues in these methods. As shown in

Fig. 1, the synthesis results of non-facial factors of these

example-based methods are not satisfied, such as hairpins and

glasses [1], [3]. Because of the great variations in appearance

and geometry of these decorations, it is easy to involve artifacts

in the synthesis results. Besides some methods [2], [3] average

the candidate sketches to generate smoothed results. They may

produce acceptable sketches for face part, but always fail to

preserve textural details, such as the hair region. Finally, the

performance of these example-based methods are only accept-

able when training and test samples originate from the same

dataset, however, this situation is rarely happened in practice.

1057-7149 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 2. Illustration of the pipeline of sketch portraits generation via the proposed framework. Our approach feeds an input photo into the branched fully
convolutional network to produce a structural sketch and a textural sketch, respectively. Guided by the parsing maps, the two sketches are fused to get the
final result via a probability fusion method.

Aiming at alleviating the aforementioned problems, we pro-

pose to learn sketch representations directly from raw pixels

of input photos, and develop a decompositional representation

learning framework to generate an end-to-end photo-sketch

mapping through structure and textural decomposition. Given

an input photo, our method first roughly decompose it into

different regions according to their representational contents,

such as face, hair and background. Then we learn structural

representation and textural representation from different parts

respectively. The structural representation learning mainly

focuses on the facial part, while the textural representation

learning mainly targets on preserving the fine-grained details

of hair regions. Finally, the two representations are fused to

generate the final sketch portrait via a probabilistic method.

Specifically, in the training stage, we first adopt a pre-

trained parsing network (P-Net) to automatically output a

probability parsing map, which assigns a three-dimensional

vector to each pixel of input photo to indicate its probability

belonging to face, hair, and background. With the probabil-

ity parsing map we can easily obtain the face regions and

hair regions. We then utilize a branched fully convolutional

network (BFCN), which includes a structural branch and

a textural branch, to learn the structural representation and

textural representation respectively. We select patches of face

part when training the structural branch and adopt mean square

error (MSE) as its objective function.

For the textural branch, we feed it with patches selected

from hair regions. As to the loss function of textural branch,

we do not use MSE which is used in the training of struc-

tural branch. The reason is that different from structural

regions, textural regions usually possess periodic and oscil-

latory natures [4]–[6], and a point-to-point matching, such

as MSE, is not effective enough to measure the similarity

of two similar textural regions. Thus, directly applying MSE

for textural branch learning can not well preserve the fine-

grained textural details. To solve this problem, we propose a

sorted matching mean square error (SM-MSE) for the training

of textural branch of BFCN. SM-MSE can be regarded as

applying an ascending sort operator before calculating MSE.

Compared with MSE, it can effectively evaluate the similarity

of two textural patterns. The detail of SM-MSE is described

in Section III.

In the testing stage, given an input photo, we first use BFCN

to learn its structural representation and textural representation.

Then, the two representations are fused to generate final sketch

portrait guided by the probability parsing maps. The pipeline

of generating sketch portraits via BFCN is illustrated in Fig. 2.

The key contribution of this work is a task-driven deep

learning method that achieves a new state-of-the-art perfor-

mance for personal sketch portrait generation. Our framework

is capable of learning the photo-sketch mapping in an end-to-

end way, unlike the traditional approaches that usually require

elaborately collecting a dictionary of examples or carefully

tuning features/components. Moreover, the proposed SM-MSE

metric is very effective to measure texture patterns during the

representation learning, improving the expression of sketch

portraits through capturing textural details.

The remainder of this paper is organized as follows.

Section II reviews related works about sketch synthesis and

convolutional neural networks. Section III describes the pro-

posed decompositional representation learning framework for

sketch portrait generation in detail. Extensive experimental

results are provided in Section IV. Finally, Section V concludes

this paper.

II. RELATED WORK

In this section, we first review the example-based sketch

synthesis methods proposed in previous work. Then, we dis-

cuss different strategies which produce dense sketch outputs

via neural networks.

A. Sketch Portrait Generation via Synthesis-By-Exemplar

Most works in sketch portrait generation focus on two

kinds of sketches, namely profile sketches [7] and shading

sketches [8]. Compared with the former, the shading sketches

can not only use lines to reflect the overall profiles, but

also capture the textural parts via shading. Thus, the shading

sketches are more challenge to be modeled. We mainly study

the automatic generation of shading sketches in this paper.
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In most previous works, sketch portrait generation is usually

modeled as a synthesis problems with assumption that similar

photo images have similar sketch images. Tang and Wang [8]

proposed a sketch portrait generation method based on eigen

transformation (ET). For each test photo image, this method

searches similar photo images in a prepared training set, and

then uses the corresponding sketch images to synthesize the

sketch. The photo-to-sketch mapping is approximated as linear

transform in ET-based method. However, this assumption may

be too strong, especially when the hair regions are included.

Liu et al. [9] proposed a nonlinear method using locally

linear embedding (LLE), which partitions the image into

several overlapping patches and synthesizes each of these

patches separately. Recent works also partition the images

into patches for further synthesizing. To fulfill the smoothness

requirement between neighboring patches, Wang and Tang

proposed a multiscale Markov Random Fields (MRF)

model [1]. But it is too computationally intensive to be applied

in realtime situations. To reduce the synthesized artifacts,

Song et al. [2] improved the LLE-based method [9] by

considering synthesis as an image denoising processing. How-

ever, the high-frequency information is suppressed in their

results. To enhance the generalization ability, Zhang et al. [3]

designed a method called sparse representation-based greedy

search (SRGS), which searches candidates globally under a

time constraint. However, their results are inferior in preserv-

ing clear structures.

Several methods add a refinement step to recover vital

details of the input photo to improve the visual quality and

face recognition performance. Zhang et al. [10] applied a

support vector regression (SVR) based model to synthesize

the high-frequency information. Similarly, Gao et al. [11]

proposed a method called SNS-SRE with two steps, i.e.,

sparse neighbor selection (SNS) to get an initial estimation

and sparse representation based enhancement (SRE) for further

improvement. Nevertheless, these post processing steps may

brought in side effects, e.g., the results of SNS-SRE are out of

sketch styles and become more likely to be natural gray level

images.

B. Dense Predictions via Convolutional Neural Networks

The convolutional neural network (CNN) has been widely

used in computer vision. Its typical structure contained a

series of convolutional layers, pooling layers and full con-

nected layers. Recently, CNN has achieved great success

in large scale object localization [12], [13], detection [14],

recognition [15]–[18] and classification [19], [20].

Researchers also adopted CNNs to produce dense predic-

tions. An intuitive strategy is to attach the output maps to the

topmost layer for directly learning a global predictions. For

examples, Lin et al. [21] adopted these strategy for generic

object extraction, and Luo et al. [22] applied a similar config-

uration for pedestrian parsing. Nevertheless, this strategy often

produces coarse outputs, since the parameters in networks

grow dramatically when enlarging the output maps. To produce

finer outputs, Sermanet et al. [12] applied another network

which refined coarse predictions via information from local

patches in the depth prediction task. A similar idea was also

proposed by Wang et al. [23], which separately learns global

and local processes and uses a fusion network to fuse them

into the final estimation of the surface normal. Surprisingly,

the global information can be omitted in some situations, e.g.,

Dong et al. [24], [25] applied a CNN only included three

convolutional layers for image super resolution. Though this

network has a small receptive field and is trained on local patch

samples, it works well for the strict alignment of samples in

this specific task.

III. SKETCH GENERATION VIA DECOMPOSITIONAL

REPRESENTATION LEARNING

In this paper, we propose a representation learning frame-

work for an end-to-end photo-sketch mapping via structure and

texture decomposition. Given an image, it can be decomposed

into structural components and textural components [26]. The

geometric and smoothly-varying component, referred to as

structural component or cartoon, is composed of object hues

and boundaries, while the texture is an oscillatory component

capturing details and noise. Thus, in the proposed framework,

we separately learns the structural and textural representations

of photo portrait.

In the training stage, by using a probability parsing map,

a photo is automatically decomposed into different semantic

parts, i.e., face, hair, and background. Then, we utilize a

branched fully convolutional network (BFCN) to learn the

structural and textural representation respectively. Patches

from face region are fed to BFCN to train the structural

branch, while patches from hair region are fed into BFCN to

train its textural branch, respectively. In the test stage, given

a test photo, BFCN automatically learns a structure-preserved

sketch and a texture-preserved sketch, which are further fused

to generate the final sketch portrait via a probabilistic method.

In the following, we will first introduce the probability

parsing map, and then describe the architecture and the specific

training strategy of BFCN. The probabilistic fusion method is

presented at the end of this section.

A. Probability Parsing Map

Inspired by previous works [27], [28], we design a fully

convolutional network pre-trained on Helen dataset to auto-

matically parse a face photo into semantic regions of face, hair

and background. This network is called parsing net (P-Net),

which consists of eight convolutional layers with ReLUs as

activation functions. The first three convolutional layers are

followed by pooling layers and local response normalization

layers [19]. An average probability map of the face, hair, and

background, is also adopted as nonparametric priors to provide

a global regularization. In the inference stage, we feed this

network with the full-size (200 × 156) photo. Then P-Net

generates three maps of the size (100 × 78), corresponding

to the probability distributions of face, hair and background

of pixels in the photo respectively.

We adopt a softmax classifier on the top of P-Net to learn the

probabilistic parsing probability maps. For an input image X,

we use Y to denote its ground truth probability parsing map.
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Fig. 3. The architecture of Branched Fully Convoluational Neural Network. A photo and global prior are taken as the input. They are fed into three shared
convolutional layers with the kernel sizes (5 × 5), (5 × 5) and (1 × 1), and then they pass through two branches with additional three convolutional layers
with the kernel sizes (1 × 1), (3 × 3) and (3 × 3). The two output layers are connected with specific objective functions for predictions of structures and
textures, respectively.

For each pixel y ∈ Y, and its receptive field is denoted as x.

Let wp denote the parameters of P-Net. Then the topmost

output of P-Net can be denoted as h = f (x, wp).

Thus the predictions of softmax classifier can be formulated

as

P(y = l|h, w) =
ex p

(

(wl)Th
)

∑3
l=1 ex p

(

(wl)Th
)

, (1)

where l = {1, 2, 3} indicating the class labels of y, i.e.,

face, hair and background, w denotes the weight of softmax

classifier, and wl denotes the weight for the l-th class. Thus,

for a single image X and its corresponding probability parsing

map Y, we can formulate the objective of P-Net as

Lp(X, Y, wp, w)

= −
1

|Y|

∑

y∈Y

3
∑

l=1

l(y = l) log P(y = l|h, w), (2)

where l(·) is the indicator function.

B. Branched Fully Convolutional Network

We utilize a branched fully convolutional neural network,

i.e., BFCN, to learn the structural and textural representations

of photo portrait respectively. The architecture of BFCN is

shown in Fig. 3. BFCN consists of six convolutional layers

of rectified linear functions (ReLUs [29]) as the activation

functions. We share the features of first three layers in BFCN

for computational efficiency, and adopt two sibling output

layers to produce the structural and textural predictions. As

the receptive field of BFCN is small, it may fail to predict

satisfactory results via small local information. Thus we add

a nonparametric prior to provide a global regularization as

introduced in previous work [28]. More precisely, we average

of all the aligned ground truth sketches to get an average sketch

portrait and attach it after color channels as the network input.

Though we only feed BFCN with patches in the training stage,

this network can be fed with full size images in the testing time

due to the translation invariance of the convolutional operator.

There are two sibling branches in BFCN, i.e., structural

branch and textural branch. In the training stage, patches from

face part are fed to structural branch to learn the structural

representations, while patches from hair region are fed into

textural branch for textural representation learning. We adopt

different objective functions to train the two branches. Let Lg

denotes the total objective function of BFCN. Then, Lg can

be formulated as

Lg = Ls + αLt , (3)

where Ls denotes the structural objective function, Lt denotes

the textural objective function, and α is a scaling factor to

balance the two objective function terms. In the following, we

describe the definition of Ls and Lt and the training strategies

respectively.

1) Structural Branch Training: Patches from the face

regions are fed to BFCN for the structural representation, and

we apply MSE as the objective function of structural branch.

Let (ps, ss) denote a structural training patch pair, and wg

and ws denote the parameters in the shared layers and the

structural branch. The structural objective function Ls can be

formulated as

Ls =
1

|Ps |

∑

ps∈Ps

MSE(ŝs , ss), (4)

where ŝs = f (ps, wg, ws) denotes the structural prediction

of ss , and |Ps| denotes the total number of training photo

patch set Ps . The MSE(·) in Eq. (4) can be formulated as

MSE(ŝs , ss) =
1

|ss |

∑

s i
s∈ss

(

ŝi
s − si

s

)2
, (5)

where si
s denotes the i -th ground truth pixel of a structural

sketch patch ss , and ŝi
s ∈ ŝs denotes the corresponding

prediction.

In the training set, each photo and its corresponding sketch

are cropped into small patches in the same size to form the

training photo-sketch patch pairs. However, as the photo and

its corresponding sketch are only roughly aligned by facial

landmarks, there are a lot of structurally unaligned patch

pairs [1]. Those unaligned patch pairs will greatly degrade

the visual quality of final results. Thus, it is necessary to filter

them before structural representation learning.

We assume that a photo patch and a sketch are aligned if

they have high structural similarity. To measure their structural
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Fig. 4. Illustration of sorted matching. After applying the sort operator,
two chessboard texture patterns in (a) and (b) become identical in (c);
(d) Comparison of MSE and SM-MSE on textural pattern measurement.

similarity, we first utilize the Sobel operator to exact the

edge maps of two patches, and then adopt the Structural

Similarity (SSIM) [30] index to evaluate the similarity between

the two edge maps. Then, we filter out the patch pairs with

SSIM indexes lower than a threshold (e.g., ≤ 0.6 in this paper).

2) Textural Branch Training: Patches from hair regions

are fed to BFCN for textural representation. Portrait textures

usually contain fine-scale details with periodic and oscillatory

natures. For example, the patches in Fig. 4 (a) and 4(b) have

visible point-by-point difference, but they are in the same

texture pattern. In this situation, directly applying a point-to-

point objective function, e.g., mean square error (MSE), is

difficult to evaluate the similarity of these similar textural pat-

terns. Although extensive studies have been made on metrics

of texture similarity [31]–[34], and many metrics has been

proposed, they are difficult to be integrated into the neural

network. For examples, the formulation of STSIM [33] is

quite complex and hard to calculate the derivatives for back-

propagation algorithm.

To deal with this situation, we design a Sorted Matching-

Mean Square Error (SM-MSE) metric for textural represen-

tation learning. SM-MSE can be viewed as adding an extra

ascending sort operator before comparing two textural patches

using MSE. We give an intuitive example of the comparison of

adopting MSE and SM-MSE in Fig. 4(d). We crop two close

patches on the hair regions. Generally, those two patches are

in the similar textural pattern. We apply the MSE and SM-

MSE to evaluate the similarity of these patches respectively.

As we can see, the result of SM-MSE is much smaller

than those of directly applying MSE. Thus, by using SM-

MSE, the similarity of two textural patches can be easily

measured. Besides, it is very straightforward to integrate SM-

MSE into BFCN. We only need to mark down the index of

each pixel before applying the sort operator, and then networks

can find paths for back-propagating the derivatives, which

is analogous to implement the back-propagation of the max

pooling operator.

To train the textural branch of BFCN, we mainly adopt the

combination of SM-MSE and MSE. Let (pt , st ) denote a train-

ing patch pair for textural representation learning, wg denote

the parameters in shared layers and wt denote parameters in

the textural branch, respectively. Then the textural objective

function Lt can be formulated as

Lt =
1

|Pt |

∑

pt ∈Pt

MSE(ŝt , st ) + βSM(ŝt , st ), (6)

where ŝt = f (pt , wg, wt ) denotes the textural prediction of st ,

β is used to balance the MSE(·) and SM(·) term. The MSE(·)

term can be regarded as a regularizer. Then, the MSE(·) and

SM(·) in Eq. 6 can be formulated as

MSE(ŝt , st ) =
1

|st |

∑

s i
t ∈st

(

ŝi
t − si

t

)2
, (7)

SM(ŝt , st ) =
1

|st s |

∑

s i
ts∈sts

(

ŝi
t s − si

t s

)2
, (8)

where si
t denotes the i -th ground truth pixel of a textural sketch

patch st , and ŝi
t ∈ ŝt denotes its prediction. The st s and ŝt s =

fs(pt , wg, wt ) are obtained by applying the ascending sort

operator on st and ŝt . si
t s denotes the i -th sorted ground truth

pixel of a textural sketch patch st s , and ŝi
t s ∈ ŝt s denotes the

i -th sorted prediction.

C. Probabilistic Fusion

By using the parsing maps, we propose a probabilistic

fusion scheme to fuse the structural and textural sketches

directly to generate sketch portrait in the inference stage. The

fusion process is guided by the probability parsing map of test

photo I of size m × n. Let P f , Ph , Pb denote the probabilities

of pixels in I belongs to face, hair and background respectively.

We can obtain a binary map Pl which indicates whether pixels

in I belongs to the hair or not, which can be formulated as

Pl = l(Ph ≥ P f and Ph ≥ Pb), (9)

where l(·) denotes the indicator function. We then use Pl to

fuse the structural sketch Ss and textural sketch St as

S = (1m×n − Pl) · Ss + Pl · St . (10)

where S denotes the final sketch portrait.

However, the above fusion process does not consider the

border effect between the face and hair. Thus it may bring

artifacts into final fusion results as shown in Fig. 5(a). We

can find sudden change between the border of face and

hair. To overcome this problem, we propose a soft fusion

strategy. Instead of using the binary labels, the soft fusion

adopt probability parsing maps to evaluate a weighted average

between the structure-preserved sketch and texture-preserved

sketch as:

S = (1m×n − Ph) · Ss + Ph · St , (11)

where (·) refers to element-wise product. By using soft fusion,

the border between face and hair can be greatly smoothed.
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Fig. 5. Comparison of different fusion strategies: (a) results of direct fusion,
and (b) results of soft fusion.

A slice of samples of soft fusion are shown in Fig. 5(b).

Compared with Fig. 5(a), we can see the border effects have

been well removed.

D. Implementation Details

We adopt the Caffe [35] toolbox to implement both BFCN

and P-Net. For BFCN, the training samples are first cropped

into size of (156 × 200) to exclude the influence of the black

regions around the borders. Then, we crop the photo and its

corresponding sketch into overlapping (32 × 32) patches to

avoid overflow while keeping a high computational efficiency.

In the training stage, filter weights of the two networks

are initialized by drawing random numbers from a Gaussian

distribution with zero mean and standard deviation 0.01, and

the bias are initialized by zero. We set α = 1 and β = 10

for the hyper-parameters of the objective function in Eq. (4)

and Eq. (6). With the learning rate set as 10−10, BFCN needs

about 150 epoches to converge. For the P-Net, it requires about

100 epoches to converge with learning rate 10−3.

In the inference stage, we adopt the (200 × 250) photos

as input. In order to avoid the border effect, we do not use

any paddings in the BFCN. Thus, the generated results will

be shrunk to the size (188×238). Compared to most previous

methods, our approach is very efficient (over 10 fps when

processing aligned photos on a powerful GPU).

IV. EXPERIMENTAL RESULT

In this section, we first introduce the datasets and implemen-

tation setting. Then, we conduct considerable experiments to

show performance of our approach. The comparison results

with some of existing methods are also discussed in this

section.

A. Dataset Setup

For the sake of comparison with existing methods, we

take the CUHK Face Sketch (CUFS) dataset [1] for exper-

imental study. The total samples of CUFS dataset is 606,

which includes 188 samples from the Chinese University of

Hong Kong (CUHK) student dataset, 123 samples from the AR

Fig. 6. Samples from the CUFS dataset. The samples are taken from the
CUHK student dataset (the first row), the AR dataset (the second row), and
the XM2VTS dataset (the last row).

dataset [36], and 295 samples from the XM2VTS dataset [37].

For each sample, there is a sketch drawn by an artist based

on a photo taken in a frontal pose, under the normal lighting

condition. Some samples from the CUFS dataset are shown in

Fig. 6. We take the 88 samples in CUHK student dataset as the

training set, while the rest 518 samples are used as the testing

set, including 123 samples from AR dataset, 295 samples from

XM2VTS dataset and the reset 100 samples in CUHK student

dataset.

We adopt the Helen dataset [38] and its additional annota-

tions [39] to train the P-Net. We manually choose 280 samples

in a roughly frontal pose assuming that the photos have been

aligned by the landmarks.

B. Photo-to-Sketch Generation

In this subsection, we evaluate the proposed framework on

the CUFS dataset. We also compare our method with six

recently proposed example-based synthesis methods, including

Multiple Representations-based method (MR) [40], Markov

random field (MRF) [1], Markov weight field (MWF) [41],

spatial sketch denoising (SSD) [2], and sparse representation-

based greedy search (SRGS) [3].

The comparison results are shown in Fig. 7. The first

column corresponds to the input photos from CUHK, AR and

XM2VTS, and the rest columns correspond to the sketches

generated by MR [40], MRF [1], MWF [41], SRGS [3],

SSD [2] and our method respectively. We can see that the

visual effects of competing methods are not satisfactory. First,

these methods can not handle decorations well, such as the

hair pin in the first example and the glasses in the third

and sixth examples. Besides, only our result exactly keeps

the pigmented naevus in the input photo of the second row.

Second, the competing methods can not preserve the fine-

grained textural detail well. Especially when there are many

texture regions in the sketch, e.g., the mustache and the hair

regions. Compared with other methods, our approach can not

only catch the significant characteristics of input photo portrait,

but also preserve the fine-scale texture details to make the

sketch portraits more vivid.

Another superiority of the proposed method is its general-

ization ability. In Fig. 7, the results of the first two rows are
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Fig. 7. Comparison of sketches generated by different methods. (a) Input Photo. (b) MR [40]. (c) MRF [1]. (d) MWF [41]. (e) SRGS [3]. (f) SSD [2].
(g) Our method.

more or less acceptable, while the rest results of other methods,

i.e., images from the third row to the last row, are much worse

in visual quality. This is because that the first two test photos

are selected from CUHK student dataset, which shares the

same distribution with the training samples, while the rest

examples are taken from the AR and XM2VTS datasets, with

different distributions from CUHK student dataset. Neverthe-

less, our method performs well on all input photos, showing

its excellent generalization performance.

Besides, the proposed decompositional representation learn-

ing based model can produce clearer structure and handle the

non-facial factors better. For example, in Fig. 7, the results

produced by our method have clearer and sharper outliers of

face, and preserve subtle structure of eyebrow, eyes, nose, lips,

nose and ears. Take ears as example. The results generated by

our method are satisfying, with fairly perfect shape and subtle

detail preserved, while those produced by other methods are

nearly unrecognizable. Meanwhile, only SRGS [3] and our

methods can produce the non-facial factors, such as hairpin.

However, SRGS loses much fine-grained textural detail, such

as the hair region of samples in Fig. 7(e). In contrast, our

method performs well in handling the fine-scale textural detail

which makes our result much more vivid than those

of SRGS.
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Fig. 8. Comparison on subjective voting. More people prefer the results
generated by our approach.

Fig. 9. Comparison on the Rank-1 and Rank-10 Cumulative Match Score of
sketch-based face recognition task. Best view in color. (a) Rank-1 Cumulative
Match Score. (b) Rank-10 Cumulative Match Score.

Referring to [2] and [11], we adopt subjective voting for

the sketch image quality assessment. We present the candi-

date photos and the corresponding sketches produced by our

method and other methods, including MR [40], MRF [1],

MWF [41], SSD [2] and SRGS [3], and shuffle them.

Fig. 10. Comparison of the robustness to lighting and pose variations of
different methods.

We invited 20 volunteers to select the results that they prefer.

The result is shown in Fig. 8, in which the blue bars refer to the

percentage of votes selecting other methods, while the orange

bars indicate the vote rate of our method. The statistic results

show that much more people prefer our method. Specifically,

for the CUHK dataset, our approach obtain over a half of all

the votes. For other datasets, our superiority becomes more

obvious, reaching 91% and 78% in AR and XM2VTS datasets,

respectively.

C. Sketch-Based Face Recognition

The performance on sketch-based face recognition [8] can

also be used to evaluate the quality of sketch portraits. In this

subsection, we will show that the generated sketches of our

proposed approach can not only get a high visual quality, but

also can significantly reduce the modality difference between

photos and sketches, which means our model can perform well

on sketch-based face recognition task.

The procedures of a sketch-based face recognition can be

concluded in two steps : (a) convert photos in testing set into

corresponding sketches; (b) define a feature or transformation

to measure the distance between the query sketch and the

generated sketches.

We adopt PCA for face feature extraction and cosine simi-

larity for distance measurement. Following the same protocol

in [8], we compare our approach with previous methods

on cumulative match score (CMS). The CMS measures the

percentage of ‘the correct answer is in the top n matches’,

where n is called the rank. We merge the total 518 samples

from the CUHK, AR and XM2VTS datasets together to form

a challenging sketch based recognition test set. In Fig. 9(a), we

plot the Rank-1 recognition rates of the comparison methods.

The result of our method can get an accuracy of 78.7% for
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Fig. 11. Results generated by our framework in unconstrained environment. (a) Input portraits. (b) aligned portraits. (c) parsing map. (d) structural sketches.
(e) textural sketches. (f) fused sketches.

the first match when using an 100-dimension PCA-reduced

features, which is much better than the second place method

(SRGS method [3], 53.2%). When the feature dimensions

increase to 250, the Rank-1 CMS of our method also increases

to 80.1%. As shown in Fig. 9(b), our method can reach to a

accuracy of 93.2% in ten guesses, while the best result of other

methods is around 85%.

D. Robustness to Lighting and Pose Variations

The lighting and pose variations are also challenging in the

sketch generation problem [42]. Some of previous methods

only work under well constrained conditions and often fail

when there are variations of lighting and pose. For example,

Fig. 10(b) shows the samples of sketches synthesized by

MRF [1] methods with lighting and pose variations. The

results of the first and second rows are obtained under dark

frontal lighting and dark side lighting, while the results of the

third and fourth rows are synthesized under pose variations in

range of [−45°, 45°]. The results show that MRF often lose

some details under lighting and pose variations. For example,

in the sketch of the forth row of Fig. 10(b), the profile and ear

is missed, and the sketch in the second row is dramatically

confused. Zhang et al. [42] further improved MRF (named as

MRF+ in this paper) to handle the lighting and pose variations.

However, MRF+ involves much additional operations which

make it rather complicated and inefficient. The results of the

MRF+ are shown in Fig. 10(c). We can see that the visual

effect of the MRF+ is improved, however, the results still lack

some details, e.g., part of the ear marked in the forth row of

Fig. 10(c).

Our proposed method learns the sketch from the raw pixels

of photo portrait, and it is rather robust to the pose variation as

shown in the third and forth row of Fig. 10(d) and (e). Besides,

we can adopt a simple strategy to handle the lighting variation.

Specifically, we first translate the input photos to HSV colors

pace, and then randomly multiple the index of V channel

by a factor in the range [0.625, 1.125] during the training.

The sketch results are shown in the first and second row

of Fig. 10(e). Compared with the corresponding sketches of

Fig. 10(d), the visual effects are marginally improved.

E. Portrait-to-Sketch Generation in the Wild

In this section, we conduct experiments to explore gener-

ation ability of our model on an unconstrained environment.
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Fig. 12. Comparison on models trained without/with decompositional
representation learning (DRL). (a) Input photos. (b) Results without DRL.
(c) Results with DRL.

We select some generated sketch portraits and show them in

Fig. 11 with corresponding intermediate results. It indicates

that the representation learned by our model is more general

and more robust to handle the complex background (e.g., the

left arm of the woman in the first row, and the batten behind

the man in the third row).

F. Analysis and Discussion

We also analysis the effectiveness of the decompositional

representation learning and parsing maps in the proposed

method. Besides, we also discuss some considerations when

designing the probabilistic fusion and the architecture of

BFCN.

1) The Effectiveness of Decompositional Representation

Learning: We conduct experiments to verify the effectiveness

of decompositional representation learning on handling the

structures and textures. Specifically, we disable the structurally

unaligned filter in the data preparing stage, and set β = 0 to

remove SM(·) term in Eq. (6) when training the BFCN. Under

this setting, the two branches of BFCN are trained equally with

the same loss function. Then we retrain the model under this

condition. The results are depicted in the second column of

Fig. 12. For comparison, we also depict the result with normal

setting in the third column. Obviously, the sketches in the third

column are more attractive. The textures are much clearer,

since SM-MSE metric can correctly evaluate similar textures

to learn a better representation. Meanwhile, the structures are

sharper, since the structurally unaligned filter only retains the

aligned patch pairs, which help to capture the main structures

and suppress the noises.

2) The Effectiveness of Nonparametric Prior in Training

BFCN: As we mentioned in Section III, in the training of

BFCN, we add the average of ground truth of sketch as

nonparametric prior to provide a global regularization to our

model. Here, we evaluate the role of this nonparametric prior

via comparing the sketches generated by the models with and

without this prior respectively. The comparison results are

presented in Fig. 13. We can see that after embedding the

nonparametric prior into our model, some mistakes caused

by the locally predictions are corrected and the sketches are

more lively.

Fig. 13. Comparison results of model trained without/with the nonparametric
prior. (a) Input photos; (b) Results without global prior; (c) Results with global
prior.

TABLE I

INFERENCE TIME FOR SINGLE IMAGE OF UNSHARED AND SHARED

PARAMETERS OF SHALLOW LAYERS (ON A NVIDIA

TITAN BLACK GPU)

TABLE II

COMPARISON OF INFERENCE TIME OF SINGLE FACE IMAGE

OF DIFFERENT METHODS

3) Shared vs. Unshared Parameters of Shallow Layers: The

low-level feature learned by SRCNN [24] is likely to be edges,

which can be shared in most of the computer vision tasks.

Inspired by previous works [24], [43], we share parameters

of the first three convolutional layers (called shallow layers)

of BFCN and we find that this strategy is both effective and

efficient. For comparison, we retrain a model without sharing

the parameters, i.e., we adopt two isolated networks to learn

the structures and textures. Experimental results show that

sharing the shallow layers is much more efficient. As shown

in TABLE I, if we don’t share the weights, testing procedure

will be significantly slowed down by over 110%, since most of

the computational cost comes from the shallow convolutional

layers. Besides, we also compared the computation cost of

proposed BFCN with other methods, i.e., MRF [1], SSD [2],

SRGS [3], MR [40], MWF [41] to evaluate its efficiency. For

fair comparison, all of these methods are run on a PC with

Intel Core i7 3.4GHz CPU without GPU acceleration. The

comparison results are list in Table II show that our method

is much more efficient than other methods.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel decompositional repre-

sentation learning framework to learn from the raw pixels of

input photo for an end-to-end sketch portrait generation. We

utilize a BFCN to map the photo into structural and textural
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components to generate a structure-preserved sketch and a

texture-preserved sketch respectively. The two sketches are

fused together to generate the final sketch portrait via a prob-

abilistic method. Experimental results on several challenging

benchmarks show the proposed method outperforms existing

example-based synthesis algorithms in terms of both percep-

tual and objective metrics. Besides, the proposed approach also

has favorable generalization ability across different datasets

without additional training.

Currently, in the training BFCN, a face image and its cor-

responding sketch are roughly aligned by eyes. Then patches

of face image and its corresponding sketch patches are fed

into BFCN to train a photo-sketch generation model. In other

words, the performance of BFCN is partially rely on the

face alignment algorithm. If the face images have large pose

variations or drastic lighting change, the results of current

face alignment method may be not good. Thus the sketches

generated by BFCN may be not satisfied. In the future, we

will design more robust face alignment algorithm to replace

current strategy, and make the BFCN more robust to the pose

and lighting variations.
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