
CONTENT AND MULTIMEDIA DATABASE

MANAGEMENT SYSTEMS

ARJEN P. DE VRIES
Centre for Telematics and Information Technology
University of Twente
The Netherlands
arjen@acm.org

Samenstelling van de promotiecommissie:

Prof. dr. P.M.G. Apers, promotor

Prof. C.J. van Rijsbergen, University of Glasgow, Glasgow, UK

Prof. dr. M.L. Kersten, Universiteit van Amsterdam

Prof. dr. F.M.G. de Jong

Prof. dr. W. Jonker

dr. H.M. Blanken (assistent­promotor)

dr. G.C. van der Veer, Vrije Universiteit, Amsterdam (assistent­promotor)

dr. A.N. Wilschut (referent)

Centre for Telematics and Information Technology (CTIT)

P.O. Box 217, 7500 AE Enschede, The Netherlands

ISBN: 90­365­1388­X

ISSN: 1381­3617 (CTIT Ph.D­thesis Series No. 99­26)

Cover design: Willem G. Feijen

Printed by: PrintPartners Ipskamp, Enschede, The Netherlands

Copyright c© 1999, Arjen P. de Vries, Utrecht, The Netherlands

All rights reserved. No part of this book may be reproduced, stored in a retrieval

system, or transmitted in any form or by any means, electronic, mechanical,

photocopying, recording or otherwise, without prior written permission of the author.

CONTENT AND MULTIMEDIA DATABASE

MANAGEMENT SYSTEMS

PROEFSCHRIFT

ter verkrijging van

de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,

prof.dr. F. A. van Vught,

volgens besluit van het College voor Promoties

in het openbaar te verdedigen

op vrijdag 17 december 1999 te 15.00 uur.

door

Arjen Paul de Vries

geboren op 18 september 1972

te Laren Noord­Holland

Dit proefschrift is goedgekeurd door:

Prof. dr. P.M.G. Apers (promotor)

Dr. H.M. Blanken (assistent­promotor)

Dr. G.C. van der Veer (assistent­promotor)

Contents

Preface ix

Acknowledgments xi

1. INTRODUCTION 1

1.1 Introduction 1

1.2 Scenarios of user tasks 2

1.3 Examples of digital libraries 3

1.4 What is this thesis about? 6

1.5 Some comments on the research method 7

1.6 Outline of thesis 8

2. ARCHITECTURE OF DATABASE MANAGEMENT SYSTEMS 11

2.1 Introduction 11

2.2 Data makes the world go round 12

2.3 The relational data model 13

2.4 The three-schema architecture 15

2.5 Database ‘goodies’ 18

2.6 Efficient query evaluation 18

2.7 Object-orientation and database systems 23

2.8 Efficient object query evaluation 28

2.9 The multi-model DBMS architecture 33

2.10 The So-Simple DBMS 35

2.11 Summary 41

3. REQUIREMENTS ANALYSIS 45

3.1 Introduction 45

3.2 What is multimedia data? 46

3.3 Active versus passive objects 49

3.4 Metadata and content 50

3.5 Multimedia data and databases 54

3.6 New requirements for multimedia databases 57

3.7 Summary 61

4. CONTENT MANAGEMENT 63

4.1 Introduction 63

4.2 A multimedia DBMS architecture 64

4.3 Relationship with IR 65

4.4 Plausible reasoning and probability theory 66

4.5 Design of the retrieval engine 70

4.6 Evidential reasoning layer 72

4.7 Instantiating the model 75

4.8 Improving the model 77

4.9 Summary 78

5. THE MIRROR MULTIMEDIA DBMS 81

5.1 Introduction 81

5.2 Integration of IR and databases 82

5.3 IR processing in a multi-model DBMS 82

5.4 Mapping from logical to physical algebra 86

5.5 Instantiating the model 90

5.6 Experience with TREC 98

5.7 Query optimization and Moa extensions 101

5.8 Discussion and comparison to other work 104

5.9 Summary 106

6. DATABASES AND DIGITAL LIBRARIES 109

6.1 Introduction 109

6.2 Characteristics of user groups 110

6.3 Implications for the design of digital libraries 111

6.4 Prototype implementation 115

6.5 Discussion 117

6.6 Summary 118

7. THE EVALUATION PROBLEM 121

7.1 Introduction 121

7.2 Quantative evaluation 122

7.3 Reducing the cost of evaluation 125

7.4 Minimal evaluation 126

7.5 Discussion 128

7.6 Toward better test collections 129

7.7 Summary 131

8. CONCLUSIONS 133

8.1 Summary 133

8.2 Conclusions 134

8.3 Further work 135

vi

CONTENTS vii

References 137

Samenvatting 153

Topic Index 155

Author Index 159

viii CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

Preface

Multimedia is a sexy topic. But, why is it so fascinating? And, if it is so fascinating,

why does it seem as if the multimedia hype at database conferences (that started a

couple of years ago) has suddenly passed by? The latter may be understood because

a business model for commercial applications of multimedia database technology has

not yet evolved. But, in words of Albert Camus: ‘a society based on production is

only productive, not creative’.

To me, creation is the most human activity that exists: I believe it is our main

source to happiness. I think it is the direct relationship between multimedia and the

creativity necessary for the production of multimedia that is so fascinating. As such,

multimedia relates clearly to Art: photographs, paintings, videoclips, movies, songs,

etcetera. Obviously, not all multimedia is Art. Conversely, most multimedia is just a

representation of Reality. And, Jeanette Winterson argues: ‘Art does not imitate life.

Art anticipates life.’ In other words, true Art is more than a representation of Reality;

it forces you to enjoy the Artwork itself.

Perceiving Art thus emphasizes the role of Emotions and Aesthetics. But, whenever

we look at a picture, listen to music, or ‘just’ watch a news fragment on CNN, we cannot

avoid judging also the aesthetics of the scenes perceived, rating them unconsciously

by their artistic value. As a result, multimedia data has infinite semantics: every

individual has his or her own private perception. This makes the individual user an

important factor in the design of multimedia database systems; motivating this thesis’s

emphasis on the role of aesthetics and emotional value in the minds of individuals

when perceiving multimedia. The human factor, adding to the technical challenge of

creating large multimedia database systems, has motivated me these four years, and

motivates me still.

ARJEN P. DE VRIES

ix

x CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

‘Eigenlijk zijn alleen muziek en abstracte schilderkunst volledig zelfstandige kunstvormen.

Omdat het voor de maker onmogelijk is om het over de werkelijkheid te hebben, ben je

als kijker of luisteraar gedwongen van het kunstwerk zelf te genieten. Wat jij doet, over

een onweer vertellen en proberen dat zo goed mogelijk te beschrijven...’

‘...het gevoel van onweer,’ zei ik.

‘Dat is hetzelfde. Wat jij doet is een zwakke poging om een nieuwe werkelijkheid te

maken, zonder dat je ooit loskomt van de werkelijkheid waaraan je je beelden ontleent.’

—Marcel Möring, In Babylon

Acknowledgments

Rolf de By made me first consider the idea of becoming a graduate student, and T.V.

Raman convinced me to really do so; a decision I will never regret. The Centre

for Telematics and Information Technology (CTIT) provided funding for an inter­

disciplinary research project between ergonomics and databases, which resulted in my

project. Unfortunately, Twente’s cozy little cognitive ergonomics group has fallen

apart; but, I am sure you all notice your impact throughout my dissertation, and I

remember kindly the production of the Gaze video. Lucky for me, the database group

has been a stable second home. The informal atmosphere has been very pleasant to

work in, and I thank all my colleagues for their great company. A special word of

thanks goes to David Spelt, with whom I shared the full experience of being a graduate

student: both the rough times (we disagree on this, but David will put ‘seeing Chinese

box’ here) and the excellent times (we agree on this: Capri).

I want to thank my promotor Peter Apers for providing an environment in which

I could choose my own research directions and teach only what I wanted to, and for

agreeing with all those trips abroad and stimulating me to do a summer internship

with Digital. Peter and my assistent­promotors Gerrit van der Veer and Henk Blanken

must have suffered heavily (and frequently) under the numerous papers and ideas I

wanted to address in my research. Thanks for never stopping me, giving me complete

freedom, and listening patiently to my rattling on about yet another ‘great idea’. I am

honoured that Keith van Rijsbergen, Martin Kersten, Franciska de Jong, Wim Jonker,

and Annita Wilschut agreed kindly to ✶ my committee.

Without the help of Peter Boncz and the Monet team, my research would have

been infeasible. More than anyone else, Annita Wilschut has taught me the essence of

database technology; and, a great deal about life as well. Together with Jan Flokstra,

she created the framework that is presented in Chapter 2 as the So­Simple DBMS.

Maurice van Keulen has been very helpful with proofreading, especially with Chapter

2. Also, I believe that his timely return to the database group has brought both of

us a deeper understanding of Moa. Mark van Doorn, Erik van het Hof, Henk Ernst

Blok, and Harold Oortwijn contributed significantly to the development of the Mirror

DBMS. Finally, Dick Theissens of Symbol Automatisering encouraged experiments

with music retrieval, and provided data for the music retrieval experiments. Willem

xi

xii CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

Feijen designed the beautiful artwork for the cover, demonstrating not only his skill,

but also an apt interpretation of the line of reasoning presented in Chapter 3.

International contacts added a lot of fun to doing research. Brian Eberman arranged

an awesome summer for me at Digital’s Cambridge Research Lab (CRL), where I

teamed up with Rosie, Beth, and Oren. The turbulent year following this summer has

affected me more deeply than I can describe here. As a result from our meeting at

IRSG, Marjo Markkula invited me to an informal Mira workgroup meeting in Tampere,

and Keith van Rijsbergen invited me to Glasgow to give a talk to his group; these events

made me realize that I could really contribute to IR research. Finally, David McG.

Squire has made it possible for me to come to Genève to discuss our remarkably similar

research interests. But, travelling has never been necessary to meet interesting people.

Right here in Twente, Paul van der Vet has invited me to teach in his information

retrieval course; the cooperation with Djoerd Hiemstra for our participation in TREC

has been perfect. Also, the informal meetings organized under the MMUIS banner

have been an excellent platform to gain self­confidence. At SIKS courses, I found

kindred spirits in Bastiaan, Martijn, and Inge.

Which brings me to my friends and family, who I have seriously neglected during

these four years; blaming this on lack of time on the one hand (especially during this

final year), and geographical location on the other hand (Enschede is simply too far

away). You should realize that your continued support has been very important, without

which I would never have finished. My friends from Euros and Tibagem have always

provided the best distractions from my addiction to work. And for my roommates,

Mariken, Karen, and Vlora, I can only hope our fun times at the Dommelstraat have

outweighed all those times I skipped dinner, whether I was going abroad or just living

in my office instead. Wim and Ria, thanks for your support and care. Papa, mama,

and Milou, thanks for believing in me always. And Kristel, thanks for showing me

that together we can survive everything . . . even four crazy years like these.

To Kristel

xiv

1
INTRODUCTION

Every spirit builds itself a house,

and beyond its house, a world,

and beyond its world, a heaven.

Know them that the world exists for you.

Build, therefore, your own world.

—Frank Lloyd Wright

1.1 INTRODUCTION

People interact with multimedia every day: reading books, watching television, listen­

ing to music. We organize and structure this multimedia, such that we can easily access

it again. We create photo albums of our holidays, we keep racks of compact discs

and tapes with the music we like, we store past editions of magazines in boxes, and

use a video recorder to record television programs about topics of our interest. Typi­

cally, these multimedia collections end up in old shoeboxes on the attic, guaranteeing

pleasure and fun when ‘re­discovered’ many years later.

Since the introduction of multimedia in personal computers, it has become more

common every day to digitize part of the multimedia data around us. A major advantage

of digitized data over shoeboxes is that digitized data can be shared easily with others.

People now create their own homepages on the world wide web (WWW), partially as

a tool to manage the information they collect. But, browsing the web makes clear that

a computer with a web server is not the best tool to share your ‘shoebox data’. It is not

1

2 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

easy for others to find your data, and, the information pointed at by search engines is

often incorrect, or has been moved to another location.

A better solution to create large collections of digitized data is to organize the data in

(multimedia) digital libraries. A digital library supports effective interaction among

knowledge producers, librarians, and information and knowledge seekers [AY96].

Adam and Yesha et al. characterize a digital library as a collection of distributed

autonomous sites that work together to give the consumer the appearance of a single

cohesive collection. A digital library should be accessible through the WWW as well,

but it can provide much better support for searching and sharing the data, because it is

not completely unstructured like the WWW. The popularity of so­called ‘portal sites’,

and the increasing amount of domain­specific search engines appearing on the web,

also indicate that better organization of data available in the WWW is necessary to

make it accessible.

This dissertation investigates the potential role of database management systems in

software architectures for the creation and operation of multimedia digital libraries.

Database technology has provided means to store and retrieve high volumes of data

in the business domain. But, database systems have always been designed for the

management of alphanumeric data such as names and numbers. Recently, researchers

have started to think about ‘multimedia databases’. Unfortunately, anything that

simply stores multimedia data is called a multimedia database. The capabilities of

such databases suffice for typical applications of real estate and travel businesses, as

these systems only deal with the presentation of otherwise statically used information.

But, a general­purpose multimedia database management system should provide much

more functionality than just storage and presentation. This thesis is an attempt to define

what properties can be expected from a multimedia database system.

1.2 SCENARIOS OF USER TASKS

To establish an informal notion of the potential role for multimedia digital libraries in

our daily lifes, this section sketches two possible task scenarios. The purpose of these

(mainly fictive) scenarios is to outline the complexity of the tasks for which end­users

may consult a multimedia digital library.1

1.2.1 Journalism

In the first scenario, which is loosely based on the field study performed by Markkula

(see [MS98]), imagine a journalist writing an article about the effects of alcohol on

driving. Before she can start to do the actual work of writing the article, she has to

collect news paper articles about recent accidents, scientific reports giving statistics and

explanations, television commercials broadcasted for the government, and interviews

with policemen and medical experts.

After the article has been written, she has to illustrate it with one or two photos.

She searches in her publisher’s photo archives, and probably tries the archives of some

stock footage companies as well. Typically, she first generates several illustration ideas.

Based on these ideas, she searches and browses archives and catalogs, and prints some

of the photos she likes (or writes down their locations). After these steps, she selects

INTRODUCTION 3

a small set of candidate photos, and eventually chooses the ‘best’ photos from this

candidate set for publication. The selection of ‘good’ photos from the candidate set

is very subjective, and depends mainly on visual attributes of the photos that are hard

to describe in words: Markkula reports that journalists used expressions relating to

the atmosphere or the feelings perceived, such as ‘dramatic’, ‘surprising’, ‘affective’,

‘shocking’, ‘funny’, ‘expressive’, ‘human’, and ‘threat’. She also reports that often

‘non­typical’ photos were preferred.

Searching for photos related to proper names or news events is relatively easy. But,

finding photos for other illustration ideas can be difficult, such as those showing object

types, concerning themes, or photos about places instead of photos taken at those

places. During the process of finding a good photo, the journalist prefers to browse

through many photos (browsing hundreds of photos is not extreme). Browsing is an

important strategy for two main reasons. First, it might lead to new illustration ideas,

even if the photos seen are not very relevant for her project. Also, the criteria that

define a ‘good’ photo are difficult to express by words, but easily applied when a photo

is seen.

1.2.2 Fashion design

The second scenario focuses on a fashion designer developing a concept for a dress

to be worn by receptionists of some big retail office.2 To succeed in this creative

design task, he first collects many different multimedia objects. The designer needs

descriptions and pictures of the retailer’s products, video fragments of buyers at the

premises, photographs revealing details of the entrance and reception area, advertise­

ments in magazines, commercials on television, video and audio fragments of ‘vision

development breakfasts’, and many other pieces of information associated with the

retailer. The designer also browses through previous designs, studies preferred dresses

from colleagues, and views some videos of recent developments in fashion design.

The user task of this scenario involves the use of large amounts of multimedia data.

Fashion designers working alone may not need advanced information technology. Piles

on their own desks and shoeboxes filled with old designs may provide easier ways to

handle the data than a digital library. But, design tasks are typically performed by

teams of designers. Even if these people work at the same time in the same room, they

would still need a tool to find what they need in the ‘organized mess’ of the other team

members.

1.3 EXAMPLES OF DIGITAL LIBRARIES

Various digital libraries are being developed in many locations, well­known examples

including the Informedia project at CMU (discussed in the next subsection), the U.C.

Berkeley project for environmental data of California State, and the University of

Michigan library for earth and space materials. This section describes two digital

library projects in detail, to describe the type of functionality provided and the type of

technology used in existing prototype systems. It is meant to illustrate that the current

prototype systems provide already some basic functionality to browse large collections

4 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

of multimedia data, even though they cannot support the users of the previous scenarios

with all aspects of their tasks.

1.3.1 A digital library for news bulletins

The Informedia project at Carnegie Mellon University [HS95] has developed prototype

software for a digital library that will contain over a thousand hours of digital video,

audio, images, and text materials. The project has focused on technology that adds

search capabilities to this large collection of video data. As shown in Figure 1.1, the

Informedia software supports two modes of operation: library creation and library

exploration.

The Informedia approach to library creation is to apply a combination of speech

recognition and image analysis technology to transcribe and segment the video data.

The project uses the Sphinx­II speech recognition system [HRT+94] to transcribe the

audio track. The transcribed data is then indexed to accomplish content­based retrieval.

Initially, a highly accurate, speaker­independent speech recognizer transcribes the

video soundtracks. This transcription is then stored in a full­text information retrieval

system.

Speech recognition is not an error­free process and formulating a query that captures

the user’s information need is very hard. So, not all retrieved videos will satisfy the

user’s information need. When we want to get a quick impression of a text document,

we check the table of contents, take a look at the index, and skim the text to find the

pieces of information that we need. But, the time to scan a video cannot be dramatically

shorter than the real time of the video. So, some different approach to ‘video skimming’

has to be supported in the interface. Using image analysis techniques like automatic

shot detection in combination with analysis of the speech recognizer’s output, the

essence of the video content can be expressed in a small number of frames. This small

sequence of frames is called a ‘film strip’. Using the film strip, fast browsing of the

video material is possible.

In the News­on­Demand prototype system [HWC95], a library with television news

is created fully automatically using the Informedia technology. Of course, an automatic

data collection system based on speech recognition is error­prone. Errors found in

experiments with the system include the wrong identification of the beginning and the

end of news stories and false words in the transcripts. Despite of the recognition errors,

the prototype system shows big changes in the way people will ‘watch television’ in

the future. The system allows us to navigate the information space of news stories

interactively based on our interest. Compare this with waiting passively for the next

news broadcast, following a path through this space that has been planned by somebody

else, beyond our control.

1.3.2 A digital library for cultural heritage

The CAMA digital library4 is a pioneering project in African culture, coordinated by

University of Cape Town. CAMA seeks to create a living network of Arts, artists, and

musicians, to preserve the cultural heritage of the continent of Africa. The collection

includes both traditional and contemporary artworks of various media types. Parts of

INTRODUCTION 5

Figure 1.1. The Informedia architecture.3

the collection cover over 400 digitized photos of artworks from the Royal Academy

of Art’s 1995 London exhibition, a collection of stone sculptures from Zimbabwe, a

collection of flags from the Fante people of Ghana (from a book by Peter Adler), as

well as recordings of traditional folk songs and modern African jazz, produced by

Brian Eno at the ‘African Alchemy project’ during some workshops in Capetown and

Johannesburg.

In contrast to the Informedia project, CAMA has concentrated on collecting and

archiving multimedia data for African culture, as well as art­historic descriptions of

these digitized representations of the Arts and their creators, rather than the devel­

6 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

opment of new technology. The main goal of CAMA is to bring images of Africa’s

artistic heritage ‘home’ to Africa, albeit in a digitized form. The project is mentioned

here to emphasize the potential value of digital libraries for society, as well as its value

as a tool to facilitate education and research in the social sciences.

CAMA will keep growing as more and more art is digitized all over the continent,

and it provides an excellent basis for historic research. But, the existing technological

infrastructure facilitates such research only through browsing web pages, that index

the material by category, textual description, and location of origin. Using this collec­

tion effectively for scientific and educational purposes will require a more advanced

software infrastructure that provides better facilities to access the data.

1.4 WHAT IS THIS THESIS ABOUT?

Building large digital libraries is a problem that challenges most disciplines in computer

science. In their overview of ‘strategic directions’ for digital libraries, Adam and Yesha

et al. identify numerous issues that require further research, touching fundamental

research questions as well as more practical software engineering problems [AY96].

A huge volume of papers is relevant to at least some aspect of building digital libraries,

and these papers are spread over many different fields: operating systems, databases,

information retrieval, artificial intelligence (both computational vision, and reasoning

under uncertainty), pattern recognition, cognitive science, etcetera.

Most research takes place in a single discipline; but, a software architecture for

digital libraries must address many problems, and hence research into building such

systems should seek beyond the traditional boundaries of disciplines. Looking back on

the scientific literature that has appeared in the last decade, the researchers in different

disciplines seem to have reached some local optima, while there is a clear need for

integration of the different types of technology developed in these fields. For, there

are some obstinate problems with the current state of the art:

The gap between the functionality required for the user scenarios of Section 1.2

and the user interfaces of the prototype systems is quite big;

Developing advanced multimedia retrieval applications on top of existing systems

is a complicated process;

The current approach to integration of different components cannot be expected to

scale up to data collections of realistic sizes.

This thesis concentrates on the task of data management in digital libraries. The

underlying hypothesis is that, to enable progress beyond these local optima in different

disciplines, better tools are needed to manage collections of multimedia data and control

the processes that operate on that data. The objective of this thesis is to investigate

how the knowledge about database systems developed for business domains extends

to the emerging domain of multimedia digital libraries. This objective is refined in the

following research questions:

Can we identify requirements with respect to data management that are specific

for applications in a multimedia digital library?

INTRODUCTION 7

If so, can we support these requirements in a subclass of DBMSs (that will be called

multimedia DBMSs); that is, without violating the design principles (especially the

notion of data independence) that characterize ‘the database approach’ to data

management?

If so, can we provide this support in an efficient and scalable manner?

The research method for studying these questions is to build and analyze a prototype

for data management in an example digital library consisting of images.

1.5 SOME COMMENTS ON THE RESEARCH METHOD

The research goals of this dissertation are questions of the type studied in the scientific
field of information sciences. In the first issue of Information Systems, appearing in
1975, Senko defined information sciences as follows [Sen75]:

In our discipline, we are concerned with, (1) the efficient use of human resources in

the design, implementation, and utilization of information systems, and (2) the efficient

utilization of the physical­mechanical resources of the systems themselves. Our goal,

therefore, is to search for the fundamental knowledge which will allow us to postulate

and utilize the most efficient combination of these two types of resources.

This research does not attempt to find the single best solution in some particular

aspect of database support for digital libraries. Instead, it attempts to create order in

the chaos and confusion about what is a ‘multimedia database’, define a blueprint of

such a system, and provide guidelines for the implementation of such systems. Of

course, this ambition is somewhat problematic from a methodological viewpoint: this

thesis not only claims to describe a whole class of systems, these systems do not even

exist yet. How can you evaluate the merits of a complete class of database systems,

for a problem as ill­defined as multimedia retrieval, without having several example

systems to study?

This dissertation alleviates this problem by carefully developing a line of reason­

ing that incrementally identifies a set of problems with multimedia data management,

addresses some of these problems, and returns to the identification of remaining prob­

lems. Each step generalizes the solutions taken in current systems, and compares these

against currently known approaches. The solutions are unified with the principles of

database system design. The result is a framework with which it is possible to build and

analyze multimedia DBMSs. By clearly identifying each step, the design decisions

are made explicit. The line of argumentation is reinforced by developing a prototype

implementation, that demonstrates how the guidelines may be applied in a real system.

Still, this prototype is just a single implementation of the class of systems described

in the thesis. Also, being a prototype, it does not guarantee that the architecture does

not break under different applications than the ones tested, nor wether all its promises

can be fulfilled in a real implementation without discovering new problems. As such,

the main contribution of this dissertation can only be a thesis rather than a proven so­

lution. It is the thesis that the way of thinking put forward in this manuscript provides

a guideline for the development of multimedia database systems that are sufficiently

powerful that they can support multimedia libraries effectively and efficiently.

8 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

1.6 OUTLINE OF THESIS

The remainder of this thesis is organized as follows. Its objectives have been ap­

proached in a bottom­up manner: starting at the core of database management systems,

the dissertation works its way up to the design of an open distributed architecture for

multimedia digital libraries.

Chapter 2 presents the principles of database systems, concentrating on data ab­

straction, data independence, and efficient query processing. The main purpose of the

chapter is to reveal the weaknesses in various popular approaches to extend the scope

of traditional DBMSs for data management to other domains than just business appli­

cations. It proposes the multi­model DBMS architecture as a promising alternative,

and introduces the So­Simple DBMS, a prototype implementation of this new database

architecture.

Chapter 3 investigates the problems with the management of multimedia data, that

are not addressed well in current database management systems. It discusses different

approaches to content abstraction, using various types of metadata. It then introduces

the query formulation problem, and formulates four requirements that should be ad­

dressed in any multimedia DBMS. As a part of these requirements, it defines the new

notion of content independence, a dual of data independence for the management of

the metadata used in querying by content.

Chapter 4 proposes the Mirror architecture, an architecture for multimedia DBMSs

that addresses these new requirements. It explains the strong relationship between

multimedia DBMSs and information retrieval, and generalizes probabilistic IR theory

to handle some differences between text retrieval and multimedia IR.

Chapter 5 presents the Mirror DBMS, a prototype DBMS based on the multi­model

DBMS architecture, that unifies information retrieval with the database approach by

proposing an algebraic approach to IR query processing. It explains the operators that

support the implementation of the retrieval engine component in the Mirror architecture,

and discusses a prototype image retrieval system, as well as the use of the Mirror DBMS

for the evaluation of IR theories on the TREC collection, a large test collection to

evaluate the effectiveness of text retrieval. It also discusses some opportunities for

query optimization.

Chapter 6 identifies some additional constraints for the implementation of multime­

dia digital libraries, challenging the traditionally monolithic architecture of database

systems. It shows that multimedia digital libraries require an open and distributed

architecture instead, and proposes a new type of distributed DBMS in which middle­

ware for interoperability between distributed components is an integrated part of its

architecture.

Chapter 7 discusses the evaluation problem of multimedia retrieval by content. It

reviews the evaluation performed in many different projects, and identifies common

mistakes when the quantitative IR evaluation methodology is used without fully un­

derstanding its underlying assumptions. It emphasizes the importance of evaluation in

the further development of multimedia digital libraries.

Finally, Chapter 8 summarizes the contributions made with this thesis, and discusses

directions for further research.

INTRODUCTION 9

Notes

1. In the remainder of this thesis, ‘user’ refers to end­user unless stated otherwise.

2. This scenario is not based on a published field study like the previous scenario. Instead, it resulted

from some informal, personal communication with Gerrit van der Veer, who had interviewed fashion

designers about their work in the past.

3. Figure received from Alexander Hauptmann, and was previously used in [KdVB97].

4. CAMA stands for Contemporary African Music & Arts Archive.

2
ARCHITECTURE OF

DATABASE MANAGEMENT SYSTEMS

No change, I can’t change, I can’t change, I can’t change,

But I am here in my mould, I am here in my mould,

And I’m a million different people from one day to the next,

I can’t change my mould, no, no, no, no, no

(Have you ever been down?)

—Richard Ashcroft, excerpt from Bitter sweet symphony

2.1 INTRODUCTION

Most people have some understanding, although usually rather vague, of what makes

a system a ‘database system’. This chapter presents more precisely the main charac­

teristics that define a software system as a database system. It is a selective view on

the history of databases, zooming in on the issues that are most relevant for this thesis.

The ideas discussed are not new; rather, they have been widely discussed in the early

seventies, and the success of relational database management systems in the business

domain can be attributed to them. However, it often seems as if the essential ideas have

been ‘forgotten’ in the hurry to develop database technology for emerging application

domains.

This chapter begins with the characteristics of the database approach, focusing on

data independence and the ANSI/SPARC architecture. It discusses the benefits of data

abstraction, introduces the relational data model, and explains the role of set­at­a­time

11

12 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

CD

Artist

Title

Song

Lyrics

Title

Owner

Name

Figure 2.1. The UoD of a compact disc database.

algebraic query languages in query processing. After detailing why current object­

oriented and object­relational database systems are likely to have problems with query

processing on large volumes of data, the chapter concludes with a presentation of a new

architecture for the design and implementation of database systems. The So­Simple

DBMS is introduced as a prototype implementation based on this idea; this prototype

database management system is used throughout the remainder of the thesis.

2.2 DATA MAKES THE WORLD GO ROUND

Elmasri and Navathe define a database as a collection of related data [EN94]. A

database models some aspects of the real world, referred to as the Universe of Discourse

(UoD). Assume we want to administrate a collection of compact discs, e.g. to assist

with locating a recording when we want to listen to some particular song or artist.

In that case, the universe of discourse would consist of compact discs, their owners,

album titles, performing artists, owner names, song titles, and maybe even complete

lyrics. Sales statistics, although definitely related to a compact disc, are not interesting

for the application, and therefore not part of the UoD. A graphical representation of

this example UoD is given in Figure 2.1.

A database management system (DBMS) is a general­purpose software system,

that facilitates the processes of defining, constructing, and manipulating databases for

various applications.1 The database and the management software together form a

database system; database system is also used frequently as shorthand for database

management system. The ANSI/X3/SPARC Study Group on database systems stated

that the main objective of a DBMS is to treat data as a manageable corporate resource

[TK78]. A DBMS helps to increase data utilization and to integrate smoothly the data

access and processing function with the rest of the organization. It should also enhance

data security, and provide data integrity. But, most of all, a DBMS should reduce the

amount of work required to adapt software systems again and again in a changing

environment.

A DBMS provides this ability to evolve by emphasizing data independence: pro­

grams that access data maintained in the DBMS are written independently of any

specific files. A database management system that provides data independence en­

sures that applications can continue to run ­ perhaps at reduced performance ­ if the

stored data is reorganized to accord other applications higher performance.2 Handling

data using a DBMS provides an alternative for traditional file processing. In the file

processing approach, each user defines and implements the files needed for a specific

application. So, any changes to the structure of a file may require changing all programs

that access this file. Different users replicate data in different files, easily resulting in

ARCHITECTURE OF DATABASE MANAGEMENT SYSTEMS 13

inconsistencies later on. Conversely, in the database approach, a single repository of

data is maintained that is defined once and then accessed by various users.

The following three characteristics distinguish the database approach from file

processing (see also [EN94]):

data abstraction;

a database is self­contained;

program­data independence, and program­operation independence;

Data abstraction

Papadimitriou called abstraction ‘the essence and raison d’être of databases’ [Pap95].

A DBMS raises the level of abstraction for data manipulation above the level of

interaction with the file system. It provides users (which can be application programs)

with a conceptual representation of the data, referred to as the database schema. This

database schema is specified in its data model. The data model is the set of concepts

that can be used to describe the structure of a database. It specifies logical type

constructors such as tuple, relation, set, etcetera. Furthermore, a data model specifies

the operations that are permitted on instances of such types. Well­known data models

include the relational data model (see Section 2.3), the NF2 data model (see Section

2.8.2), and object­oriented data models.

A database is self­contained

A database system contains not only the database itself, but also a complete definition

or description of the database. This makes databases self­contained, which is necessary

to obtain data independence. The metadata that describes the structure of each file and

the type and storage format of each data item is stored in the system catalog or data

dictionary.

Program­data independence, program­operation independence

The conceptual representation of a database in the data model abstracts from many

of the storage and implementation details. As a result, programs do not have to be

rewritten when the structure of the files actually storing the data changes, or the code

actually implementing the operations evolves: a DBMS provides program­data inde­

pendence (the data representation may change) and program­operation independence

(implementation of operators may change).

2.3 THE RELATIONAL DATA MODEL

The development of relational database systems is the major success of the database

field. A relational database management system (RDBMS) is a DBMS based on the

relational data model. Codd defined the relational data model ‘to protect users of

large data banks from having to know how the data is organized in the machine’

[Cod70]. This section reviews its most important features, using Codd’s original paper

published in 1970; refer to any textbook on databases for more details, e.g. [Dat85] or

14 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

[EN94]. Although initially the idea of relational database management systems was

perceived too theoretical by the majority of practisioners, prototype relational systems

appeared in the late 1970s, and proved that an implementation could be reasonably

efficient. The System R [ABC+76] and Ingres [SWKH76] prototypes were the basis

of several commercial database products.

The first (non­relational) database systems did not provide much data independence.

In many situations, applications could be logically impaired if the internal data repre­

sentation changed. As a solution, Codd proposed something completely different to all

prevailing approaches: present a mathematical model of the data to all users, based on

the theory of relations. The relational data model addresses especially the following

three types of data dependencies:

Ordering dependence: Applications that take advantage of the stored ordering of a

file are likely to fail to operate correctly if that ordering is replaced with a different

one.

Indexing dependence: Indexing structures should only affect the execution perfor­

mance of data access. However, in early DBMSs, application programs had to

refer explicitly to indexing structures; these applications must be adapted every

time indices come and go.

Access path dependence: In early database systems, data was represented in hierar­

chical or network data structures. Access to the data used a low­level navigational

language on these structures, exposing detailed knowledge of the physical im­

plementation. Application programs would stop working after the representation

changed, because they referenced nonexistent files.

Codd’s formal model abstracts from ordering, indexing, and access paths. Since

data is only accessed through this model, changing these aspects cannot affect the

correctness of applications any longer. Note that such changes can of course affect the

performance of applications.

2.3.1 Formal definition

The relational model has a rigorous foundation in mathematics. Its formal definition is

as follows. Given sets S1, S2, · · · , Sn (not necessarily distinct), R is a relation on these

n sets if it is a set of n­tuples, each of which has its first element from S1, its second

element from S2, and so on: R is a subset of the cartesian product S1×S2×· · ·×Sn.

R is said to have degree n, and Sj is called the jth domain of R. A relation of degree

one is unary, degree two binary, and degree three ternary.

Date and Darwen summarize the difference between domain and relation as follows:

‘domains comprise the things that we can talk about; relations comprise the truths we

utter about those things’ [DD98]. Domains encapsulate: values of a certain domain can

be operated upon solely by means of the operators defined for that domain. Relations,

by contrast, expose their internal structure to the user. Exactly this difference makes it

possible to perform operations such as joins, which require knowledge of the structure

of the relation.

ARCHITECTURE OF DATABASE MANAGEMENT SYSTEMS 15

Date and Darwen also emphasize the important distinction between a relation value

(relation) and a relation variable (‘relvar’). A value is an individual constant, e.g. the

character ‘a’. For the representation of a value, either on paper or in a computer system,

a value can have one or more encodings, like ‘a’, ‘a’, or ‘a’, etc., each denoting one

and the same value. A value has no location in time or space, and, obviously, cannot

be updated; for, then it would be a different value. A variable is a placeholder for an

encoding of a value. It does have a location in time and space, and can be updated.

The SQL statement CREATE TABLE R ...; creates a relation variable (relvar) R,

that holds an empty relation value. This value represents the current state of the world.

After an insert, update, or delete, relvar R holds a different (encoding of a) relation

value. A common cause of misunderstandings is that people often say relation when

they really mean relation variable.

2.3.2 Database design with the relational model

As an example of modeling data with the relational data model, consider the compact

disc example (Figure 2.1). First, we define the domains: album titles (T), performing

artists (A), song titles (S), and owner names (O). Assuming that album titles are

unique for each artist, some particular collection of compact discs can be represented

as a relation R(T,A, S, O). Recall that a relation is just a single value, one of

all possible collections of compact discs that can be constructed in this UoD. In a

database system, we declare a relation variable C of (relational) type R(T,A, S, O).
When we buy new albums and insert their representations in the database, relvar C is

updated and refers to a different relation value.

A design based on one relation R(T,A, S, O) is not the only possible relational

model of the UoD. Here, the representation of a single compact disc is divided over

different tuples: as many as there are songs on the disc. An alternative design introduces

a compact disc identifier I , and uses two relvars, of types R(I, T, A,O) and R(I, S).
This design has less redundancy, but a main disadvantage is the need for a rather

artificial identifier I . Other options represent ownership explicitly, in a relvar of type

R(T,A, O), or type R(I,O) using the compact disc identifier. Yet another design

alternative is to represent the songs on one album as a relation­valued attribute in a

relation R(T,A,R(S), O); Section 2.8.2 discusses the consequences of this option.

It is important to realize that neither of these alternatives determines how the data is

physically stored; it is very well possible that the DBMS maps each design to the very

same internal representation. Although the second alternative had less redundancy,

this is redundancy at the conceptual level, which is not necessarily reflected at the

physical level.

2.4 THE THREE­SCHEMA ARCHITECTURE

The ANSI/X3/SPARC Study Group on database systems proposed the three­schema

architecture as a framework for the design of DBMSs [TK78]. This architecture

of database management systems, shown in Figure 2.2, is also known as the ANSI/­

SPARC architecture. The Study Group took the view that interfaces are the only

aspect of a database system that can be standardized. Its goal is to separate the

16 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

Internal Schema

Conceptual schema

External

view 1

External

view n

Conceptual

level

level
External

level
Internal

Stored database

Figure 2.2. The three­schema or ANSI/SPARC architecture.

user applications and the physical database by emphasizing data independence, which

insulates a user from the adverse effects of the evolution of the database environment.

The ANSI/SPARC architecture has been developed for database systems that operate

in the business domain. Tsichritzis and Klug refer explicitly to concepts like ‘the

enterprise’ and ‘line organizations’. Although the ideas related to data independence

may very well extend to emerging domains like digital libraries, it remains to be seen

whether DBMSs that operate in such emerging domains can and should be designed

and implemented according to this architecture. In this section, it is silently assumed

that the domain of a DBMS is indeed the business domain. The following chapters

will address the suitability of this architecture in digital libraries.

The three­schema architecture recognizes the following three levels in a database

system:

The internal level has an internal schema, which describes the physical storage

structure of the database. It is oriented towards the most efficient use of the

computing facility.

The conceptual level has a conceptual schema, which describes the structure of

the database for its user community, but hides the storage details. The conceptual

schema describes a model of the UoD, maintained for all applications of the

enterprise.

The external level includes a number of external schemas or user views. The

external schemas are simplified models of the UoD, as seen by one or more

applications.

The main contribution of the ANSI/X3/SPARC Study Group has been the recognition
that there exists a conceptual level. Tsichritzis and Klug write the following about its
purposes:

[The conceptual level] should provide a description of the information of interest to the

enterprise. It should provide a stable platform to which internal and external schemas

may be bound. It should permit additional external schemas to be defined or existing

ARCHITECTURE OF DATABASE MANAGEMENT SYSTEMS 17

ones to be modified or augmented, without impact on the internal level. It should allow

modifications to the internal schema to be invisible at the external level. It should

provide a mechanism of control over the content and use of the database.

The placement of the conceptual schema between an external schema and the

internal schema is necessary to provide the level of indirection essential to data inde­

pendence. The three­schema architecture provides two types of data independence:

logical data independence and physical data independence. Logical data indepen­

dence is the property that the conceptual schema can be modified to expand or reduce

the database, without affecting the external schemas used in the application programs3.

Physical data independence allows the internal schema to change independently. Data

can be stored at a different place, in a different format, e.g. for reasons of efficiency,

without affecting the conceptual schema.

Of course, the real data is only visible at the internal level; the other levels only

provide a different, more abstract, representation of the same data. Thus, the DBMS

must establish the correspondences between the objects in the different levels. It

transforms a request on the external schema into a request against the conceptual

schema, and then into a request on the internal schema. In case of a retrieval request,

the results of processing the transformed request over the stored database have to be

reformatted to match the user’s external view.

The transformations of data are specified in mappings, that bind the descriptors

in one schema to another. Obviously, these transformations consume processing

time.4 Because of this overhead, few DBMSs have implemented the full three­schema

architecture. In DBMSs that support user views, external schemas are usually specified

in the same data model that describes the conceptual­level information, causing the

‘impedance mismatch’ to be discussed in Section 2.7.1. Also, some DBMSs include

physical­level details in the conceptual schema. As an example, consider the creation

of a table containing alphanumeric data in SQL; this requires the specification of

exactly how many characters are used to store the alphanumeric data.

A DBMS based on the three­schema architecture maintains several descriptions and

mappings between the levels that are not known beforehand and can change over time.

Therefore, a DBMS provides a variety of languages for the specification of schemas

and the manipulation of data at different levels of the architecture. Most notable are

the data definition language (DDL), which is used to specify the database schema,

and the data manipulation language (DML), used to manipulate the stored database.

Typical manipulations include retrieval, insertion, deletion, and modification of the

data. Finally, the data control language (DCL) is used for managing transactions,

access rights, and the creation and deletion of access structures.

In a DBMS in which a clear separation exists between the internal and the conceptual

level, the DDL is used to specify the conceptual schema only. Another language, the

storage definition language (SDL) is used to specify the internal schema. For a true

three­level architecture, we also need a third language, the view definition language

(VDL) to specify user views and their mappings to the conceptual schema. Often,

these languages are not distinct, but integrated in a single database language, that

consists of varying constructs for conceptual schema definition, view definition, data

18 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

manipulation, and storage definition. A well­known example of such a language is of

course the SQL language.

2.5 DATABASE ‘GOODIES’

Some other characteristics of database systems (well­known, but ignored in this survey

so far) originate from the fact that a database system typically has many different users,

who require the data for different tasks. Multiuser DBMS software has to ensure that

concurrent transactions operate correctly without interference. Additional properties

include the enforcement of integrity constraints, security and authorization, and backup

and recovery. In the database approach, implementation of these facilities ­ sometimes

referred to as database ‘goodies’ ­ may be done only once, when building the DBMS:

a nice example of code reuse. Application developers do not have to worry about

actions of other users, and may assume data recovery after system crashes; the DBMS

takes care of this. Because the algorithms involved are usually rather complex, this

not only reduces the implementation effort of building applications that access the

database simultaneously ­ it significantly reduces potential errors caused by flawed

implementations of such algorithms.

A negative effect of always providing these properties in DBMS software is that

emphasizing data independence, seems to have shifted to the background. For ex­

ample, in the introduction of a special issue of the Communications of the ACM on

next­generation database systems, Cattell does not mention data independence at all.

Instead, he claims that the important features of relational DBMSs are: the ability to

deal with large amounts of persistent data efficiently, using transactions for concurrency

control, and recovery.

Another drawback is that DBMS software has grown very large and complex, and

the overhead caused by this complexity is not always needed by the applications.

Silberschatz, Zdonik et al. therefore argue that database systems should ‘break out of

the box’ [SZ96]. They identify a need for data management in contexts that cannot cope

with, or do not need, the overhead of a full­blown DBMS. They suggest that we should

reuse database system components, but also consider reusing database techniques and

experience in new ways.

This thesis chooses to focus mainly on the roots of DBMSs: data abstraction and

efficient query processing. As such, it follows the suggestion of [SZ96], to study the

transfer of database experience to other domains in isolation. Chapter 6 brings other

aspects of data management back into the picture, like security, concurrency, and rule

processing.

2.6 EFFICIENT QUERY EVALUATION

Due to the central role of data abstraction in the database approach, data manipulation

can only be described at the abstract level of the data model, where it makes no sense to

talk about efficiency: database query languages are high­level declarative languages,

that can only express what data should be affected, not how this should be implemented.

Thus, the efficient evaluation of expressions in a query language is the responsibility

ARCHITECTURE OF DATABASE MANAGEMENT SYSTEMS 19

Logical
level

Physical
level

Conceptual

level
SQL query

Relational algebra expression

Query plan

(physical algebra)

Figure 2.3. Query evaluation in databases.

of the database system. The remainder of this section identifies the techniques applied

in the implementation of database systems that enable efficient query evaluation.

Database query languages are usually based on set­theory and applied predicate

logic. If there exist only atomic types in the data model, then a first­order predicate

calculus suffices. Most end­user languages, including SQL and relational calculus, are

based on the following structure, known as the set­comprehension expression:

{f(x) | x ∈ X ∧ p(x)} (2.1)

Query processing bridges the gap between the database query language and the file

system. It transforms requests specified in the database query language into the query

plan, a sequence of operations in the physical access language. Query optimization

attempts to determine the optimal query plan ­ optimal in the sense that the best

possible overall retrieval performance is achieved [JK84]. However, in most cases the

search space consisting of all query plans that implement the user’s original request

is too large to be searched exhaustively. As a result, the selected query plan is often

only suboptimal. In any implementation of a database system, the task of the query

optimizer is more to avoid very inefficient query plans, than to select the one very best

option.

2.6.1 Calculus or algebra?

Query languages can be classified using the distinction between a calculus and an

algebra. The difference between the two is that a calculus expression is item­oriented

(referring to one item at a time), while an algebra expression is set­oriented [Ste95].

A calculus contains the concept of a variable that represents an item, and thus allows

for arbitrary nesting of expressions, whereas nesting cannot occur in set­oriented

languages. In set­oriented languages, expressions are context­free and correspond

to well­defined execution steps that are mutually independent. In an item­oriented

language, variables defined at a higher level can occur free in lower level expressions

due to nesting.

The main advantages of an algebraic language are that (1) the join order is not fixed,

(2) the intermediate results are clearly visible, and (3) the language is extensible; new

operators can be introduced whenever the need arises [Ste95]. A good example of

the last advantage is the role of the join in relational algebra. The join operator is not

20 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

necessary, for, a join X ✶p(x,y) Y is (by definition) equivalent to a selection from the

cartesian product: σp(x,y)(X × Y). The reason to add the join operator is not just a

matter of convenience; more importantly, the join can be computed in many different

­ more efficient ­ ways than the original expression.

To clarify these differences by an example, consider the selection of the titles of

compact discs by the artists ‘Crowded house’, ‘Neil Finn’, or ‘Split Enz’, from relation

variable C defined in Section 2.3. Let the query set be represented as a relation Q
(of type R(A)), which contains the artists of interest. In tuple relational calculus, the

query is specified as

{ c.title | C(c) ∧ ((∃q) (Q(q) ∧ q.artist = c.artist)) } (2.2)

Notice the tuple­variables c and q, that range over relations C and Q, respectively.

A naive implementation of this query first ranges over relation C, and then ranges over

relation Q for each value c of C.5 This naive evaluation strategy is better known as

nested­loop evaluation. A drawback of this strategy is that it is often very expensive,

both in time and in space.

An equivalent expression in relational algebra is a sequence of relational algebra

operators:

πtitle(C ✶artist=artist Q) (2.3)

From a system’s perspective, (algebra) Expression 2.3 is a useful representation.

Since the join operator is commutative and associative, it can choose to evaluate either

C ✶ Q or Q ✶ C. The second option can be implemented more efficiently, as an

iteration over Q involves only three elements; therefore, a hashtable on πartist(C) can

speed up the join’s evaluation significantly. This query plan is not so easily derived

from (calculus) Expression 2.2, for which the join order has been fixed by the nesting

of its tuple variables.

Unfortunately, an algebra is not very suited as a language for users. It is often

surprisingly hard to formulate a query in relational algebra, even for quite simple

queries. For example, try to find an expression for the selection of pairs of artists

that both perform a song, that is not performed by any other artist (assuming that a

song is the same if the title is the same). A calculus expression for this request is

relatively straightforward to construct; after selecting the pairs of artists that recorded

the same song, a negated existential quantifier eliminates the pairs that concern a song

also recorded by some other artist:6

{ c.artist, c′.artist |
C(c) ∧ C(c′) ∧ c.artist 6= c′.artist ∧ c.song = c′.song∧
((6 ∃o) (C(o) ∧ o.artist 6= c.artist∧
o.artist 6= c′.artist ∧ o.song = c.song)) }

(2.4)

An equivalent algebra expression is not easily found (of course, this is possible

for any expression in relational tuple calculus, as relational algebra is relationally

complete; i.e., it is at least as powerful as relational calculus). A possible solution is

ARCHITECTURE OF DATABASE MANAGEMENT SYSTEMS 21

relation CC computed by Expression 2.5, which requires among others two joins, two

selects, and a set difference.

XY ← πX,Y.artist(σX.artist 6=Y.artist(
(C as X) ✶X.song=Y.song (C as Y)))

XY Z ← σX.artist 6=Z.artist∧Y.artist 6=Z.artist(
XY ✶X.song=Z.song (C as Z))

CC ← πX.artist,Y.artist(XY)− πX.artist,Y.artist(XY Z) (2.5)

2.6.2 From calculus to query plan

Considering this last example, it is not hard to see why end­user languages are prefer­

ably item­oriented languages. However, data manipulations at the physical level are

preferably performed set­at­a­time, because processing a set of items at once allows the

system to optimize in several ways. First, it may perform additional processing (like

sorting, indexing, or creation of a hashtable), such that a faster algorithm can be used

and the overall performance of the operation is increased. Also, it may avoid duplicate

computations for identical items by caching (partial) results. Another optimization is

to partition the set and divide the workload accordingly over different processors or

different machines.

The set of query processing techniques available in a DBMS form the operators

of its physical algebra. A query plan is an expression in the physical algebra. This

physical algebra is system specific, and has cost functions associated with its operators.

For a discussion of a wide variety of set­oriented query evaluation techniques that

can occur as operators in a physical algebra, refer to Graefe’s survey [Gra93]. The

difference between a query expression (consisting of a number of nested blocks, each

like Expression 2.1) and an implementation in the set­oriented operators of the physical

algebra is quite large. In general, it is easier to derive an efficient query plan from

an algebra expression than from a calculus expression. Therefore, it is common to

introduce a logical algebra, as an intermediate language that can bridge the gap.

For instance, a typical RDBMS implementation first translates a SQL expression into

relational calculus (both user languages), then transforms the calculus query into a

sequence of relational algebra operations (the intermediate language), applies several

logical rewrite rules, and, only then, determines the query plan to compute the desired

result efficiently [JK84].

A logical algebra is closely related to the data model. It consists of a limited number

of operators, that should be relatively easy to map to the physical algebra, but still be

sufficiently expressive to describe queries in the data model. The logical and physical

operators can differ in a couple of ways. A common difference between the two is that

the physical algebra uses multi­set semantics of relational operators. Only when the

final results are presented, an extra unique operation is performed (which exists only

in the physical algebra). Similarly, a project in a join implementation usually does not

perform duplicate removal either. Also, while a logical join operator is symmetric,

the operators in the physical algebra that implement joins (such as a nested­loops join,

22 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

a merge­join, or a hash­join [Gra93]) are asymmetric (which made it attractive to

evaluate Q ✶ C instead of C ✶ Q in the example given before).

A common strategy for query optimization is the application of heuristic rewrite

rules to expressions in the logical algebra. A well­known example is the ‘push­select­

down’ pattern, in which a select on the result of a join is ‘pushed through’ the join, such

that the intermediate join result is smaller, and therefore evaluates more efficiently:

σp(y)(X ✶q(x,y) Y)⇒ X ✶q(x,y) (σp(y)(Y)).

Rewriting logical algebra expressions alone is not a sufficient optimization technique

though. Both [Ste95] and [JK84] emphasize the importance of finding a ‘good’ initial

algebra expression during the translation from the calculus to the logical algebra,

instead of relying on the rewriting of inefficient algebra expressions. A sequence

of algebra operations hides many optimization opportunities that are more easily

derived from the original calculus expression (especially with respect to equivalent

subexpressions, which may be easily ‘overlooked’ in a long sequence of algebra

operators, but can often be detected without problems during the transformation from

calculus to algebra). Query processing should be like finding your way to a museum

in a strange city using a tourist map: the main streets are shown on the map (the user’s

query), but sometimes it is smarter to take a shortcut that is not on the map (query

optimization). Phrased in terms of this metaphor, rewriting logical algebra expressions

is like having a map of such a coarse granularity that you do not dare to leave the main

roads, afraid to get lost.

2.6.3 Efficiency, another argument favouring data abstraction!

Data independence has always been the driving force behind the development of

database technology. However, apart from data independence, a methodology to

obtain efficient query processing is another big advantage of the database approach.

As described above, efficient query processing can be achieved using a divide­and­

conquer strategy, in which the original information request is transformed into the final

query plan using a number of intermediate representations. Each step uncovers another

piece of abstraction, and gets closer to the machine level. These transformations enable

the application of optimizations based on set­oriented processing, to avoid inefficient

nested­loop processing. Of course, not all queries are processed efficiently using a

DBMS. But, a database expert can often resolve efficiency problems easily, by either

creating an index structure for the ‘right’ attributes, or helping the optimizer a little bit,

e.g. by manually rewriting a nested SQL query into a join query.

A divide­and­conquer strategy using abstract representations of data and queries

becomes even more important when the database system supports scalability, using

parallel execution and data distribution. The design of parallel versions of algorithms

is a complex matter. Parallel query processing has to make decisions about data al­

location, data fragmentation, and pipelining between and within operators [Wil93].

Comprehension of ‘good’ and ‘bad’ strategies is easier to grasp for a restricted set of

algorithms (such as the physical algeba of a database system), than for the general

case of any algorithm implemented in a general­purpose programming language. Sim­

ilarly, data abstraction is necessary to control query processing in distributed database

systems. Designing distributed databases makes extensive use of algebraic represen­

ARCHITECTURE OF DATABASE MANAGEMENT SYSTEMS 23

tations in the translation from global queries to fragment queries, both for proving

correctness of the translation, and for deriving efficient query plans [CP85]. The effect

of distributing data over different servers can be studied by taking the communication

costs into account during query optimization.

Another potential advantage of putting a lot of implementation effort in a limited

set of algebraic operators arises from the complexity of the hardware architecture of

modern workstations. Boncz demonstrates (both theoretically and experimentally)

how the implementation of an efficient join operator in the physical algebra of the

Monet database system should really take into account the amount of level­two cache

for maximal performance [BMK99]. Directly estimating the effect of the hardware ar­

chitecture on the implementation of applications in high­level programming languages

seems too complicated; expressing the application logic in a sequence of highly op­

timized physical operators looks like a more viable alternative to get the most out

of such hardware developments. Also, whenever changes in the hardware lead to a

more efficient implementation of the join algorithm, the application logic will benefit

automatically with increased efficiency, without any extra implementation effort!

These advantages with respect to efficiency are a major incentive to investigate

the use of query processing techniques in other domains than business applications.

Some case studies have already proven that set­orientation and indexing are beneficial

in other domains as well; sometimes, these techniques improve the performance of

known algorithms well beyond the efficiency of specialized toolboxes, programmed

by skilled programmers:

Seshadri demonstrates a significant improvement in the performance of query

processing in sequence databases [SLR96]. His improvement is based on operator

pipelining, which was possible because the queries were expressed in a (domain­

specific) algebra on sequences.

Nes et al. report a performance improvement of an order of magnitude using

an algebraic formulation of a computational vision algorithm for edge detection

[NKJ96]. Here, the speed­up can be attributed to the advantages of set­oriented

processing in general, and the use of an R­tree in particular, which makes it possible

to benefit maximally from locality of reference when clustering points into edges.

Goyal et al. argue that even GUI programming can and should be studied as a

database problem [GHK+96]. They apply a declarative language in a data centric

architecture for GUI programming, and demonstrate a performance improvement

through incremental repainting. Since a declarative program allows the compiler

to deduce properties such as monotonicity, it is possible to limit repainting to a

small subset of the screen.

2.7 OBJECT­ORIENTATION AND DATABASE SYSTEMS

The suitability of a DBMS for some application is closely related to the expressiveness

of its data model. The data model of the conceptual level should fit the universe

of discourse, since end­users have to understand this model of the real world in

order to formulate their queries. A record structure fits best when the population

24 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

is homogeneous, i.e., all items have the same fields. Because this is often the case

for business data (Stonebraker classifies business applications as ‘simple data with

queries’ [SM99]), relational database management systems have become a standard

tool in business database processing. But, not all information of business applications

is naturally represented by collections of records. Kent collected many problems

concerning record structures in [Ken79], ‘as a resource to defend alternative models’.

He illustrates how the assumption of homogeneity is often not valid: not all employees

of a multinational have social security numbers, and company cars can be assigned to

both employees and departments. Also, from an information modelling perspective, it

is not clear how ‘entity’ and record should correspond, or similarly, ‘relationship’ and

record.

New application domains need effective and efficient management of large data

volumes as well: scientific data analysis, computer aided design, and ­ the topic of this

thesis ­ multimedia digital library systems. The data structures encountered in these

domains are far more complex than business data, and do not map easily to collections

of records. This data is therefore referred to as ‘complex data’ by the database world.

If applications in these domains require ad­hoc query facilities, Stonebraker classifies

them as ‘complex data with queries’. Languages for data definition and manipulation,

such as relational calculus and SQL, have been designed to make it (relatively) easy

for the DBMS to process expressions in these languages efficiently. Although the

database approach is equally desirable in the emerging application domains, restrictive

languages like relational calculus make application development and maintenance

unbearingly cumbersome.

2.7.1 The ‘impedance mismatch’

In an object­oriented programming language, operations and data are combined (and

usually encapsulated) in objects. Object­oriented programming has evolved as the

preferred paradigm to develop applications that manipulate complex data. Objects are

not flat data structures, but can be nested arbitrarily deeply. Therefore, a collection

of objects is in general not easily represented as a table of records. Applications

that use a relational DBMS for the management of persistent data, but have been

developed using object­oriented programming languages, must ‘disassemble’ their

nested data structures into atomic components, and store these components in the

DBMS. Retrieval requires re­assembling the components into the original (nested)

data structures. The requirement of these additional steps is often referred to as the

impedance mismatch between application programming languages and relational

database systems [LLOW91]. Notice that the notion of impedance mismatch also

refers to another aspect of the interface between programming languages and database

systems: the difference between item­oriented thinking encouraged by imperative

programming languages, and the set­oriented approach enforced upon the application

programmer by database languages.

The impedance mismatch affects not only application development. Ad­hoc query­

ing of objects becomes almost impossible, because users do not know how the compo­

nents are mapped to the relational schema; this knowledge is encoded in the application

logic. Also, a single query at the object level generates a series of queries in the rela­

ARCHITECTURE OF DATABASE MANAGEMENT SYSTEMS 25

tional DBMS. Its query optimizer must know the relationship between these requests

to determine efficient query execution plans. Performing such processing outside

the scope of the database system causes a serious performance degradation, see e.g.

[dVEK98].

A DBMS that implements all interfaces of the ANSI/SPARC architecture does not

necessarily suffer from the impedance mismatch: the external schema binds the ap­

plication’s data requirements to the conceptual schema. The impedance mismatch be­

tween object­oriented application programs and commercial relational database man­

agement systems exists because these systems force the external schema to conform

to the relational model as well.

Object wrappers provide an object­oriented external view on top of relational data­

bases [CD96]. An object wrapper is not a part of the DBMS, but a separate layer of

software. It generates classes that act as proxies for data in the underlying database.

This reduces the impedance mismatch with respect to programming, but the perfor­

mance problem remains; unless the wrapper is tied closely to some specific DBMS,

encoding specific knowledge about its optimizer and tuning generated queries accord­

ingly. Drawn into extremity, this implies that query optimization is carried over from

the DBMS into the object wrapper, which is clearly undesirable from a design view­

point. Besides, it is unlikely from a commercial viewpoint, since these object wrappers

typically proclaim independence of the underlying DBMS.

2.7.2 New generations of DBMSs

As an alternative, database researchers have started looking into database systems based

on different data models, and developed query languages for these models. Two broad

categories of new generation database systems can be distinguished [Cat91]: those that

originated in persistent programming languages, and those that evolved from relational

database systems. Systems of the first category, including O2 and ObjectStore, are

generally referred to as object­oriented database systems (OO­DBMSs). Systems of

the second category are extensible database systems and object­relational database

systems (OR­DBMSs), examples of which include Starburst and Postgres.

Object­oriented DBMSs. The impedance mismatch resulted in a desire to design

programming languages in which persistence is orthogonal to type. [Atk89] attempts

to describe a set of ‘golden rules’ that define a database system as object­oriented. In

database systems conforming to these rules, the client applications and the database

server are tightly integrated. There is no such thing as a database schema; instead,

objects in client applications can be declared persistent, and the database system takes

care of this persistence. The focus on persistency orthogonal to type is taken one

step further in persistent programming languages [AB87]. A persistent programming

language adds support for persistency to a single language. An OO­DBMS usually

implements several language bindings [CB97], and therefore cannot ever achieve

complete orthogonal persistence.

A central notion in object­orientation is the encapsulation of the data structure

inside objects. Encapsulation clashes with the notion of data abstraction.7 As a result,

ad­hoc query support is difficult to provide, because the user can only use predefined

26 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

methods to access the data inside. OQL, a declarative query language developed for

O2, and now part of the ODMG ‘standard’8, therefore breaks with the principle of

encapsulation [Clu98]; this option is further discussed in Section 2.8.1.

The main disadvantage of OO­DBMSs is that the data model is part of the applica­

tion’s source code. Indeed, this makes it much simpler to develop a single application

requiring persistency of its data. But, sharing data between different applications

becomes much more complicated: the design requirements put forward in [Atk89]

forgot about the whole issue of data independence. The persistent objects stored in the

database are defined for some specific application, and this application did most likely

not take into account the requirements of other applications that require access to the

same data.

Extensible DBMSs. The first implementations of RDBMSs restricted the available

data types to a rather limited set including mainly numbers and alphanumeric data.

The ‘limited number of data types in the relational model’ occurs often as an argument

in favour of new data models. These data models typically provide extensibility with

new data types, along with other features such as inheritance. However, as Date and

Darwen point out clearly in [DD98], extensibility with user­defined data types does

not require a new data model per se. The definition of domain says nothing about what

can be physically stored. Conversely, since the relational data model does not limit

data to numbers and sequences of characters, the implementation of any DBMS that

claims to support the full relational data model must allow arbitrary data types!

Extensible relational database management systems support abstract data types

(ADTs). An ADT adds new base types or operations to the database system: it defines

new domains, or extends existing domains with new operators. In many extensible

database systems, the (expert) user can also add new access structures that support

these data types; a common extension is an R­tree for indexing multi­dimensional data

[Gut84].

Prototypes of extensible DBMSs included Postgres [SRH90, SK91] and Starburst

[HCL+90, LLPS91]. This functionality has now become common in commercial

systems, under names varying from ‘datablade’ to ‘data cardridge’ to ‘user­defined

functions’ (UDFs). In the following, unless specified otherwise, this thesis assumes

that a relational system is indeed extensible with abstract data types.

Object­relational DBMSs. Another development in database technology, also mo­

tivated by requirements found in new application domains, is the evolution from

relational to object­relational database management systems (OR­DBMSs).9 These

systems are extensible relational DBMSs that support a richer data model than purely

relational. Typical features of these data models include references, set­valued at­

tributes, and type inheritance, but it is not clearly defined what makes a system object­

relational. Several proposals exist, both in literature and commercial DBMSs, but the

suggested functionality differs a lot among them.

Most proposals and/or implementations agree on the support of user­defined types,

user­defined functions, some degree of nesting, and type inheritance. Date and Darwen

stop right there, and they are already reluctant about inheritance. Their proposal,

ARCHITECTURE OF DATABASE MANAGEMENT SYSTEMS 27

published in [DD98], is a plea for basing object­relational database systems on a

precisely defined data model, that should be nothing but a minor adaptation to the

original relational data model. They argue (quite convincingly) against SQL as a

universal database language, and propose a different language D that is strongly related

to the proposed data model. However, their ‘foundation for true object­relational

DBMSs’ is not more than a blueprint of the conceptual level (not less either though), and

this blueprint ignores completely any issues related to implementation and efficiency.

In [SM99] ­ on the other end of the spectrum ranging from theory to practice ­

Stonebraker describes the advanced facilities provided in the commercial relational

database products that rule the DBMS market at the end of the 20th century. He

emphasizes implementation issues, varying from query optimization to the integration

of an OR­DBMS with middleware and applications servers. Apart from the afore­

mentioned properties of object­relational database systems, Stonebraker suggests two

other extensions to the data model: references based on object identity, and type casts.

Not surprisingly given their devotion to the relational model, Date and Darwen oppose

strongly against the support of references based on object identity, which they refer

to as ‘the second great blunder’.10 Type casts are also proscriped by their proposal.

Finally, Stonebraker discusses rules, but this feature seems rather orthogonal to the

choice of data model, and is therefore not further discussed in this thesis.

2.7.3 The conflict between encapsulation and query processing

Despite of controversy and a lack of consensus about what ‘object­relational’ really

means, object­relational systems are the most significant players in today’s database

world, and they are expected to keep this position [CD96]. It is important to recognize

that designing these systems is not understood to the level of relational database

systems. Evaluation experiments with the Bucky benchmark, designed to evaluate

especially the extra features of the data models in OR­DBMSs, showed that a pure

relational schema achieved much better performance in most cases than a schema using

object­realtional features such as set­valued attributes [ACD+97]. Also, it is not clear

how parallelism can be supported for object­relational queries.

A major problem with the design of (object­oriented) extensions in database systems

is that extending the DBMS often results in reduced physical data independence. In

most OO­DBMSs, there is no conceptual level that separates the application from

the stored data. The OO­DBMS is not aware of the structure of complex objects,

but manages black boxes instead. The same argument applies to data manipulated

within ADTs in extensible and object­relational database systems, e.g. a datablade that

provides image manipulations written in C++. Reduced physical data independence

seriously cripples a DBMS in its task to provide performance. The DBMS cannot look

insight the objects, causing query evaluation to result in naive nested­loop evaluation.

Although encapsulation is a very powerful concept in object­oriented design methods

and programming languages, the question arises whether encapsulation should be taken

all the way down to the software systems that manage complex data.

Advocates of OO­DBMSs and OR­DBMSs claim ‘simplicity’ and ‘ease of use’.

However, it is unclear whether this desired simplification is really achieved without

giving up performance. The data mining study performed by Sarawagi et al. is a

28 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

good example to support this statement [STA98]. They evaluate several architectures

for mining associations with a relational DBMS. One candidate solution is a pure

SQL formulation of the mining algorithm, but this turns out to be far too inefficient.

Relational databases were not designed with data mining as a target application, but

assume an environment with many small updates. Applications in data mining are

query intensive instead, causing inefficient query processing on relational DBMSs.

The efficient solutions in their case study are all (at least partly) non­SQL, of

which two clearly outperform the others. The best solution first caches all data

into the file system, and then uses a special­purpose algorithm on the cached data.

Obviously, this cannot really be considered a database solution. Interestingly, the

same algorithm implemented completely inside the DBMS, as a UDF, did not perform

well; its efficiency was comparable to stored­procedure or SQL cursor­based solutions,

but its development involved much more work to implement and debug the algorithm.

Mixing pure SQL with UDFs for part of the algorithm came out as the second­best

strategy (and best for some of the reported results). The fastest approach involved

one UDF for partitioning the data set in memory and encoding these partitions in

binary large objects (BLOBs), and another UDF for computing intersections between

these encoded partitions. Another strategy also encoded nested relations in BLOBs,

pushed a group­by operation into the UDF. In one variant, the UDF even computes a

join with a complete table passed as a BLOB (for each tuple!). Apparently, coding

some database operations in the UDFs manages to work around the inefficiency of the

pure SQL solution, but simplicity is far to seek. The DBMS already knows how to

intersect two sets, how to group a set of tuples, or how to compute a join. The code

in the UDF duplicates that code, making it faster for this particular algorithm. Not

all these ‘improvements’ can be parallelized by the DBMS, and operator pipelining

between the UDFs is impossible. Also, the integration with the DBMS is too tight: the

relative performance of the different options depends heavily on (a particular release

of) the DBMS, and is certainly unlikely to generalize to object­relational systems with

a different implementation of the internal level.

Summarizing, encapsulation of data and operations inside objects or ADTs affect

query evaluation: optimization by the DBMS becomes infeasible, and query processing

too often resolves into object­at­a­time evaluation. These problems are more severe in

distributed databases, or query processing on parallel machines. The so­called ‘next­

generation database systems’ have moved onto the shoulders of application developers

the burdens of finding the optimal query plan and parallelizing code that processes

large volumes of data. Small proof­of­concept applications may very well be simpler

to build with an OO­DBMS. But, it is unlikely that these applications will scale up

to large volumes of data. Apparently, there exists a trade­off between simplicity of

data management (strived for in the database approach) and simplicity of application

development (strived for in persistent programming languages). So, simply adding

ADTs to existing relational technology is not a sufficient solution for the support of

non­traditional applications.

ARCHITECTURE OF DATABASE MANAGEMENT SYSTEMS 29

2.8 EFFICIENT OBJECT QUERY EVALUATION

Section 2.6 discussed the benefits of data abstraction for efficient query evaluation. The

question arises whether a rewrite approach via logical algebra into physical operations,

the foundation of query optimization in relational query processing, is also possible

for an object query language like OQL. This section addresses that question for a

particular subclass of object­oriented data models that does not enforce encapsulation

in the specification of data structures. The nested relational data model is introduced,

followed by the formulation of NF2 algebra. It concludes with a discussion of a rewrite

procedure and logical algebra targeted to efficient query evaluation.

2.8.1 Structural object­orientation

Dittrich introduced the following classification of object­orientation in database sys­

tems (in his terminology, full object­orientation attempts to combine the two ap­

proaches) [Dit88, Dit91]:

Structural object­orientation: the data model provides mechanisms for the speci­

fication of highly structured entities.

Behavioral object­orientation: arbitrary user­defined, type­specific operations

can be associated with data entities.

Structural object­orientation distinguishes between base types (or atomic types)

and structured types (or non­atomic types). Base types correspond to domains in

the relational data model. Structured types are made up of components, assembled by

applying the available type constructors recursively at various levels. Examples of

type constructors are set, multiset, list, tuple, and array. Type constructors should be

orthogonal; in a structural object­oriented data model (or complex object model) that

supports sets and tuples, a set of sets is a valid type, just as a tuple of sets or a tuple of

tuples.

Structural object­orientation implies the definition of complex data structures with­

out encapsulation. Hence, it does not rule out optimization by the DBMS; it can look

inside the objects to determine efficient query plans. Query evaluation in a DBMS

that supports structural object­orientation does not automatically imply nested­loop

evaluation. For example, O2 has a structural object­oriented data model that can be

queried with its query language OQL. An optimization technique that has been applied

succesfully on OQL queries is the transformation of a path expression into a join, e.g.,

compute c.owner.name as πname(C ✶ownedby=ownerid O).

2.8.2 Nesting and the relational data model

The relational model provides only two type constructors: relation and tuple. These

type constructors are not orthogonal, because a relation always consists of tuples.

Hence, a complex object model that supports set and tuple constructors includes the

relational model as a special case, but the reverse is not true.

A wide­spread belief about the relational data model is that all data must be in

the first normal form (1NF). The original presentation of the relational data model

30 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

did however not exclude non­atomic domains; when discussing the possibility of

non­atomic domains, Codd gives an example of the domain ‘salary history’, which

consists of all binary relations between domain ‘date’ and domain ‘salary’ [Cod70].

About normalization, Codd writes only that ‘the possibility of eliminating non­simple

domains appears worth investigating’.

Several reasons justify the elimination of non­atomic domains. First, arrays are an

efficient implementation of relations with simple domains. Second, the array repre­

sentation is a convenient way to exchange bulk data between systems with different

internal representations. Also, most relational theory (in particular theory that helps

to design ‘good’ relational schemas) has been developed with the first normal form

assumption in mind. Finally, if all relations are in first normal form, a high­level

declarative query language on these relations can be based on first­order predicate

calculus. Relational algebra and relational calculus are only useful if all relations are

in first normal form, as there are no operators that can access relation­valued attributes.

2.8.3 Nested relational algebra

The relational data model with the restriction that all relations are in first normal form

is also known as the flat relational model. If this restriction is removed, the data model

is usually referred to as the nested relational model, also known as the NF2, the

XNF, or the N1NF data model. Now recall the example database of compact discs and

their owners. For the nested relational design R(T,A,R(S), O), selecting compact

discs containing a song called ‘De verzoening’ is impossible with relational algebra:

we need a more powerful language that allows operators to move into relation­valued

attributes.

A well­known algebra for the nested relational data model is the NF2 algebra

defined by Schek and Scholl [SS86]. NF2 algebra augments relational algebra with

the nest (ν) and unnest (µ) operators, which convert between nested and flat relations.

The nest takes a set of attributes, and forms a new relation­valued attribute out of

these; the unnest consumes a relation­valued attribute and replaces it with its set of

attributes. The unnest is inverse to the nest operation. But, unnesting cannot generally

be inversed by nesting, for empty relations can occur as attributes in nested relations.

Therefore, NF2 algebra cannot be defined by simply unnesting all relations into the

first normal form, applying some basic algebraic expressions, and converting the result

back to NF2 relations.

[SS86] shows that NF2 algebra should minimally extend relational project to allow

the application of the other operators within the projection list. With some minor rewrite

rules, the resulting algebra can directly apply any algebraic operation that is defined

on flat relations to relations within relations as well. As an example, the following

NF2 expression retrieves the compact discs containing a song ‘De verzoening’ from a

relvar C ′ of type R(T,A,R(S), O):11

πtitle,artist(σmatch 6=∅(πtitle,artist,σ
song=‘De verzoening’(songs):match(C ′))) (2.6)

ARCHITECTURE OF DATABASE MANAGEMENT SYSTEMS 31

The select in the project list constructs a subset (called match) that is only not

empty if the requested song occurs on the compact disc. The outer select retrieves the

compact discs for which this set is not empty.

2.8.4 Query evaluation and structural object­orientation

Steenhagen’s thesis addresses query processing of high­level declarative object query

languages like OQL [Ste95]. She states that research concerning NF2 algebras has

not focused on their function to facilitate efficient query processing, but only on the

definition of ‘some’ algebra that can handle set­valued attributes. Most proposals

for nested relational algebras, including [SS86] discussed before, intend to use NF2

algebra at all levels of the database architecture. But, a mapping that leaves the nested

expressions as they are does not help to find an efficient query plan at all. For example,

the select inside the project in Equation 2.6 is not evaluated set­at­a­time, unless it can

somehow be processed for all relation­valued attributes simultaneously. Expression

2.6 does not help to achieve this behaviour.

Steenhagen develops a logical algebra called ADL, specifically targeted as an in­

termediate language that helps to derive efficient query plans. Her work is based on

the following underlying assumptions:

the intermediate language should be an algebra;

query optimization should play a role in each phase of the implementation process.

She shows that a set of operators in NF2 algebra is not sufficient to derive efficient

query plans from expressions specified in an object­calculus. OQL is an orthogonal

language, so expressions can be nested arbitrarily: not just in the where­clause, but

also in the select­clause, and operands can be tables as well as set­valued operands.

Grouping is often necessary in the translation from OQL to complex object algebra,

to avoid the ‘complex object bug’, a problem analogous to the infamous count­bug of

relational systems12. Without extra operators, evaluation of NF2 expressions results

in many inefficient nested­loops. As a solution, Steenhagen introduces the nestjoin

operator, which performs grouping within the join, and claims that this grouping

can be implemented efficiently in existing join algorithms. Her translation algorithm

introduces set­orientation by replacing nested iterations with joins and nestjoins when

appropriate.

She concludes that query processing in a structural object­oriented data model

allows in principle the same strategy for query evaluation as has been applied succes­

fully for years in relational databases. By adding non­standard join operators to NF2

algebra, the logical algebra can be evaluated with efficient physical algebra opera­

tors. Steenhagen has not worked on an implementation of her approach, and therefore

cannot provide a cost model; but when her top­down approach is augmented with a

bottom­up approach based on a cost model, rewriting OQL into efficient query plans

seems feasible.

32 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

2.8.5 Query evaluation and behavioral object­orientation

Structural object­orientation is not always a proper solution. Some operations (usually

domain­specific operations) can only be implemented efficiently in a general­purpose

programming language. To support applications that perform such operations on large

volumes of data, a DBMS must support behavioral object­orientation. Of course,

extensible and object­relational databases support this functionality using ADTs. But,

ADTs in extensible and object­relational DBMSs are ‘blackbox’ ADTs of which the

DBMS only knows the signature. This inhibits the query optimizer to use the semantics

of operations defined in the ADT.

Consider an expression Clip(Sharpen(Image), Region): the image is

sharpened, and subsequently a subarea is selected. Sharpening the image after clipping

has the same effect, and is probably more efficient: especially if the image is much

larger than the region to be selected. In this particular example, the reader may think

of a user that poses the query in this inefficient manner as rather ‘silly’. But, such

an inefficient expression may well have been generated by a graphical user­interface.

Whatever the source of the order of method invocations, the DBMS should figure out

to first clip and then sharpen.

Seshadri proposes a database architecture that addresses this problem, based on

the idea of enhanced ADTs (E­ADTs) [Ses98a]. E­ADTs expose some part of their

semantics to the DBMS, such that the DBMS can optimize expressions involving

a combination of method invocations, like the previous example. In the prototype

implementation of the Predator DBMS, an E­ADT can implement an optimization

interface to optimize the query plan using its own algebra, it can perform the evaluation

of a query plan, it can extend the catalog with its own schema information and statistics,

and it can provide multiple physical implementations of values of its type.

Supporting E­ADTs requires quite a different architecture of the DBMS. Predator

is a multi­threaded query processing engine built on top of the Shore storage manager

[Ses98b]. Instead of a complete database system, it is an architectural framework in

which E­ADTs are plugged in; the resulting system can be viewed as a collection

of query processing engines. The framework defines the interfaces of tasks involved

in query evaluation, but the E­ADTs provide the implementations. For example, an

E­ADT can implement the Optimize() interface, which then becomes part of the

optimization process. Predator also provides a rule engine such that E­ADTs can

declare optimizations that are easily expressed as heuristic rules (like ‘perform clip

first’).

An interesting aspect of Predator’s design is that E­ADTs are modular extensions,

like normal ADTs. A query expression consists of several blocks, each of which is

delegated to the responsible E­ADT by a central coordinator. The only requirement

is that the boundaries between subexpressions for different E­ADTs can be detected

by the system. In the example given before, the image­related part of the parse

tree is delegated to the image extension; the image E­ADT knows that swapping the

invocations of clip and sharpen is a good idea, and rewrites this part of the query. The

relational model is supported in ‘just’ another E­ADT, that allows Predator to support

nesting of relations as well. Also, domain­specific query languages can be supported,

e.g. for sequences, and mixed with language constructs from other E­ADTs [SLR96].

ARCHITECTURE OF DATABASE MANAGEMENT SYSTEMS 33

The relational E­ADT makes Predator a ‘real’ DBMS. Its functionality is sufficient

to run the Wisconsin benchmark and the TPC­D benchmark. But, Predator is not

primarily assumed to be a relational database engine. The basic framework with an

image E­ADT may be very useful as a stand­alone image manipulation toolkit.

The Predator architecture does not address all problems with encapsulation identi­

fied in Section 2.7.3. Parallelization is possible within an E­ADT, and materialization

of intermediate results can be avoided within an E­ADT. But, it is not clear how these

optimizations can cross the boundaries of several E­ADTs. For example, operator

pipelining spanning different E­ADTs is not supported. Also, storage management

has to be implemented directly on the Shore storage management library, increasing

the risk of duplicated functionality inside implementations of various E­ADTs.

The orthogonality between the relational E­ADT and the other E­ADTs may cause

efficiency problems in schemas with several levels of nesting. For, data from inner

levels is delegated to different E­ADTs, and may be scattered all over the disk, com­

plicating set­oriented processing. This can be illustrated with an example concerning

the representation of video data as a sequence of scenes. Assume that each scene is

modeled as a structure containing a relation of the actors starring in the scene, and

a sequence of shots, each of which is represented by some keyframes. A possible

query requests thumbnail images of the keyframes stored for scenes starring ‘Nicole

Kidman’. Such a query concerns both the relational E­ADT (for the selection of ap­

propriate scenes), and the image E­ADT (for retrieving and resizing the keyframes).

Since neither E­ADT is ‘in charge’, set­oriented processing of the requested keyframes

may be hard to obtain, resulting in inefficient nested­loop query evaluation.

2.9 THE MULTI­MODEL DBMS ARCHITECTURE

Summarizing Sections 2.7 and 2.8, it is clear that non­business applications are not

well supported by current database architectures. The design of OO­DBMSs makes

query optimization infeasible, and complicates sharing of data between applications

because it does not emphasize data independence. The ADT mechanism in extensible

relational database systems conflicts with optimization in a similar manner. Using

ADTs in an efficient manner forces programmers to perform database operations such

as joins within the ADT, which causes new efficiency problems when e.g. such a join

should have been parallelized. In the extreme, programmers implementing ADTs

will build a complete DBMS kernel inside each ADT. The E­ADT paradigm is an

answer some of the problems with ADTs, but, as there is no global overview accross

E­ADTs, inter­operator optimization is impossible, and parallelism and distributed

query evaluation have to be handled in each E­ADT separately.

2.9.1 The open implementation principle

Kiczalis has identified that many performance problems in different types of software

systems are caused by blackbox abstraction, the basic design principle of software en­

gineering [Kic96]. It is simply impossible to hide all implementation issues behind an

interface, because the issues related to the implementation­strategy will show through

in performance. This often leads to either ‘coding between the lines’, or code duplica­

34 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

tion, which Kiczalis calls the hematoma of duplication. Kiczalis proposes a different

methodology, that he calls the open implementation principle. Open implementation

still uses abstraction, but lets clients assist with or participate in the selection of the

implementation strategy. A good example is operating system support for virtual mem­

ory management; modern operating systems provide the client with the possibility to

advice on the buffer­policy.

Relational database systems can be viewed as systems that have applied the open

implementation principle for many years. The client, which decides about the im­

plementation strategy, is the query processor. This component chooses, based on its

cost model, the physical algebra operator that implements the logical operator most

efficiently. This relationship between the database query processing and the open

implementation principle may explain the efficiency problems caused by blackbox

ADTs discussed in Section 2.7.3. For, the operations specified in the ADT do not

allow the query processor to participate in the decision for the implementation strat­

egy. By violating the open implementation principle (that clients should participate

in decisions about the implementation strategy), efficiency problems can be expected.

E­ADTs have been proposed as a solution, but problems remain with requests that

cross the boundaries of several extensions, because these boundaries between E­ADTs

are blackbox abstractions.

2.9.2 Different data models at different levels

This section proposes the multi­model DBMS architecture as an alternative design for

database systems in non­traditional application domains. The design of a multi­model

DBMS has a layered architecture, with a central role for data abstraction. The unique,

distinguishing aspect of this architecture is that the conceptual data model used by

its end­users is mapped to a physical implementation using different data models at

different levels of the database architecture. Although this idea may be a good basis

for the design of extensible relational systems as well, the choice made for the So­

Simple DBMS is to provide a structural object­oriented data model at the logical level,

and map this to a binary relational model at the physical level. The first prototype

of a multi­model DBMS has been developed by Annita Wilschut, in the MAGNUM

project. The prototype, referred to in this thesis as the So­Simple DBMS, is discussed

in Section 2.10. This section motivates the ideas at the foundation of this architecture,

and places it in context of the database literature reviewed in this chapter.

Like the standard database architecture defined in the ANSI/SPARC model, the

design of a multi­model DBMS separates external and internal levels by means of a

conceptual level. But, its architecture takes the divide­and­conquer strategy of query

evaluation in relational database systems several steps further. The implementation is

separated in three layers: the conceptual, the logical, and the physical layer. Instead of

transforming complex object queries directly into operations in a physical algebra, as

is common in most database architectures, query evaluation in a multi­model DBMS

takes place in several phases. Both the logical and the physical layer can be extended

with domain­specific data types and operators.

Each of these layers can be viewed as implementing a complete three­schema

architecture with its own data model and query languages. The internal level of the

ARCHITECTURE OF DATABASE MANAGEMENT SYSTEMS 35

...

...

E
x
te

n
s
io

n
 1

E
x
te

n
s
io

n
 n

E
x
te

n
s
io

n
 1

E
x
te

n
s
io

n
 n

Logical

algebra

Query language

Physical

algebra

Storage layer

...

E
x
te

n
s
io

n
 1

E
x
te

n
s
io

n
 n

Logical

algebra

Query language

Physical

algebra

Storage layer

...

E
n

h
a

n
c
e

d
 A

D
T

 1

E
n

h
a

n
c
e

d
 A

D
T

 n

Query language

Storage layer

L
o
g
ic

a
l
a
n
d
 p

h
y
s
ic

a
l

a
lg

e
b
ra

s

Figure 2.4. The multi­model DBMS architecture next to the extended relational and

E­ADT DBMS architectures (from left to right).

conceptual layer corresponds to the external level of the logical layer, and similarly,

the internal level of the logical layer is the external level of the physical layer (see

also Section 2.10.3). The physical layer is implemented as a traditional DBMS that

converts queries against its data model into actions in the file system. But, query

evaluation is aware of the expressions in all the layers, which allows each layer to

participate in decisions determining the best query plan. The different data models at

different layers are used as a design mechanism to tackle query processing at various

levels of abstraction, reducing the complexity of the problem.

2.9.3 Discussion

At the first impression, the idea of a multi­model DBMS looks very similar to the way

object wrappers provide an object­oriented layer around relational database systems.

But, the details matter, which is again explained best using the open implementation

principle. An object wrapper considers the relational DBMS (that implements the

physical layer of the architecture) as a black box. As discussed before, the object

wrapper will have to provide its own query optimizer, as the relational optimizer does

not know the strategy that generates the queries at the physical level: a hematoma of

duplication. In a multi­model DBMS, there is one query processor, that uses different

representations of data and queries at the different levels of its design. But, it has

access to the representations at the lower level, and can make its own decisions at

different levels of abstraction.

The crucial architectural difference between a multi­model DBMS and other exten­

sible database systems discussed in this chapter is that query processing at the logical

layer uses only operators that are provided by the physical layer. This enforces a

system­wide physical data model and algebra spanning all extensions, that can be ex­

tended if really necessary. This design provides the query processor with transparancy

through the layers. In a way, query evaluation can ‘look down’ from the original

request through all layers of the architecture. This design should make it possible

for optimizations to also cross the boundaries between (enhanced) ADTs. Therefore,

almost all query evaluation can be performed set­at­a­time, and can be optimized using

parallelization and pipelining. If logical operations cannot be expressed efficiently in

36 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

structured

function

data

structure

data

function

structured

function

structure structure

Binary Tables
Binary Tables

�✂✁☎✄✝✆✟✞ ✠✟✡✂☛

MOA

MIL

✡✂☛ ☞✂✌✂✍✏✎✑✡
☛ ✒✓☞✂✞ ✠✟✡✂☛

✡✂☛ ☞✂✌✂✍✏✎✑✡

Figure 2.5. Moa query execution by

translation to MIL

Figure 2.6. The design of the So­Simple

DBMS

the available physical algebra, then the physical algebra is first extended with new

set­oriented operators.

2.10 THE SO­SIMPLE DBMS

This section presents a prototype implementation of a DBMS based on the multi­

model DBMS architecture. It is a simplified model of a complete DBMS, aimed to

study efficient query evaluation and domain­specific extensions in a structural object­

oriented framework as suggested by Steenhagen. For its simplicity and its emphasis on

structural object­orientation, this thesis refers to the prototype as the So­Simple DBMS.

It is used as a research vehicle for validation of the multimedia database architecture

proposed in this thesis.

The logical data model, the data model used in the logical layer, is a complex object

model that is queried with a logical algebra. The physical data model, used in the

physical layer, is the binary relational data model. The mapping between the logical and

physical data model is performed in Moa, a generic algebraic framework (see Section

2.10.1). Monet, a binary relational DBMS (see Section 2.10.3) provides the physical

level. A structure function specifies the correspondence between a structured Moa type

and its binary relational representation. Queries formulated against an object schema

are mapped into series of algebraic operations in binary relational algebra. Figure 2.5

illustrates this process: the query is a Moa expression on a structure function of binary

tables. Its translation is a sequence of operators on the operand tables, that generates

result tables, which in turn are operands of another structure function representing the

Moa result value.

The So­Simple DBMS implements only these two layers (logical and physical).

Thus, in this thesis, the conceptual data model is identical to the logical data model,

and users can only express their queries in object algebra. It is anticipated that future

revisions of the So­Simple DBMS will support a more powerful data model at the

conceptual layer, that supports features such as object identity and type inheritance.

Also, full support for an object calculus like OQL should be provided. Because only

the logical level has been implemented so far, queries presented in this thesis are always

expressed in the logical algebra though.

ARCHITECTURE OF DATABASE MANAGEMENT SYSTEMS 37

The architecture of the resulting database system is shown in Figure 2.6. The parser

and rewriter manipulate Moa expressions, and generate queries for the physical layer.

The materializer operates like a cache between clients and the data in Monet. The Moa

kernel and the discussed extensions have been implemented in approximately 5000

lines of Java code. About 3500 lines of these form the generic algebraic framework;

the remaining 1500 lines implement the basic extensions used to define a complex

object model and its algebra.

2.10.1 Logical data model and algebra

Moa is an extensible algebraic framework. The Moa kernel supports an abstract notion

of orthogonal structures. Actual implementations of structures are added to the kernel

in separate modules. Core Moa is an abstract framework that allows for the definition

of type constructors (which together form a structural object­oriented data model) and

operations on types. In the following, the definition of a data model and algebra in

an unspecified Moa instantiation is discussed first. Next, the particular instantiation of

Moa used in the logical layer of the So­Simple DBMS is treated.

Data model. Moa supports the definition of data models based on the principle of

structural object­orientation. Moa assumes a finite set of ADT­style base types. Base

values (which are instances of base types) are atomic; their internal structure cannot

be accessed, and is only accessible via operations. Base types are implemented at the

level of the physical storage system, and therefore allow efficient implementation in a

general­purpose programming language.

A structuring primitive, or structure for short, combines known types to create a

structured type. Structures can be used recursively. Moa’s type system can now be

summarized as follows:

base type: τ is a base type if τ is an atomic type at the physical level.

structured type: If τ1, · · · , τn is a, possibly empty, list of types and T is a structure

defined over τ1, · · · , τn, then T (τ1, · · · , τn) is a structured type.

The collection of structures constitutes the data model at the logical level. These

structures are mapped by the Moa implementation on the physical system. This

mapping provides data independence between the Moa data model and the physical

storage system. The logical­to­physical mapping also allows the system to optimize

query execution plans.

Algebra. The algebra on the Moa data model consists of the operations defined on

the available atomic and structured types. Each atomic type has its own accessor

functions. The accessor functions on the atomic types are executed directly in the

physical system. Each structure definition comes with operations on the structure.

Instantiation. In the prototype implementation of the So­Simple DBMS, the defini­

tion of kernel extensions atomic, tuple, and set13 instantiate Moa as a logical

algebra on complex objects. The base types are provided by the underlying physical

38 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

system, Monet. Since Moa structures are orthogonal, the defined data model subsumes

the NF2 data model.

The Moa kernel translates logical operations on structures into efficient physical

execution plans. The set structure provided in the current implementation specifies

operators that are common in query algebras: selection, map, join, semijoin, nest,

unnest etcetera. Thetuple structure implements an operation that extracts an attribute

from the tuple. Atomic types simply add their accessor functions to the algebra. Details

of the mapping, as well as an evaluation of its performance, are described in [BWK98].

2.10.2 Examples

Let C be a value of the following type, which could be used in a data model for the

compact disc example of Figure 2.1:

SET<

TUPLE<

Atomic<str>: artist,

Atomic<str>: title,

SET< Atomic<str>: songtitle >: songs

>

>;

The select operation below selects the compact discs from ‘PJ Harvey’. The

result of a select is a value of the same type as the operand. After the selection, the

artist attribute has been removed from the resulting tuples using a map operation.

map[TUPLE< %title, %songs >](

select[%artist = ‘PJ Harvey’](C)

);

The next example shows how to select all compact discs with the song ‘Helter

Skelter’. Although the select in Moa is nested, the expression translates into a set­

oriented query plan at the physical level, in which the nesting has been removed.

map[TUPLE< %artist, %title >](

select[count(select[%songtitle

= ‘Helter Skelter’](%songs)) != 0](C)

);

Assume now that Q is a value of type SET< Atomic<str> >, containing some

names of artists. The following join operation joins the elements of set C with the

elements of set Q, on equality of the artist attribute of C:

join[%artist, THIS, TUPLE<>](C, Q);

This join uses the TUPLE structure to generate the result. Consequently, the type

of the result is shown below. If preferred, another map operation may remove the

ARCHITECTURE OF DATABASE MANAGEMENT SYSTEMS 39

matching artist attributes from the result, turning the expression into a natural

equijoin.

SET<

TUPLE<

TUPLE<

Atomic<str>,

Atomic<str>,

SET< Atomic<str> >

>,

Atomic<str>

>

>;

2.10.3 Vertical fragmentation and Monet

Supporting a complex object model at the logical level on a binary relational model at

the physical level requires vertical fragmentation of the complex object structures.

Copeland and Khoshafian were the first to realize the advantages of a fully decom­

posed storage model [CK85]. Surrogate keys, maintained by the system, associate sep­

arately stored attribute values with corresponding record structures. For performance

reasons, they propose storing two copies of each attribute relation, one clustered on the

attribute value and one on the surrogate. Under these assumptions, an analytical model

demonstrates that a relational DBMS using this storage model can provide efficient

query processing, without losing a lot of performance for updates. The advantages

of vertical fragmentation are even more promising for the support of different data

models. A decomposed storage model seems better at handling set­valued attributes,

object identity, the management of inhomogeneity in record structures, and the support

of directed graphs and multiple parent relationships (important for type inheritance).

Furthermore, decomposed storage has better characteristics for query processing with

limited buffer space, is better equiped to take advantage of parallelism and pipelining

among multiple operations, and is very suited for a hardware architecture with multiple

independent disks.

While Copeland and Khoshafian propose vertical fragmentation as an implemen­

tation technique for the internal level of a DBMS, Monet supports a binary relational

data model at its conceptual level. Monet is an extensible parallel database kernel that

has been developed at the UvA and the CWI since 1994 [BK95, BK99]. The data is

stored in Binary Association Tables (BATs). BATs are tables with two columns, called

head and tail, respectively, each storing atomic values. Structured data is decomposed

over many narrow tables. The system is intended to serve as a backend in various ap­

plication domains; it has been used succesfully as backend for geographic information

systems [BQK96] as well as commercial data mining applications.

Monet allows the specification of full decomposition in a declarative manner, with­

out prescribing precisely how the binary tables are stored on disk. Compared to

decomposition as a storage model, Monet’s physical data independence makes it pos­

40 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

sible to take better advantage of the benefits of decomposition discussed in the previous

subsection. For example, if Monet ‘knows’ that a BAT with surrogates in the head and

atomic attribute values in the tail has been ordered on its head, the surrogates are not

necessarily materialized on disk. Note that this optimization does not violate ordering

independence; Monet simply materializes the surrogates again whenever the order of

the table might change. Also, storing the table in two ways becomes a matter of phys­

ical database design, which can be performed independent of modeling an algorithm

as a sequence of set­oriented operations on binary tables.

Monet’s design is motivated by two trends. First, the average main memory in work­

stations gets larger and larger. Therefore, processing should be focused on operations

that are performed in main memory instead of on disk; all primitive operations in Monet

assume that their data fit in main memory. Second, operating systems evolve towards

micro­kernels, i.e. they make part of the OS functionality accessible to applications.

A DBMS should therefore not attempt to ‘improve’ or ‘replace’ the OS­functionality

for memory management. If the tables in Monet get too large for main memory, the

database uses memory mapped files. It uses the lower level OS primitives to advice

on the buffer management strategy, which is then often delegated to special­purpose

memory management hardware.

MIL, the Monet Interface Language, provides a BAT­algebra, consisting of basic

operators on bags (or multi­sets), including select and join, some less standard

operators likesemijoin andantijoin, as well as a collection of control structures.

The operators perform an additional dynamic optimization step before execution.

Based on the properties of the operands, the most efficient algorithm is chosen. For

instance, the join algorithm may be ahashjoin, but also amergejoin that assumes

the join columns to be ordered, or a syncjoin that assumes the join columns to

be identical. When two BATs have an identical head column, they are said to be

synchronized. Join operations can be performed very efficiently on synced BATs,

because we do not have to compare the values ­ we know beforehand that the head

values in the operands are equal if they are in the same position. This way, the extra cost

for re­assembling the vertically fragmented multi­attribute data is reduced significantly,

which has been demonstrated in [BWK98] on the TPC­D decision support benchmark.

2.10.4 Extensibility

The So­Simple DBMS is extensible at all levels of its architecture. At the physical level,

Monet can be extended with ADTs to provide new data structures and operations, for

example to support geographical information systems [BQK96]. Because Moa’s base

types are the data types available at the physical layer, the logical layer inherits the base

type extensibility provided by Monet. An example of using base type extensibility for

multimedia retrieval is the definition of the vector type, which is used in Section

3.5.

The logical data model and its algebra are also extensible by adapting or defining

new Moa structures. The main purpose of extending Moa is the development of

domain­specific structures. Such a domain­specific structure can improve upon the

general­purpose query evaluation process by using its extra domain knowledge to

ARCHITECTURE OF DATABASE MANAGEMENT SYSTEMS 41

generate more efficient query plans. Chapter 5 elaborates extensively on this issue, for

the integration of information retrieval and databases.

Extensibility at the logical layer is useful in a somewhat different fashion as well,

i.e. to provide new generic features in the logical data model. An example is adding

support to the logical data model for the notion of object identity. The object

structure can provide a ‘reference’ to a value of any type. Its implementation uses

the (internal) surrogates defined in the mapping from structured types into binary

relations, and makes them available at the data model as references to objects in some

class extent. The value operator replaces a reference with its value, and this value

loses its identity: the identity is only valid within the class extent. A reference and

its value can only be combined through creation of a new structured type, e.g. using

map[TUPLE<THIS,value(THIS)>](Oids). As the notion of object identity is

not directly relevant for this thesis, it is not discussed any further.

2.10.5 Discussion

A disadvantage of developing a DBMS based on an unconventional architecture is that

it involves a lot of work to create a complete database system. From an academic

perspective, however, it is more important to get the blueprint right and study its

implications, than to squeeze the final bit of performance out of an architecture that is

clearly ‘wrong’. Chapter 5 will demonstrate that the design of the So­Simple DBMS is

particularly useful for the integration of IR and databases.

A large proportion of the potential of the multi­model DBMS architecture remains

still ‘hidden under the cover’, because the prototype implementation is incomplete.

So far, only a portion of the architecture has been implemented and many issues have

not been addressed at all. For example, it is not so clear how to combine a query

optimization process with the extensible architecture of the So­Simple DBMS; it seems

necessary to borrow some ideas from the design of Predator, e.g., let Moa structures

provide an optimization interface. Other open questions involve the formalization

of Moa, efficiency of queries translated from OQL into the logical algebra, and the

processing of updates. But, this architecture will benefit more and more from its

advantages, as long as the amount of data increases, its structure gets less homogeneous,

and the operations performed become more complex, moving into a situation in which

facilities enabling scalability start to play a more important role than has been the case

so far.

2.11 SUMMARY

This chapter has reviewed the concept of ‘database system’. Sections 2.2 to 2.6

revealed the identity of the database approach and the most important characteristics

of database systems. Not concurrency, security, recovery, nor any other ‘goodie’ really

tells a database system from other software artifacts; databases are different from other

programs because they put the data in the spotlights by utilizing data abstraction. First,

this provides data independence, which is important to reduce the efforts of writing

and maintaining application programs. Second, declarative query languages enable

efficient query evaluation, which is probably the best explanation for the success of

42 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

relational database systems: it guarantees ease­of­use, without inducing a performance

penalty.

Sections 2.7 and 2.8 discussed the open problems in supporting more ‘usable’

DBMSs that provide more expressive data models without sacrificing efficiency.

Object­oriented database systems are easy to use for the development of single­user

applications requiring persistency, but lack the notion of a database schema which

impedes the sharing of persistent data between different applications. A database ar­

chitecture that supports structural object­orientation in an algebraic framework seems

a promising alternative, but efficient query processing requires still more research. Ex­

tensible and object­relational databases support behavioral object­orientation through

ADTs, but run into efficiency and scalability problems because their query processors

only see blackbox ADTs.

The chapter concludes with the proposal of a new database architecture, that uses

different data models at different layers of its implementation. The So­Simple DBMS

is introduced, which is a prototype DBMS conforming to the proposed architecture,

and is used throughout the remainder of this thesis. It is argued that a multi­model

database system is better prepared than competing database architectures for a future

in which scalability is the enabling factor to handle the large volumes of data that we

digitize and desire access to.

ARCHITECTURE OF DATABASE MANAGEMENT SYSTEMS 43

Notes

1. A database management system can also be special­purpose software; whether it is general­purpose

or special­purpose, a DBMS is a complex software system, that provides database management as a service

to other applications.

2. Tsichritzis and Klug describe data independence in database systems as follows: ‘Data independence

is not the capability to avoid change; it is the capability to reduce the trauma of change’ [TK78].

3. Of course, the conceptual schema cannot be reduced whenever some external schema has defined a

mapping to the data that is to be removed. In this case, the database administrator decides whether to remove

the applications using these external schemas, or leave the conceptual schema as it is. The contribution of

logical data independence in this situation is that a potential inconsistency has been detected automatically.

4. Note however that these transformations can also result in increased execution performance, see e.g.

the evaluation of Expression 2.3 in Section 2.6.

5. The equivalent SQL expression is select title from C where artist in Q;. Here,

the nested­loop is harder to spot, because the existential quantification over the equality predicate is ‘hidden’

by the syntax, but it is of course the same construct.

6. Both solutions (calculus and algebra) return each matching pair of artists twice: < a, b > and

< b, a > both occur. Removing these double results would only have obfuscated the example while it

would not have affected its purpose; i.e. demonstrate that an algebra expression is generally harder to

construct than a calculus expression.

7. This conflict between encapsulation and data abstraction is reflected in software specification meth­

ods. Wieringa observes only one real difference between structured and object­oriented software specifica­

tion methods and techniques, lying in the use of DFDs in the former: ‘The DFD technique forces the analyst

to distinguish, at some level of the aggregation hierarchy, data stores from data processing components and

at that level, we get a decomposition that is incompatible with the object­oriented philosopy.’ [Wie99].

8. [Kim94] argues convincingly that the ODMG standard is not a standard, but merely a proposal.

9. The term ‘object­relational’ was coined by Stonebraker.

10. Date and Darwen mention (in the annotated references) that ‘we are prepared to entertain the idea of

system keys, and such keys might possibly be thought of as (user­visible) ‘tuple IDs’.’. Given the explicit

use of ref and deref operators, using references in Informix Universal Server seems rather close to this

idea of system keys. If after say a hundred pages of [DD98] its pedantic style becomes just too much to

handle, I recommend reading [Cam96] as a relief.

11. In this example, it is assumed that the nested domain R(S) and the domain S are called ‘songs’ and

‘song’, respectively.

12. The count­bug refers to the phenomenon that empty groups disappear from aggregates over nested

SQL queries, if the DBMS replaces the nested iteration by a join. A ‘solution’ for relational systems is to

use an outer join instead, which produces NULL values that represent the empty sets.

13. More precisely, the set structure defines a multi­set (or bag) of elements.

3
REQUIREMENTS ANALYSIS

Tjielp tjielp ­ tjielp tjielp tjielp

tjielp tjielp tjielp ­ tjielp tjielp

tjielp tjielp tjielp tjielp tjielp tjielp

tjielp tjielp tjielp

Tjielp

etc.

—Jan Hanlo, De Mus

3.1 INTRODUCTION

A fashion designer and a journalist work with high volumes of multimedia data,

and they need a flexible storage and retrieval system to cope with their information

collections and especially with those of their colleagues. In a closed environment,

straightforward solutions with manually added descriptions may suffice. But, as soon

as a data collection is shared by more users, more powerful tools are needed. In fact,

everybody who collects and uses multimedia data is a candidate user of multimedia

database systems.

A multimedia database management system (MM­DBMS) is a DBMS that supports

‘normal’ users at performing their tasks involving multimedia data. It should in the first

place provide the DBMS services discussed in the previous chapter, in the sense that

its design supports data abstraction and addresses efficient query evaluation. Also, it

45

46 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

should be more than a backend targeted at application developers: sufficiently powerful

ad­hoc query facilities must be integrated in its design.

In recent years, many novel software systems that handle multimedia data have

been presented in literature as multimedia database systems. This chapter argues that

a large proportion of these systems should not be classified as multimedia database

systems. On the one hand, many multimedia software systems support retrieval in

collections of multimedia data, but do not provide data independence, let alone alge­

braic intermediate representations that can be optimized. On the other hand, extensible

database systems with multimedia extensions support querying insufficiently, and do

not even approximate the retrieval functionality provided in the first type of multimedia

software systems.

This chapter identifies what requirements must be addressed in a DBMS to qualify

as a multimedia DBMS. It is based on work presented in [dVvdVB98]. First, it

discusses what distinguishes multimedia data from other data. Section 3.4 focuses

on metadata for the access to multimedia objects. The next section discusses ADT

support for multimedia search in extensible databases, using the So­Simple DBMS as

an example. Shortcomings of the ADT approach to support multimedia in extensible

databases are discussed next, and the query formulation problem is introduced. Section

3.6 identifies new requirements for database systems that reduce this problem.

3.2 WHAT IS MULTIMEDIA DATA?

Computer scientists use the term ‘multimedia’ to refer to anything that is not con­

ventional alphanumerical data. Sometimes, the term is made more explicit by an

enumeration of data types, appealing to an intuitive notion of multimedia: image,

audio, video, and text. Heller and Martin use the media taxonomy shown in Table

3.1 for the design and evaluation of the role of the different media in multimedia

presentations [HM95]. The horizontal dimension illustrates the many aspects of each

media type: an image can be a photograph that tells its own story, or an abstract iconic

representation that functions as a metaphor to support information already represented

otherwise (typically in the text).

3.2.1 Characteristics of multimedia data

Defining multimedia more precisely than by a list of media types is surprisingly

difficult. Grosky attempted to define multimedia data by the human activity involved

in creation of the data [GFJ98]. But, long before multimedia data is eventually inserted

in the database, movies and music have been created by humans as well, usually with

specific care to communicate the artist’s message. A claim that the semantics of

multimedia data are implicit in the data is debatable as well, because the semantics

of an employee number in its numeric representation are no less implicit than the

semantics of a stop sign in its iconic representation.

This thesis distinguishes multimedia data (including text) from ‘traditional data’

(usually alphanumeric) from a query perspective:1

Definition 1 The information conveyed by multimedia data may represent anything

from the real­world (unlimited UoD), while the information conveyed by traditional

REQUIREMENTS ANALYSIS 47

Table 3.1. The media taxonomy presented in [HM95].

Media type Media expression

Elaboration Representation Abstraction

Text

Free text,

sentences,

paragraphs

Bold, italics, bullets,

underlines, headlines,

subheads

Shapes, icons

Graphics

Photographs,

renderings,

scanned images

Blueprints,

schematics
Icons

Sound
Speech,

audio transcipts

Intensity,

tone,

inflection

Sound effects

Motion Raw film footage

Animation,

time­lapsed

photography

Animated models,

highly edited video

data is a symbolic representation of facts restricted to the database’s (limited) universe

of discourse.

It follows directly from this definition that queries about traditional data are context­

dependent, given the universe of discourse of the database. Conversely, queries in a

multimedia database can be independent from the context of the applications for which

the data has been collected. Not the form in which the data is represented, but the scope

of the semantics captured in the data determines whether it is considered multimedia

data or not. Although this definition has its own weaknesses, it is particularly useful

for the study of multimedia databases: it identifies applications that use specific

characteristics of multimedia data, and therefore may impose new requirements on

database systems. Using icons to represent male or female in some employee database

does not require extra functionality from the DBMS, except possibly an ADT to

handle bitmaps; the only ‘new’ aspect is that the application developer encoded the

male/female distinction with a different set of symbols than the more common choice

for a boolean or enumeration type. In a multimedia digital library, an application

developer cannot elicit all aspects of the data that may be relevant for its users, and

therefore the information encoded in the data cannot be represented using a limited set

of encodings that is (or could have been) known beforehand.

3.2.2 Multimedia data with a limited context

Not all applications handling multimedia data require functionality that goes beyond

standard DBMS services. Sometimes, it makes sense to limit the context of queries

that can be processed to a restricted universe of discourse. As an example, consider

a video directory service specialized in soccer, like the one described in [Vel98].

Its architecture consists of two subsystems: a video analysis and a video retrieval

component. The video analysis subsystem uses a conceptualization of a limited set

48 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

of predefined objects and events, including ‘ball’, ‘player’, ‘goal’, and ‘corner’, that

are extracted from the data automatically based on techniques discussed in Section

3.4.3. The retrieval component makes the extracted concepts available to the users. As

such, the possible queries are limited to the domain knowledge encoded in the analysis

component. Because only alphanumeric data is used for retrieval, this application is

served perfectly well by a DBMS with a video ADT.

The point made in this thesis is that storing multimedia data, and querying normal

data that has been derived from multimedia data, does not turn a database system into

a multimedia database system. A real multimedia DBMS should not restrict its users

to predefined access patterns. It could assist developers of the analysis component of

[Vel98] with the specification of queries that correspond to a predefined conceptualiza­

tion. But, these predefined conceptualizations only capture the information required

to answer a subset of all possible queries about the soccer videos; end­users of a multi­

media DBMS should be able to construct queries for unanticipated information needs

as well. For example, marketeers of some multinational firm may be interested to see

how often their advertisement in the stadium has been shown on television in the last

year.2 Requirements on the support of ad­hoc query functionality are further discussed

in Section 3.6. Of course, it may be impossible to formulate and answer a query for an

information need, given the digitized data and the current state of automatic analysis

techniques. But, the decision whether it is worthwhile to spend more time to try and

find relevant objects for an ad­hoc query should be left to the user.

3.2.3 Composite multimedia objects

Multimedia data can be described as a structural composition of atomic objects at

different levels of granularity. For example, a news bulletin is a sequence of news

items, usually consisting of an announcement, an interview with a reporter at the spot,

and some shots about the event that is reported about. Similarly, a book is a sequence

of chapters, in which each page may contain text, tables, and images, in which text

consists of words, headings, and punctuation, and so on.

Hardman reviews document models for authoring multimedia and hypermedia in

her thesis [Har98]. She identifies the following basic components of a hypermedia

document model: media items, (media independent) structure, anchors, and presen­

tation specification. This subsection shortly reviews these components, and discusses

how these aspects of multimedia data affect a multimedia database.

In Hardman’s model, a composite multimedia object is composed of one or more

media items. A media item is defined as an amount of data that can be retrieved as one

object from a store of data objects, e.g., a piece of text, an image, a video, or a sound

fragment. It is an atomic object: a media item cannot be divided in smaller objects

without losing its meaning. The granularity of this atomicity is determined by the

objects’ semantic content, and therefore subjective to the opinion of the creator of the

object. The composition of a multimedia object is defined by its media independent

structure, which groups media items included in the object into ‘sub­objects’ which

can be manipulated as one entity, and thus can in turn be grouped.

Often, media items can themselves be represented as a structure over atomic com­

ponent objects: Hardman calls this the media dependent structure of a media item.

REQUIREMENTS ANALYSIS 49

Examples include shots and scenes in a video, regions in an image, and sections in a

text. An anchor is a reference to such an internal part of a media item. A video anchor

can specify a frame or a sequence of frames in a video object, and an image anchor

may reference the region in one of those frames that contains an image. Velthausz

introduces a similar concept, called pseudo object, for the representation of regions

in video frames that contain e.g. a soccer player, or the ball [Vel98]. The difference

between anchors and pseudo objects is their intended use: Hardman uses anchors to

reuse content in a different context, while Velthausz uses pseudo objects as input for

the analysis of multimedia data.

The presentation specification determines the temporal and spatial structure of a

multimedia object; e.g., ‘the logo occurs in the top­left corner of the screen’, or ‘the

animation starts after the speech has been played’. From a database perspective, man­

agement of presentation specifications is orthogonal to the management of multimedia

data used in these presentations. In the anticipated use of digital libraries, authoring a

presentation will take place after retrieving multimedia objects of interest. Retrieving

ready­to­use presentations that comply with some template specification (which can

be viewed as a query) is beyond the scope of this thesis.

This thesis further assumes that a data model based on structural object­orientation

with appropriate type constructors can represent both the media independent and the

media dependent structure of multimedia objects. In general, the influence of the

media dependent structure on the meaning of a media item is unknown. Even for text,

little is known about the role of its structure in information retrieval. The situation

concerning media independent structure is even worse. Therefore, this thesis focuses

on the retrieval of media items. The term multimedia object denotes a media item;

unless the term composite multimedia object is used explicitly, the media independent

structure of multimedia objects is ignored. Mentioning the structure of an object refers

to its media dependent structure.

3.3 ACTIVE VERSUS PASSIVE OBJECTS

The key functionality that a multimedia database should offer is access to multimedia

information, as illustrated by the user scenarios described in Section 1.2. With respect

to access, Bertino et al. classified multimedia objects in two classes: active objects

and passive objects [BCF97]. Active objects really participate in the retrieval process.

Users can specify conditions on active objects in the query, referring to either their

content (an image with a red sports car) or existence (a web page with an image and

a caption that contains the words ‘red sports car’). Passive objects just exist in the

database, and it is not possible to condition on the content of passive objects. A passive

object can only be retrieved through another attribute.

In general, a database system is often used for associative retrieval: as a tool to

recollect unknown properties of stored entities that also have some known properties.

Codd called this the symmetric exploitation of a relationship [Cod70]. Associative

retrieval is only possible for active objects. Imagine a relational database in which

the basic data types are passive. Looking up John’s phone number from a table with

names and phone numbers would force us to check all records sequentially ­ each

time we want to call John. Strange enough, some software systems that are called

50 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

multimedia databases view images, audio and video objects as passive objects, that

can only be retrieved by associative retrieval. Users can look at picture number 1500,

or play the audio stream related to object 120 in WAV format. But, they cannot search

for ‘patterns like these’, or ‘interviews about alcohol and driving’.

If a DBMS handles multimedia objects as passive objects, it is not more than

a (possibly huge) collection of multimedia data. This clearly does not meet the

requirements of the fashion designer or journalist from Section 1.2, nor suffice for

other applications of multimedia databases in police investigation, education, movie

industry, travel industry, or home shopping (see [Sub98]). The key activity in all these

applications involves searching for objects with some particular content, which leads

to the main requirement for a MM­DBMS:

Requirement 1 Multimedia objects can be active objects.

Unfortunately, the properties of digitized multimedia objects are not as easily

checked as the properties of numbers or strings. Applying an exact match on two

digitized media objects will only retrieve another object if it is bit­for­bit exactly the

same. The question arises why you would search for a digitized object that you use

to formulate the query. Occasionally, associative retrieval may succeed using exact

match of digitized media; e.g., a police officer may find the name of a criminal, whose

photograph has fallen out of a filing cabinet. However, in most practical situations we

do not have the exact picture that resides in the database or we would not search for it.

Hence, other means are needed to handle multimedia data as active objects.

3.4 METADATA AND CONTENT

The semantics of multimedia data are implicit to the raw media data. Grosky dis­

tinguishes between the digitized multimedia data, and content­based metadata, user­

recognizable surrogates for these objects which comprise their content [GFJ98]. The

latter can be used to infer information regarding the former’s content. This thesis pro­

poses the term content abstraction for the process of adding content­based metadata

to the raw data, in a way to address Requirement 1:

Definition 2 Content abstraction is the process of describing the content of multimedia

objects through metadata, either assigned manually, or extracted (semi­) automatically.

By analyzing and processing the raw data, semantics can be made explicit to some

extent on different abstraction levels, from feature values (Section 3.4.3) to knowledge­

based concepts [BKS98]. Other metadata can only be added by human annotators. This

section discusses the various types of metadata that are useful for content abstraction.

3.4.1 Syntactic versus semantic content

There exists a gap between the content as perceived by our senses, and the content

that has been interpreted by our brain. For video, Hampapur and Jain call these the

audiovisual content and the semantic content, respectively [HJ98]:

Semantic content: The message or information conveyed by the video. For

example, after watching a news story about a crime, the viewer has acquired

REQUIREMENTS ANALYSIS 51

information about several aspects of the crime, be it what the crime was, where

it took place, who were victims etcetera. Notice that semantic content may come

from different sources: in movies, it has been constructed explicitly by the director,

while in a security video this content is just a log of events ‘seen’ by a camera.

Audiovisual content: The information that depends on the video and audio

signal itself. It is oriented to the aural and visual senses, and does not require an

understanding of the data.

When we watch a video, our mind manages to derive the semantic content from

the audiovisual content. This process requires a significant amount of background

knowledge; it cannot be performed automatically independent of the domain.

A similar distinction between two types of content can be made for other media

types: images have pure visual content, and sounds can be experienced without know­

ing what makes that sound, or ever having heard it before. Borrowing terms from

linguistics, this thesis refers to the content of a multimedia object at the perceptual

level as its syntactic content, and to its interpretation in concepts from the real world

as its semantic content. ‘Syntactic’ emphasizes that perceptual features are low­level

properties that often mean little or nothing to the user in their bare form.

These different types of content cause a problem for manual annotation. Sub­

stantial neuropsychological evidence exists that some properties of audiovisual data

cannot unambiguously be expressed verbally. In his book, Iaccino reviews psycholog­

ical research to differences between the two hemispheres of the brain with respect to

perception [Iac93]. While the left hemisphere is verbal and analytic, the right hemi­

sphere is nonverbal and holistic. Each hemisphere is specialized for a different kind

of thinking or cognitive style. Although a verbal­nonverbal dichotomy associated to

the two sides of the brain is still considered speculative, the vast amount of research

with split­brain patients and people with cerebral lesions reported in [Iac93] shows

convincingly that different areas in the brain are responsible for different perceptual

processing. The areas of the brain that handle language are not always involved in this

processing. Some of the perceptual information is not mediated verbally, and therefore

hard to express in words.3

3.4.2 Manually added descriptions

Accepting the idea of different cognitive styles leads to the observation that the usage

of textual descriptions alone to search the database may always be too restrictive: the

user’s valuation processes are different from the query evaluation process that has been

modeled in the system. Multimedia retrieval has to take into account more than just

textual metadata; the metadata has to capture the syntactic content as well. Despite of

this objection, the most common approach to content abstraction is to use manually

added textual descriptions for metadata. An advantage of manual annotation is that the

search component can be independent of the media type of the objects in the database.

Exact match using textual descriptions is well understood; when boolean retrieval fails,

information retrieval offers an alternative solution.

52 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

An obvious disadvantage is that manual indexing is rather expensive if large amounts

of data have to be annotated. Apart from the fundamental problem with manual

indexing mentioned before, it is also problematic in three other ways:

different people use different vocabulary to describe the same aspect;

different people describe different aspects, and a single person describes different

aspects in different situations;

non­verbal aspects of multimedia data cannot be expressed unambiguously with

verbal annotation.

First, it is not likely that people describe objects in a standardized manner. Different

people select different words to describe the same concepts. For example, one person

may describe a picture of ‘an evening in the mountains’ as ‘dark’, while another person

describes the same picture as ‘somber’. Both try to express approximately the same

concept, but if the first searches for the picture in the database collected by the other,

he will not find the picture although it is in the database. In information retrieval, this

is known as the vocabulary problem [FLGD87].

We may partly overcome ambiguity in natural language using thesauri and (semi­)

automatic query expansion.4 The second problem is however not so easily overcome

using linguistic techniques. Different people describe different aspects of the picture.

A picture classified as ‘A dark natural scene’ by an archivist, may be associated with

‘An evening at Mount Snowdon’ by an enthusiastic hiker. Even a single person will

describe different aspects of a multimedia object, depending on the specific situation

when asked. A hiker might describe the picture with ‘dark natural scene’ in his office

during the week, but can only remember the picture as ‘evening in the mountains’

when sitting in his living room in the weekend. In psychology, this phenomenon is

known as the encoding specificity principle [MJL76].

The common cause underlying these problems is the limited capability of capturing

the full semantics of multimedia data in textual descriptions. Expressing the syntactic

content is especially problematic, while this can be an important aspect of multimedia

information needs (see, for example, Section 3.6.1).

3.4.3 Approximate retrieval

The QBIC (Query By Image Content) system [NBE+93] introduced a new type of

metadata for querying images as active objects. The key to the retrieval process is

similarity between objects. The image query is translated into a point query in some

multi­dimensional space called the feature space. Features are automatically derived

properties from the content of the multimedia objects. The similarity between a query

and a database object is estimated using some distance function in the feature space.

Instead of retrieving objects that are identical to the query object, objects that are

located close to the query object are retrieved. The term approximate retrieval [Fal96]

distinguishes this approach from exact retrieval. Because the features are derived from

the content of the objects, the approach is also known as content­based retrieval. The

interaction with the user in systems based on approximate retrieval takes usually place

following the query by example (QBE) query paradigm. Instead of explicitly dealing

REQUIREMENTS ANALYSIS 53

. . .
query rank 1 rank 5 rank 6 rank 7

Figure 3.1. Image retrieval based on color features

with the features, the user tells the system what kind of objects to search for by giving

one or more examples of ‘good’ objects.

Features typically represent easy­to­calculate properties of the stored objects. An

example feature, often used in image retrieval systems, is a measure expressing the

color distribution of the image, such as the color histogram. Other possible features

are based on the texture and composition of the image; many examples pass in revue in

Chapter 7. Approximate retrieval is not unique for image retrieval. In the Musclefish

system, it is applied to content­based retrieval of sounds [WBKW96]. Measures based

on pitch, energy, and more advanced audio properties span the feature space.

Features mainly represent syntactic content of the stored objects. The syntactic

properties used in approximate retrieval hopefully capture some of the semantic content

of the multimedia object. Unfortunately, we cannot automatically detect semantic

characteristics in multimedia objects. We have to work with the syntactic properties

that we can calculate.

A well­known example illustrating approximate retrieval and query by example

uses the picture of a sunset as query object. For that particular case, retrieval using

color histograms works amazingly well. Other ‘good’ examples include pictures of

‘red flowers’ and ‘divers’. However, it is not so easy to find a feature space that

supports a wide range of queries well. Also, it is not always easy to judge why the

system found the retrieved objects similar to the query object. For example, Figure 3.1

demonstrates the retrieved objects if one searches in a small database for pictures of

red cars. Also images of buildings and waterfalls are retrieved, which are semantically

completely different. In color space however, the picture of a car can be very similar

to the picture of a building.

If the features have a clear perceptual interpretation, we may choose to let the user

move directly through the feature space. The term navigational querying refers to that

situation. Navigational querying has been demonstrated for musicians working with

a database of musical instruments [EV94]. In the QBIC system, users could directly

manipulate the underlying color query. Essentially, it is just another way to use the

approximate retrieval approach. But, many features do not have an intuitive perceptual

interpretation, so they are usually not exposed to the user.

3.4.4 Social information filtering

Shardanand and Maes introduced social information filtering, an indirect approach to

help a user find multimedia objects [SM95]. The underlying idea is that the group of

all users of a digital library can be divided into subgroups having similar interests. The

user’s judgements about multimedia objects, for instance movies or compact discs,

54 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

also span a vector space. In this vector space, a nearest neighbour algorithm can

find judgement vectors that are similar to each other. Next, the items that appear in

the vector of a ‘similar user’, but have not yet been judged by the current user, are

recommended to the current user. This technique is now often used in online stores

selling books or compact discs. Upon login, the system asks you to judge a selection

of compact discs by several artists. This profile of your taste is then used to find people

that like the same discs. If most ‘similar’ people also judged another record highly,

the system recommends it to you.

Similarity between user judgements about objects has three major benefits over

similarity between the objects themselves. First, it overcomes the problems with

identifying suitable features for objects like music and art. Second, it has an inherent

ability for serendipitous finds:5 you find objects that you like, but did not explicitly

search for. Finally, the approach implicitly deals with qualitative aspects like style,

which would be hardly possible with automatically derived features.

Social information filtering assumes that groups of similar users probably have

similar information needs. The validity of this assumption depends on two factors:

the size of the user population, and the scope of their judgements. The number of

user judgements should be large enough to enable generalization. But, the domain

of the judgements should be rather narrow, because users that have similar interest in

one domain may be very different in another domain.6 Technically, it should not be

hard to integrate social information filtering with a multimedia database system. Like

approximate retrieval, query evaluation processes point queries in multi­dimensional

spaces. The difference between both processes comes down to the difference between

the space we map objects in, and the distance measure among these objects.

3.5 MULTIMEDIA DATA AND DATABASES

A multimedia object (e.g. a video or a photograph) can be manipulated in a DBMS by

addressing the following three aspects in the schema:

the digitized representation object;

data abstraction;

content abstraction.

A multimedia object (existing in the real world) is represented in the computer by its

digitized representation object. This thesis ignores the practical problem that one real­

world object may have several digitized representations, produced by varying types

of hardware, or stored in different data formats of varying quality; instead, a single

digitized representation object that represents the multimedia object in the computer is

assumed.7 Data abstraction refers to traditional data modeling, representing attributes

such as the title of a movie, or the photographer of a picture. Data abstraction is also

used to represent the media dependent structure of the multimedia object. Metadata

representing the content of the multimedia object forms the content abstraction of the

multimedia object. It can be a textual description of the semantic content, but also a

feature representation of perceptual content, extracted automatically from the digitized

representation object.

REQUIREMENTS ANALYSIS 55

Media Extension 1
Media

Extension n

F
e

a
tu

re
 s

p
a

c
e

 1

F
e

a
tu

re
 s

p
a

c
e

 m

F
e

a
tu

re
 s

p
a

c
e

 n

...

...

Extensible database system

Figure 3.2. Multimedia objects in an extensible database system

In extensible DBMSs, ADTs can support these three aspects of multimedia objects.

The general idea underlying multimedia support through ADTs is depicted in Figure

3.2. The DBMS is extended with media extensionsM1, . . . ,Mn. A media extension

supports a single medium, e.g. image or text. It provides support for handling digitized

representation objects, as well as distance measures and feature extraction functions

for approximate retrieval. For instance, the image media extension might consist of

an image datablade providing the base data types to add JPEG images to the type

system, and maybe one or more basic retrieval methods like color histogram retrieval.

An additional datablade can provide a search space specialized for face retrieval.

The feasibility of supporting approximate retrieval with extensible databases has been

shown in the Chabot image database. Chabot is implemented on top of the extensible

Postgres database [OS95]. Operations defined in the image datablade are used to

express conditions for approximate search.

The simplest approach to the management of multimedia data with ADTs stores a

multimedia object as a tuple of its digitized representation object and its data abstrac­

tion. The media type of the digitized representation object is supported as an atomic

data type. The data is viewed and manipulated outside the database, or alternatively,

basic operations on these data types have been added as well. Example 1 shows how a

video would be selected and played in the So­Simple DBMS, using this straightforward

approach to the management of multimedia data.8

Example 1

map[play(%video)](

select [%title = ‘Romeo and Juliet’](theVideos))

WITH (

SET<

TUPLE<

video: Atomic< Video >,

title: Atomic< str >

>

>: theVideos

);

56 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

The schema in the following example demonstrates how media dependent structure

of a video object can be represented using structural object­orientation. The video

object is now modeled as a structure that consists of the captions or subtitles, the

audiotrack, and a series of keyframes summarizing the visual content. The order of

the keyframes is ignored in Example 2; if the order of frames is important, a list type

constructor can be used instead.

Example 2

SET<

TUPLE<

subtitles: Atomic< Text >,

audiotrack: Atomic< Audio >,

keyframes: SET< Atomic< Image > >

>

>: videofragment;

Now consider extending the schema with content­based metadata to represent the

content of the keyframes. Manual annotation may result in a set of keywords, or

some natural language description of the scene. Feature extraction can be performed

similar to playing a video in Example 1, calling a feature extraction function instead.

Example 3 shows how this content abstraction can be represented in the So­Simple

DBMS; instead of a set of images, the schema defines a set of tuples containing the

image and its metadata.

Example 3

SET<

TUPLE<

keyframe: Atomic< Image >,

keywords: SET< Atomic< str > >,

description: Atomic< text >,

colorhist: Atomic< vector >,

texture: Atomic< vector >,

shape: Atomic< vector >

>

>: keyframes;

Approximate retrieval is performed by computing distances to a query vector, and

sorting the images in order of their distance to the query object. Example 4 illustrates

a query for approximate retrieval using color. Thus, keyframes can now be queried by

boolean retrieval using the manual annotations, or by approximate retrieval on color,

texture, or shape.

Example 4

subrange[1,10](

REQUIREMENTS ANALYSIS 57

sort[%theDist](LIST<distances>))

WITH(

Atomic< Image >: queryImg,

map[TUPLE<

%keyframe,

distance(%colorhist,

compute colorhist(queryImg)): theDist >

](keyframes): distances

);

ADTs for multimedia data types allow an extensible DBMS to support querying on

textual data and by content. At the first sight, this approach seems to provide the desired

database support for multimedia applications. Some problems have been ignored, and

it would require more research to confirm that these can be handled in an extensible

DBMS without major changes. In particular, the management of media independent

structure is a complex problem, because collections of composite multimedia objects

can be very inhomogeneous. Handling this situation properly requires data model

support for deep inheritance hierarchies, and polymorphic operators, neither of which

is supported well in current DBMSs. Ignoring the problems associated with modeling

composite objects, integration of approximate retrieval techniques with a (relational)

DBMS motivates the development of new algorithms for efficient query processing: the

DBMS should support multidimensional index structures, and it should take advantage

of the fact that it is often not required to rank all objects. Query processing would

benefit significantly from new physical algebra operators that implement the fitness

join proposed in [KN98]. Still, these are developments that fit perfectly well in

the traditional database architecture, and other application domains (like GIS) would

benefit equally well. If this is really all there is to multimedia data management, it

does not warrant the recognition of a special class of DBMSs for multimedia . . .

3.6 NEW REQUIREMENTS FOR MULTIMEDIA DATABASES

What most research in multimedia databases tends to overlook (see e.g. [Col94]) is

that a database with type extensions is not sufficiently usable for multimedia retrieval.

Accessing multimedia data puts new requirements on the design of database systems.

The examples in this section illustrate the shortcomings of the ADT approach.

3.6.1 The query formulation problem

Part of the journalist’s task is to illustrate the article with photos that hopefully attract

readers and increase the sales of the magazine or news paper. For news articles, there

is not much time to find nice illustrations, and candidate photos are often bought from

press agencies, chosing from a rather small collection of recent photos. But, a study of

journalists at work, reported in [MS98], made clear that for feature articles, journalists

have more freedom than with normal news items. For example, the function of the

photo may also be to evoke associations. Also, there is more time to find a ‘good’

photo.

58 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

Imagine a journalist writing an article on ‘the effects of the recent economical crisis

in Asia’. A journalist usually considers more than one concept for a single illustration

task. For the economical crisis example, a possible concept could be a very crowded

stock market. Another illustration idea is a photo demonstrating that normal people do

not have much money left to spend, for example by showing an empty shopping street

in otherwise crowded Hong Kong. In both cases, a photo expressing despair or panic

is probably preferred over photos without explicit emotions.9 Furthermore, constraints

like overall page layout may affect the choices made while performing the illustration

task.

Assume now that the journalist has access to a video archive of news bulletins

originating from various broadcasters. In the archive, time, date, and source are

maintained for each news bulletin. The video data itself is modeled with a sequence

of keyframes, and a text version of the audio track. The content of the keyframes

is indexed using color and texture features. For comparison, a news archive storing

similar metadata is described in [HW97].

Searching for ‘stock market’ in the subtitles may be rather succesful as an initial

query. The precision of the results is probably high, meaning that most key­frames with

matching subtitles really show stock market scenes. However, the recall may be low:

many scenes at stock markets may not have been labelled with an explicit annotation

mentioning ‘stock market’. Note that this problem will be much worse for the second

illustration idea, using ‘Hong Kong shopping street’ as a text query. But, given a

restriction on the location where the video is taken in combination with approximate

retrieval using some example frames of empty streets in any city, approximate retrieval

techniques may be capable of improving the recall, and really find a shot of an empty

shopping street filmed in Hong Kong.

Emotional aspects of the images searched are especially hard to capture in a textual

query. Searching for ‘despair’ in subtitles will probably not retrieve many useful

results. These aspects of the illustration task may be captured more easily in terms

of feature representations of the images. But, a major problem with the approximate

retrieval techniques is starting the process: where should the example objects come

from? Querying the features directly is problematic as well. First, a journalist cannot

possibly be expected to express a high level concept like ‘despair’ in a combination of

color and texture features. Second, most features lack a clear perceptual interpretation.

It is hard to predict what images match constraints like ‘circularity ≃ 0.8’. The

internal representation of the video with content­based metadata should preferably

remain invisible for end­users.

3.6.2 Interaction with a multimedia database

So, interaction with a multimedia database faces a major problem that did not exist in

the conventional database environment: the users do not know how to formulate their

query. As explained in Section 3.4, a multimedia query cannot always be expressed

verbally. Nonverbal aspects of multimedia, like emotional and aesthetic values, are

hard to capture in words. These values are more easily recognized and compared than

described or expressed. The QBE paradigm certainly is a major improvement for such

information needs, but, finding an initial example may be just too hard.

REQUIREMENTS ANALYSIS 59

MMDB

Query Representation

Relevance
Feedback

Ranked List

in
it

ia
l
q

u
e
ry

User

Figure 3.3. The relevance feedback process

Requirement 2 Query formulation is an interactive process.

The problem of query formulation is best handled through an interactive search

process, see Figure 3.3. Although users cannot express their information need as

conditions at the level of features, they can tell us which of the retrieved objects are

relevant for their internal information need. After an initial query has been processed,

the user is asked to judge the retrieved objects. The relevance judgements are used

by the DBMS to adjust the query, making it better reflect the user’s information need.

Processing relevance feedback has been proven effective for both text retrieval and

image retrieval (e.g. [HC93] and [STC97]). Querying multimedia needs a discourse

and refinement phase for interaction between the user and the database.

3.6.3 Query processing using multiple representations

Current database systems do not provide functionality to capture the user’s information

need in multiple representations. Conversely, the user views information as a ‘gestalt’,

and each single representation is only a part of it [GJ97]. We cannot expect users to

search each representation separately ­ under the incorrect assumption that they know

how to formulate a query to represent their information need ­ and combine the results

by hand. Combination of representations is clearly a task for the database system.

Requirement 3 Query processing uses multiple content representations.

Rather than choosing one approach over the other, query processing should use the

information from as many (inherently imperfect) ways to describe objects as possible.

The usage of multiple representations of multimedia objects is crucial for searching

a multimedia database system. Manually added descriptions are not sufficient for

multimedia retrieval. Switching to approximate retrieval techniques overcomes some

of the problems with textual descriptions, but introduces new problems, because most

features have only a syntactic value. As we saw in Figure 3.1, retrieval with color

histograms retrieves also waterfalls and buildings instead of cars. Although a sin­

gle representation of syntactic content is usually not sufficient to capture semantic

content, the combination of several represenations may be more succesful. Experi­

ments in image database research, as reported in [MP97], support the hypothesis that

60 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

the combination of several feature representations improves the results of retrieval.

Early experiences with image retrieval in the Mirror DBMS, discussed in Section 5.5.4,

confirm this as well.

3.6.4 Content independence

So far, insufficient usability for the end­user has been the main critique on the ADT

approach to multimedia data management. A DBMS that uses ADTs to support content

abstraction, which is necessary to address Requirement 1, does not provide enough

abstraction to enable the average user to query multimedia by content. But, the ADT

approach also causes problems for application development.

Recall the main motivation for the development of DBMSs: data independence.

Data independence ensures that applications keep running when the internal represen­

tation of data changes. Drawing an analogy with data independence helps to pinpoint

another problem with the ADT approach: it lacks content independence.

Definition 3 Content independence is achieved when programs that access multi­

media data maintained in the DBMS are written independently from the metadata

available at some particular moment in time.

Applications in a multimedia digital library should be able to use the best available

techniques to fulfill information needs. But, in current systems, in which there is no

separation between the retrieval application and the metadata extraction techniques

used internally, applications have to be adapted every time a new technique for content

abstraction has been developed and is added to a media extension. For example, when

an ADT is added that has a feature space that is highly effective for face recognition,

an application programmer has to know about this new feature space, and adapt

already existing programs that could benefit from this new feature space. But, the

retrieval process modeled in the application does not really change; only the internal

representation of content is changed.

Content independence is introduced in this thesis as a notion similar to data indepen­

dence, but related to the process of content abstraction through metadata. It separates

the actual metadata available at some particular moment in time from the query eval­

uation process. Content independence may be obtained by expressing the part of a

query that specifies constraints on the content of the objects only through examples

and relevance judgements, without using the metadata explicitly in the query.10

Requirement 4 Query formulation provides content independence.

Like data independence, a multimedia DBMS that provides content independence

increases the value of applications by making them less vulnerable to an ever changing

environment. Although retrieval applications would not really break down and stop

working without content independence, e.g. when new metadata is added to the schema

in an extensible DBMS with ADTs, old applications that do not optimally use the avail­

able metadata do not perform as well as new applications; in a commercial setting, this

may encourage customers to try their luck with another digital library. Conversely, in

a multimedia DBMS that provides content independence, the client applications will

REQUIREMENTS ANALYSIS 61

always use all the available metadata; when the DBMS is extended with better multi­

media retrieval techniques, its applications benefit automatically from these improved

techniques. The following chapter will discuss an approach to providing the proposed

content independence.

3.7 SUMMARY

This chapter investigated the combination of multimedia and databases. Using a defini­

tion of multimedia that focuses on the difference with normal data, it is explained what

applications may require special facilities from a database system. More terminology

is introduced, and the first requirement on multimedia DBMSs is proposed: it should

be possible to use the multimedia objects as active objects.

Because the semantics of the objects are implicit to the raw media data, content

abstraction is necessary to address this requirement. Content abstraction adds metadata

to represent the content of the digitized representation objects. It is shown that manually

added descriptions cannot express the full semantics of multimedia objects. Therefore,

multimedia query processing involves approximate search techniques.

Modern extensible database systems can support these techniques through ADTs.

But, an extensible database with multimedia extensions does not provide the function­

ality that should be provided in a multimedia DBMS, because content abstraction alone

is not sufficient. The query formulation problem leads to a different view on query

processing than common in the database community. Instead of a one step process with

a single query, and the database simply retrieving its matching objects, the interaction

between a multimedia database and the user should be a dialogue. Query evaluation

should iteratively interpret the user’s judgements on the results of the previous step,

and adapt the initial query such that it will better reflect the observed but unknown

information need. It derives database queries against the metadata, using information

from the interaction with the user. Since no available technique to handle the objects

as active objects captures all semantics of the multimedia data, the DBMS should com­

bine the retrieval results for different representations. Finally, the notion of content

independence is defined, and it is proposed that the process of query formulation in

multimedia DBMSs should provide such independence.

62 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

Notes

1. Admittingly, the term multimedia is somewhat misleading, as it usually denotes single media objects.

The term multimedia has been chosen over alternatives such as ‘media item’ to conform to the vocabulary

that has become common in database literature.

2. Another example of an unanticipated query requests the video fragment of the Wimbledon final in

which a barely dressed lady ran across the main court from a video directory service specialized in tennis.

This example is not as absurd as it may seem, given that something similar happened recently at some golf

championship, which made it to news bulletins all over the world.

3. Artists have since long been aware of differences in cognitive style. Barrow reports [Bar95] that

composer Carl Orff never admitted a boy to the Vienna Boys’ Choir if he already knew how to read and

write. Apparently, he believed analytical skills block the creative processes needed to develop musical

skills. Similarly, the famous composer Mozart asked his wife to read letters aloud during composing. He

was convinced that the analytical part of his mind would be distracted by processing the speech and not

disturb the creative part making music. At present, Edwards developed a new method for teaching creative

drawing, based on these insights in differences between the right and the left part of the brain [Edw93].

4. Even though it may seem ‘obvious’ that query expansion using thesauri terms reduces the vocabulary

problem, a positive effect on retrieval performance has never been demonstrated consistently in large

evaluation experiments, such as TREC.

5. Serendipity is the phenomenon of finding valuable or agreeable things not sought for. The word

derives from a Persian fairy tale, ‘The Three Princes of Serendip’.

6. For example, I like alternative music, but I am not a soccer fan. If the domain used for social

information filtering encompasses both music and television, my user profile could match with the profiles

of people that like the same music, but also really like soccer; as a result, I would get recommendations for

soccer matches on television, which I would not appreciate at all.

7. Notice that this implies ignoring that a different digitized representation may result in different values

in feature space for the same object; this can make it impossible to distinguish between identical content

(but differences in metadata extracted from different digitized representation objects for the same real world

object), and very similar content (but the metadata comes from two different real world objects).

8. Recall that although we prefer a language based on OQL, in the current prototype implementation

all queries have to be formulated in Moa.

9. When visiting the Finnish newspaper ‘Aamulehti’ in Tampere with the Mira working group on

evaluation of content­based retrieval methods (see also [PMS+98]), one of the journalists was selecting a

photo for an article on floods in Asia. He explained that he was looking for a photo with babies or old

people, ‘because that catches the eye, and will have more impact on our readers’.

10. In some cases, content­based metadata may be provided as part of the schema too, notably for color

distribution, which allows the user to ask explicitly for images with some particular colors in it. But, this

does not conflict with the notion of content independence, because this metadata is not used to address the

query formulation problem, but as conventional (derived) attributes of the image.

4
CONTENT MANAGEMENT

Gambling is not a vice, it is an expression of our humanness.

We gamble. Some do it at the gaming table, some do not.

You play, you win, you play, you lose. You play.

—Jeanette Winterson, The Passion

4.1 INTRODUCTION

The Mirror architecture (presented in Section 4.2) is a blueprint of a multimedia DBMS,

which addresses the requirements identified in the previous chapter. This blueprint

identifies two new components of a database system that are specific for multimedia

DBMSs: the content abstraction component and the retrieval engine. The design of

the retrieval engine and its integration with the content abstraction component are the

topics of this chapter.

This chapter is organized as follows. Section 4.2 introduces the Mirror architecture.

The following section discusses the relationship between multimedia retrieval and

IR. The Bayesian view, using probability theory as a logic for plausible inference, is

introduced in Section 4.4, as well as its usage in information retrieval. Section 4.5

generalizes the architecture of IR systems to handle differences between text retrieval

and multimedia IR. The next two sections deal with evidential reasoning using the

inference network retrieval model and an instantiation of this model for multimedia,

concluding with a discussion of shortcomings and opportunities for improving the

63

64 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

component

abstraction

Content

engine

Retrieval

Data abstraction component

Multimedia DBMS

Figure 4.1. Multimedia database architecture

model. Preliminary versions of these ideas have been published in [dVB98b] and

[dV98].

4.2 A MULTIMEDIA DBMS ARCHITECTURE

The previous chapter identified four new requirements with respect to the management

of content:

Multimedia objects can be active objects;

Querying is an interaction process;

Query processing uses multiple representations;

Query formulation provides content independence.

By addressing these requirements, a multimedia DBMS combines support for the

management of content of multimedia data with traditional database support for the

management of the structure of data. Although it is fairly easy to state this goal,

meeting it in an actual system is a serious challenge. While the first requirement

can be addressed with ADTs in an extensible DBMS, the others demand fundamental

changes in database design. The Mirror architecture, presented in Figure 4.1, takes

up the gauntlet.1 Like the ANSI/SPARC architecture, it concerns the definition of

interfaces between components, and not a complete instruction for implementation.

The design of a multimedia DBMS is divided into three components. A DBMS like

the So­Simple DBMS provides the basic primitives for data abstraction and efficient

query processing. The content abstraction component controls the content­based meta­

data that is available to represent the content of digitized representation objects. This

includes descriptions entered by human annotators as well as automatically extracted

feature representations. The third component is the retrieval engine, which supports

the user with query formulation, using multiple representations for query evaluation.

Strict separation between the content abstraction component and the retrieval engine

enforces content independence.

Conceptually, the multimedia DBMS operates in two modes (not necessarily mutu­

ally exclusive): maintenance and retrieval. In maintenance mode, digitized represen­

tation objects can be added or deleted, and the content abstraction component can be

CONTENT MANAGEMENT 65

extended with functionality for new types of metadata. In retrieval mode, the retrieval

engine interfaces between the internal models of multimedia content and the user. It

keeps track of the different metadata that may participate in the retrieval process. Sub­

tasks of the retrieval process may be delegated to the content abstraction component,

such as approximate retrieval methods. The retrieval engine ‘knows’ how to combine

evidence from different content representations. It also processes relevance feedback

provided by the user, and uses this feedback in the further iterations to refine the initial

query. This part of the system takes care of the second and third requirement.

The interface between the user and the DBMS consists of normal data definition and

manipulation languages, augmented with some new primitives. First, the data defini­

tion language needs a directive that tells the DBMS which entities of multimedia data

types that occur in the schema should be treated as active objects. This information is

passed to the content abstraction component, which will collect metadata about these

entities. As explained before, the retrieval engine maintains a dialogue with the user.

The interface should provide directives that declare the start and the end of a query ses­

sion that is related to some information need. Also, the user needs primitives to specify

example objects, and relevance judgements about retrieved objects. Furthermore, the

data control language should have a construct for the specification of operations that

implement metadata extraction techniques.

The retrieval engine should be based on the theory and techniques developed in

information retrieval [dVB98b, dV98]. Its relationship to the content abstraction

component and its design and implementation are the research topics of this chapter.

Integration of the new components with the underlying DBMS component is discussed

in Chapter 5, taking specific care not to affect negatively the set­oriented nature of query

evaluation in database systems. The content abstraction component is implemented

using ADTs (see Section 3.5). Chapter 6 discusses further implementation issues

related to the content abstraction component.

4.3 RELATIONSHIP WITH IR

Van Rijsbergen gives the following definition of information retrieval [vR86]:

Definition 4 The user expresses his information need in the form of a request for

information. Information retrieval is concerned with retrieving those documents that

are likely to be relevant to his information need as expressed by his request. It is

likely that such a retrieval process will be iterated, since a request is only an imperfect

expression of an information need, and the documents retrieved at one point may help

in improving the request used in the next iteration.

Notice the analogy with query evaluation in multimedia databases. Indeed, in their

survey of probabilistic models in IR, Crestani et al. remark that a document can be

‘any object carrying information’ [CLvRC98].

The fundamental concept in IR is relevance, a relationship that may or may not

hold between a document and the information need of a user who is searching for

information using the IR system. Relevance is usually considered a binary property,

i.e. a document is either relevant or not. Although a precise definition has not

been accepted, [CLvRC98] describes it as follows: ‘if the user wants the document

66 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

in question, then we say that the relationship holds’. The set of (binary) relevance

judgements is denoted asR = {R, R̄}.
An IR system is completely described by its retrieval model, which defines (1)

document representation, (2) query formulation, and (3) the ranking function [WY95].

If the set of possible document representations is defined as D, and the set of possible

queries as Q, then the ranking function r : Q×D → IR maps a query­document pair

onto its retrieval status value (RSV).2 The task of an IR system is to compute this value

in response to a query q ∈ Q, and rank each and every document in the collection

upon it. The ranking function infers the relevance relationship between documents

and queries. It draws conclusions about the relevance of documents observing the

available evidence: the document and query representations. Thus, the matching

process in any retrieval system is a theory of evidential reasoning, whether this theory

has been designed explicitely as an inference process, or is only implicitly present in the

implementation of the system. Since the representation of the user’s information need

and the representation of the documents are incomplete and uncertain, (multimedia)

retrieval is best described as plausible reasoning under uncertainty (in this thesis,

plausibility means someone’s degree of belief in the truth value of some proposition).

4.4 PLAUSIBLE REASONING AND PROBABILITY THEORY

Plausible reasoning is reasoning about degrees of beliefs [Jay96]. This section first

discusses the application of probability theory as a logic for plausible inference; it is

based on [HBH88], [Bis95], and [Jay96]. Next, it discusses the use of probability

theory in IR.

4.4.1 Probability theory as logic

The conventional, frequentist view of probability theory defines probabilities in terms

of fractions of a set of observations, and demands that these observations result from a

repeatable experiment. The Bayesian formalism is a different school of thought, also

known as the subjectivist view on probability theory. It allows the interpretation of

probability as a degree of belief, such that probability theory can be used as a logic for

plausible inference.3 For example, assume an hypothesis H and background knowledge

ξ. If we express our prior belief in H as probability Pr(H|ξ)4, the Bayesian formalism

tells us how to update our belief in H when new evidence e becomes available.

Bayesian inference applies Bayes’ theorem5 to determine the posterior probability,

allowing us to ‘reason backwards’:

Pr(H|e, ξ) = Pr(H|ξ)
Pr(e|H, ξ)

Pr(e|ξ)
(4.1)

In 1946, Cox proved that, under some very reasonable assumptions, plausible rea­

soning is either isomorphic to probability theory, or logically inconsistent.6 This proof

supplies the required mathematical support for subjective probabilities, complement­

ing the more pragmatic ‘Dutch book’ proofs, which showed that a gambler deviating

from probability theory will, in the long run, lose from an opponent that adheres to the

rules.

CONTENT MANAGEMENT 67

Cox’s proof has (or at least it should have) a large impact on all applications of

reasoning under uncertainty, because it demonstrates that degrees of belief combine

just like frequencies. It shows that probability theory is normative for plausible

reasoning consistent with common sense, and therefore any alternative that is not

isomorphic to probability theory is doomed to produce counter­intuitive results for

some models (including certainty factors7, Dempster­Shafer theory8, fuzzy logic9,

and other approaches, see e.g. [Par96]). In his (unfinished) book [Jay96], Jaynes

gives numerous examples of counter­intuitive conclusions drawn from observed data

using other approaches; these include pathologies of so­called ‘orthodox statistics’,

that regardless of Cox’s proof still refrain from subjective probabilities, claiming that

the data should speak for themselves (which they cannot, in any real problem of

inference). A possible objection against probability theory as a logic is that it is often

more complicated to model ignorance, even though that problem can be solved by

choosing an uninformative prior.

In the Bayesian view, computing probabilities is equivalent to performing logical

inference, i.e. any computation of a probability can also be viewed as estimating the

degree of belief in a Boolean proposition. The product rule (4.2) and the sum rule (4.3)

correspond to conjunction and negation, respectively, from which all logic functions

can be constructed.

Pr(H1,H2|ξ) = Pr(H1|ξ) Pr(H2|H1, ξ) = Pr(H2|ξ) Pr(H1|H2, ξ) (4.2)

Pr(H|ξ) + Pr(H̄|ξ) = 1 (4.3)

In the limit, with Pr(H|ξ)→ 0 or Pr(H|ξ)→ 1, probabilistic inference reduces to

Aristotelian deductive logic. But, probability theory provides also a quantitative form

of the weak syllogisms, such as abduction. E.g., if ξ includes H1 ⇒ e, and we then

observe that e is true, then, combining Bayes’ theorem (4.1) with Pr(e|H1, ξ) = 1
(since H1 ⇒ e), we get:

Pr(H1|e, ξ) = Pr(H1|ξ) · 1/ Pr(e|ξ)

From Pr(e|ξ) ≤ 1, it follows that Pr(H1|e, ξ) ≥ Pr(H1|ξ). So, H1 has become

more plausible after observing evidence e; which corresponds to abduction. If the

prior probability of observing e is quite unlikely, then H1 becomes very plausible, a

desirable property for diagnosis. Of course, the truth value of H1 remains uncertain.

A common misunderstanding about the Bayesian inference process (also encoun­

tered in [CLvRC98]) is the belief that Bayesian inference cannot handle ‘uncertain’ ev­

idence, usually combined with the suggestion that some non­Bayesian process known

as Jeffrey’s conditionalization would be necessary to overcome this ‘limitation’. First,

the idea that evidence has to be certain in Bayesian inference is a myth [Pea88, p.42];

you simply introduce a mediating variable to model uncertainty in the evidence. Sec­

ond, Jeffrey’s conditionalization is nothing but an incomplete version of the Bayesian

rule [Jay96, Chapter 5]. Pearl shows that Jeffrey’s conditionalization coincides with

Bayesian inference in some particular dependency between the variables, but (obvi­

ously) leads to false conclusions if these dependency assumptions are incorrect [Pea88,

p.63­70]. Relying on Bayesian inference protects us automatically from drawing such

false conclusions.

68 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

4.4.2 Bayesian belief networks

Without extra knowledge, Bayesian inference for a problem with n hypotheses forces

us to specify 2n− 1 probabilities to determine the joint probability distribution, which

becomes intractable as soon as n increases. Fortunately, this number can be reduced

significantly by specifying assumptions about independencies between different hy­

potheses.

The most trivial solution (but oversimplifying) is to assume all hypotheses con­

ditionally independent given e, resulting in the ‘naive’ Bayes classifier [Mit97]. To

enable specification of more complex relationships among uncertain beliefs, Pearl

developed the formalism of Bayesian belief networks, a graph representation of the

independencies between hypotheses [Pea88]. A Bayesian belief network (Bayesian

network or belief network for short) is an acyclic directed graph, in which the nodes

represent hypotheses (often called random variables) and arcs represent dependencies

between hypotheses. The direction of an arc between parent node and child node

represents causality. The strength of this causal influence is expressed by a conditional

probability.

A belief network encodes the joint probability distribution between all hypotheses

efficiently, reducing the number of probabilities to be determined. The complexity

of probabilistic inference is reduced by using a very reliable source of information:

people’s qualitative reasoning about dependencies between hypotheses. Another ad­

vantage of the network representation of this distribution is that inference procedures

exist to compute the value of any conditional probability in the network given the

available evidence, without having to derive a closed form formula for the complete

distribution. Although Bayesian inference in arbitrary belief networks is known to be

NP­hard [Coo90], probabilistic reasoning is tractable when we apply some restrictions

on the network topology. The reader is referred to [Pea88] for more details.

4.4.3 Probability theory and retrieval

Probabilistic information retrieval uses probability theory to implement the ranking

function of an IR system. The RSV used for ranking is an estimate of Pr(R|q, d), the

probability of relevance of a document for the user. The ‘probability ranking principle’

(PRP) states that this ranking is optimal [vR79, p. 113] under the assumption that

relevance of a document can be considered in isolation. The problem of applying

the PRP is to determine Pr(R|q, d) accurately enough to approximate the user’s real

relevance judgment. This is difficult because of the large number of variables involved

in the representation of documents in comparison with the small amount of feedback

data available about the relevance of documents. Many competing theories can be

used to estimate these probabilities ([ZM98] reports on experience with various ranking

formulas, and [CLvRC98] gives an overview of the underlying theories), but the results

of the current models seem to have reached an upper bound.

Hiemstra approaches the IR problem from a linguistic angle [Hie98]. Explained

informally, he constructs a statistical model of the process that created the document

(i.e. the author), and estimates Pr(R|q, d) as the probability that this model would

produce the user’s query. The proposed model can be rewritten into the well­known

CONTENT MANAGEMENT 69

tf · idf product, offering an elegant argument for term weighting in current IR models.

A linguistic model provides also an explanation for the performance of an IR system

that uses a trigram representation of Swiss­German documents, reported in [GS92]:

the measured probabilities are not about the relevance of terms, but about the source

producing these terms. Applying the same model to a representation of documents by

partial terms (like these trigrams) does not conflict with intuition. But, using a model

that estimates the relevance of terms would not make sense, because it is not clear why

the relevance of a trigram would be measured just like the relevance of a term.

Van Rijsbergen proposed to estimate Pr(R|q, d) with Pr(d→ q) in a non­classical

logic [vR86]. In modal logic, Pr(d → q) can be estimated using a technique known

as logical imaging. Logical imaging transfers some of the probability of terms not

occuring in the document to the most similar terms that do occur. Experiments on

some small test collections indicate that estimating the required probabilities by logical

imaging improves performance beyond existing methods, that use Pr(d∧ q) [CvR95].

Similarity between terms is defined using the mutual expected information measure,

applied over the whole collection. Unfortunately, this approach is based on modal

logic, and the question arises whether it would be possible to produce the same results

in a Bayesian model. This seems feasible by extending Hiemstra’s linguistic model. A

model with hidden ‘concept’ variables, initialized using co­occurence statistics about

the complete collection, describes that a concept can be expressed using several similar

terms; after observing a document, updating the model implies learning that the author

of the document apparently is more likely to chose the terms observed to express that

concept, and the posterior probability of that term will increase, similar to the effect

described in [CvR95].

Probability theory can also be applied to approximate retrieval techniques. Vascon­

celos and Lippman experiment with a Bayesian classification model for approximate

retrieval in the image domain, as an alternative for the more popular but ad­hoc tech­

niques using Euclidean and Mahanolabis distance measures [VL99]. They show that

color­histogram retrieval is an approximation of the Bayesian classification problem,

and confirm experimentally that results improve when using the correct, Bayesian

formula. The improvements are even more impressive on a texture retrieval task, for

which simple general­purpose DCT features with a Gaussian approximation of the

classification problem, succeed in outperforming specialized MRSAR features with

Mahanolabis distance, generally accepted as the state of the art in the field.

4.4.4 Belief networks and retrieval

IR evaluation experiments have consistently shown that different retrieval models often
retrieve different relevant documents, and that documents retrieved by several methods
are usually highly relevant. Therefore, Turtle introduced the formalism of belief
networks in IR [Tur91]:

Given the availability of a number of representation techniques that capture some of

the meaning of a document or information need, our basic premise is that decisions

about which documents match an information need should make use of as many of the

representations as practical.

70 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

Turtle and Croft model information retrieval using a restricted class of belief net­

works [TC91]. Fung and Del Favero supplied to the arguments in favour of belief

networks in IR that these networks provide an intuitive representation of dependen­

cies between representations [FF95], and explain how to model dependencies between

concepts, retaining tractable inference. InQuery, an IR system based on the inference

network retrieval model, has proven that the theory can be applied in practice, and it

has performed well at several TREC conferences.

On closer investigation, Turtle’s belief network model is not ‘really’ a retrieval

model. Rather, it describes a whole range of retrieval models. It has to be instantiated

with a fixed structure and probability estimates before it can be used in a retrieval

system. For example, they showed in [TC92] how to express the boolean, probabilistic,

and vector space retrieval models as inference in Bayesian networks.10 To distinguish

between the generic model and the model’s instantiation currently used in InQuery,

the latter shall from now on be referred to as the InQuery model.

4.5 DESIGN OF THE RETRIEVAL ENGINE

From an abstract view, the tasks of the retrieval engine in the Mirror architecture are

quite similar to the tasks of an information retrieval system. But, the design desiderata

of a multimedia database management system differ significantly from those of a

special­purpose text retrieval system. After detailing these differences, this section

proposes a generalization of the IR system model for multimedia retrieval.

4.5.1 Differences from IR

In a multimedia DBMS, it is not known beforehand what content abstractions of

the multimedia objects will be available at run­time. It should be possible to add and

remove techniques for the extraction of metadata without having to rewrite the retrieval

engine. IR systems have never been designed to deal with such extensibility. Their

implementations always assume detailed knowledge about the structure of the indexed

documents and the metadata that models the content.

A somewhat related difference between IR and multimedia databases is the number

of sources of evidence used in the retrieval process. In IR, only a small number

of different sources is considered, e.g. abstract, full text, citations, and sometimes

hypertext links. Multimedia retrieval has to combine evidence from many different

sources. Experiments with the Foureyes learning agent for the Photobook image

retrieval system demonstrated advantages of a collection of data­dependent and task­

dependent feature spaces over a universal similarity measure defined on a generic

feature space [Min96, MP97]. Minka found that different feature spaces capture

different aspects of the data; each feature space performs only well at a small set of

tasks, on a subset of the data.

Foureyes shows how the retrieval engine may acquire knowledge about the com­

bination and selection of feature spaces, by learning from interaction with the users.

But, Foureyes operates in a static environment. The collection of feature spaces in the

Mirror architecture changes dynamically whenever new metadata extraction software

is added to or removed from the DBMS. This dynamic environment imposes an extra

CONTENT MANAGEMENT 71

Relevance feedback layer

Evidential reasoning layer

Concept layer

Content

abstraction

component

Data abstraction component

Multimedia DBMS

Figure 4.2. The multimedia query processor

problem for the combination of evidence, as it may introduce overlap between content

representations when feature spaces model approximately the same aspect. Match­

ing with an object on two different color models has a different implication on the

relevance relationship than matching on a color and a texture model. Rather than a

carefully selected ‘society’ of models as envisioned in Foureyes, ‘anarchy’ seems a

more appropriate metaphore.

4.5.2 Multimedia retrieval model

Figure 4.2 shows the Mirror architecture again, this time with a layered design of

the retrieval engine. These three layers reflect the aspects of any retrieval model, in

subsequently the concept layer (document representation), the evidential reasoning

layer (ranking function), and the relevance feedback layer (query formulation).

The concept layer forms the connection between the content abstraction component

and the retrieval engine. It defines the basic units representing the content of the

multimedia objects. IR literature usually refers to these units as the indexing features; to

avoid confusion with the features used in content­based multimedia retrieval, we prefer

to call these concepts. They can be abstract and intensional, not always corresponding

to things from the real world that you can point at (like ‘car’ or ‘tree’, see also Section

4.7).

The concepts are input to the evidential reasoning layer, which selects the objects

in the database that best match the user’s query. This layer has the responsibility to

identify the multimedia objects in the database that may fulfill the user’s information

need as expressed in the query. The evidence is based on the presence or absence of

concepts, very similar to traditional IR. The reasoning process combines the evidence

from different sources into a single judgement.

Belief networks seem an appropriate foundation for evidential reasoning in the

Mirror architecture. The possibility to model dependencies easily, without the need to

derive a closed form expression for belief computation, is attractive because we cannot

know in advance what feature spaces are going to be available at runtime. Section 4.6

discusses the evidential reasoning layer in more detail.

The relevance feedback layer has two tasks. First, it is responsible for query

formulation and adaption. It controls the dialogue between the user and database,

analyzing the user’s feedback information and changing the query representation such

that it (hopefully) better reflects the user’s information need. Online processing of

relevance feedback is called query­space modification. Second, the relevance feedback

72 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

O
�

1
O

�
2

Fl F3

C
✁

1 C
✁

2

q
✂

1

✄

f
☎

1 f
☎

2

O
�

k

Fl

C
✁

3 C
✁

m

q
✂

2

f3 fm

F2

M1 M2

Figure 4.3. A multimedia retrieval model based on Bayesian belief networks

layer maintains a history for offline processing, logging the interaction between users

and database. Learning techniques should be applied to improve the representation of

the objects in the concept layer, and to identify dependencies between feature spaces.

This task is called object­space modification. Although both types of feedback are

regarded important, only query­space modification has been applied in the research

presented in this thesis.

4.6 EVIDENTIAL REASONING LAYER

This section and the next take the inference network retrieval model as a starting

point for the development of a rudimentary multimedia retrieval model (see also

[dVB98b, dV98]). Its facilities for the combination of evidence from different sources

are the major motivation for chosing this approach. Also, the modular structure of

inference networks reflects the extensibility of the Mirror architecture. Instead of

developing new theories for IR, which is a goal beyond the scope of this thesis, these

sections intend to illustrate how existing theory about inference networks for IR can

be applied in the wider context of multimedia retrieval.

4.6.1 Network structure

Figure 4.3 illustrates the general idea behind the use of belief networks for multimedia

retrieval. Each base type, e.g. image or audio, has its own media extension Mi. A

media extension, depicted as a dark gray box in the figure, manages a collection of

content representations Fj , shown as light gray boxes. The nodes in the network

represent binary random variables. The top part of the network is called the object

network and is static for a given data collection. The bottom part, the query network,

is dynamically created by the relevance feedback layer, based on interaction with the

user.

At the roots of the network, we find the object nodes Oi. For now, we will

ignore the internal structure of the multimedia objects; all objects are considered

atomic. Section 4.7 discusses some alternatives. The objects Oi are connected to their

metadata representations of content Fj . The concept nodes Cp represent the concepts

CONTENT MANAGEMENT 73

identified in the concept layer. In principle, the concepts may overlap, thus a single

representation node may be connected to several concept nodes. Node I in the query

network represents the user’s information need. The information need is expressed by

the example objects provided by the user in the interaction process. The query nodes qi

model these example objects. The metadata extracted from these objects is represented

by the fj nodes. These nodes are connected to their corresponding concept nodes in

the static object network. In the dialogue between database and user, the relevance

feedback layer adapts the structure of the query network by adding or removing nodes.

Let us take a closer look at the example instantiation of the network model given in

Figure 4.3. Assume thatM1 is an image media extension. It manages feature spaces

F1 for color and F2 for texture. Image object O1 has a color feature F1 and a texture

feature F2. The content layer assigned concept C1 to color feature F1, and concept C2

to texture features F2 and F3. The color representation f1 and texture representation

f2, both extracted from example image q1, are also assigned to these concepts, hence

connected to C1 and C2, respectively.

4.6.2 Ranking objects

The inference network computes Pr(I|Oi), which is our belief in fulfilling the user’s

information need (as expressed in the query network) when this object is presented to

the user. In the ranking process, each object Oi is considered in isolation: its node

is set to true, and all other nodes to false. This evidence is propagated through the

network until it reaches I, when we have computed the desired Pr(I|Oi).
The joint probability distribution encoded in the object network does not depend on

the query. In the current model, observing Oi always implies observing its metadata Fj .

The feature spaces are assumed independent and equally important. In later revisions

of the retrieval model, we may use the conditional probability distribution Pr(Fj |Oi)
to represent prior knowledge about how reliably each feature space describes an object.

Pr(Cp|Fj) expresses the belief that concept Cp is activated, when feature value Fj is

observed. This probability should be estimated during concept assignment. Similarly,

Pr(fj |Cp), specified at the arcs connecting the object network with the query network,

describes our belief that feature fj in query space is described by the concept Cp in

object space.

Instead of first computing these probabilities independently, and then propagating

these beliefs to the nodes fj in the query network, the implementation of the inference

network retrieval model computes Pr(fj |Oi) directly. In InQuery, this probability is

approximated with term frequency tf , inverse document frequency idf , and default

belief α:

Pr(fj |Oi) = α + (1− α) · tf · idf (4.4)

Section 4.7 defines a procedure to estimate this probability for multimedia metadata;

it should be based on the relative position in a feature space, and the distribution of the

metadata of other objects.

74 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

4.6.3 Propagation of evidence

To explain the propagation of evidence from the fi through the query network to I, we

introduce a formal description of the inference network adapted from [RM96]. Let xi

be a node in a Bayesian network G, and Γxi
be the set of parents of this node. Since G

is a Bayesian belief network, the influence of Γxi
on xi is specified by the conditional

probability distribution Pr(xi|Γxi
). Let the cardinality of Γxi

be n, and the random

variables be binary like in our retrieval model. Then we have to specify 2n−1 different

probabilities to describe this conditional distribution. Because the number of concepts

related to an object can be high, this is a problem for the computational tractability

of the inference. An approximation of the real probability table (also known as link

matrix) is needed.

Note that, for a node xi, the influence of Γxi
on xi can be specified by any function

F (xi,Γxi
) that satisfies:

∑

y∈Y

F (y) = 1 (4.5)

0 ≤ F(y) ≤ 1 (4.6)

where Y is defined as xi × Γxi
. In the general theory of belief networks, functions

approximating Pr(xi|Γxi
) have been used to model causal independence efficiently:

the case when multiple causes contribute independently to a common effect. A famous

example is the ‘noisy­or’ model [Pea88]. In his thesis, Turtle gives closed­form

expressions for a limited subclass of functions F (xi,Γxi
), that are useful in IR and can

be evaluated in O(n). Greiff gives a larger class of functions, described by so­called

PIC­matrices, for which the evaluation depends on the number of parents that are true

but not on their ordering [GCT98]. He first provides an evaluation procedure inO(n2),
and then gives an algorithm in O(n) for a subclass of these PIC­matrices. Functions

in these classes are ‘sum’, probabilistic versions of logical operators ‘and’ and ‘or’, as

well as variations of these usually referred to as ‘pnorm­operators’. Together, these

functions form InQuery’s language for describing the structure of the query network.

Ribeiro claimed to have found an improvement on the InQuery model by reversing

the direction of the edges; but, he forgot to take the default beliefs α into account in

his (therefore incorrect) comparison [RM96]. His work reports a nice case study of

integrating new types of evidence in IR. But, he derives a closed­form formula of the

joint probability distribution described by his model, so it is not really an application

of the belief network formalism for probabilistic inference in IR.

4.6.4 Some concerns

A weakness of the InQuery model is that it does not explain why Equation 4.4 is a good

probability estimate. By using this measure, Turtle and Croft claim implicitly that they

‘somehow’ know that this is the distribution; for, there is no other motivation for this

estimate. Indeed, InQuery has used different versions of 4.4 in different publications.

The TREC experiments discussed in Section 5.6 of this thesis, have used Hiemstra’s

ranking in the same network structure, leading to better results; a difference that cannot

be explained using the model. Also, InQuery’s successful algorithms for relevance

CONTENT MANAGEMENT 75

feedback and local context analysis have not been formulated in terms of probabilistic

inference, but are processed outside the scope of the Bayesian formalism.

Nevertheless, Turtle and Croft claim advantages of their model over different re­

trieval models, because of its theoretical foundation in Bayesian belief networks. Due

to the simplifications made to the inference procedure and the network structure (trad­

ing mathematical correctness for efficiency), it seems however hardly feasible to take

advantage of theoretical developments in the more general theory of Bayesian networks

without changing (the instantiation of) the retrieval model significantly.

Obviously, an approximation of Pr(xi|Γxi
) with some function F (xi,Γxi

) is only

semantically valid if this function behaves similar to the true probability distribution.

Turtle and Croft consider the success of InQuery as ‘proof’ that these functions model

the true probabilistic dependencies between for example the concepts and the docu­

ment’s relevance. This reasoning is clearly flawed. At best, experiments with InQuery

can demonstrate that the computed value for Pr(I|Oi) may be interpreted as a reason­

able approximation of the true probability of relevance. The distribution captured by

the complete network apparently reflects some of its desired interpretation in the real

world.11 But, this does not justify the conclusion that the degrees of belief in nodes xi

and their parents have an interpretation as the ‘concept probability’ regardless of the

choice of F (xi,Γxi
).12 Notice that this objection offers a sound (qualitative) expla­

nation for Greiff’s difficulties in experiments with pnorm­operators [GCT98]. Greiff

found that it seemed impossible to determine an optimal value for default belief α (cf.

Equation 4.4) that worked well in all experiments. But, existence of such a global

value for parameter α may not exist. The idea of using a different formula (instead of

4.4) in different nodes warrants further research.

4.6.5 Discussion

The retrieval engine needs a strong theoretical foundation for reasoning under un­

certainty, given the complexity of the problems encountered in multimedia retrieval.

Despite of some concerns, the idea underlying the inference network retrieval model

is very powerful, especially for its ability to flexibly model varying approaches to the

combination of evidence from different representations. The proposed model is based

on many faulty assumptions, and the approximations used in the inference process vio­

late the rules of correct Bayesian inference. To avoid problems with unclear semantics,

using InQuery’s operators should be done with care, and the underlying model should

be kept in mind. But, direct interpretation of the model encoded by the Bayesian

belief network formalism can always be called to rescue, for explaining the good (or

bad) performance of some operator in the query network, in combination with some

estimate of concept probabilities in the object network.

4.7 INSTANTIATING THE MODEL

A (primitive) multimedia retrieval model in the retrieval engine can now be obtained

by instantiation of the abstract model developed in the previous section.

76 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

4.7.1 Concepts and probabilities

First, concept assignment should be addressed. Most IR systems use the words

occuring in the document as concepts. In text documents, words naturally refer to

classes of objects in the real world. For example, the word ‘street’ occuring in an

English text is the same, whether that particular street is located in Cambridge or

Oxford. Sometimes, words occuring in the text are first clustered, using stemming

algorithms and thesauri. This may alleviate the problems with ambiguity in natural

language.

In approximate retrieval techniques for the retrieval of multimedia data, the con­

tent representation of objects is a (usually unique) point in multi­dimensional feature

space. The feature representation of a street in Cambridge will be different from the

representation of a similar street in Oxford. To complicate matters, the representation

of one and the same street in two different images will usually be different as well.

If the probability distribution of these points is known, then the features can be used

directly. However, estimating the distribution on the fly and using it for the retrieval

task is not a trivial problem. As a (temporary) solution, the current implementation of

the Mirror architecture performs unsupervised feature clustering in the concept layer.

The simplest approach to clustering defines a grid in the feature space, and interprets

each grid­cell as a concept. Alternatively, an unsupervised clustering algorithm, like

AutoClass, can be applied [CS95].

Of course, no algorithm will automatically cluster all streets in a single concept. Nor

should we expect to identify concepts that only occur in a subset of the streets but in

no other classes of objects. But, the assumption underlying the content­based retrieval

techniques is that proximity between points in feature space corresponds to some sort

of similarity in the real world. Thus, the proximity of the clusters’ feature points is

likely to reveal an implicit underlying concept that captures some of the semantics of

the objects. Hopefully, interaction with the user resolves some of the problems caused

by badly formed clusters.

The remaining problem is how to obtain the required probability estimates. The

conditional probability Pr(Cp|Fj) is the probability that concept Cp is represented in

feature representation Fj of the multimedia object. Ideally, this probability should be

estimated using the relative position of the point, and the distribution of all feature

points in the cluster. AutoClass can provides such an estimate [CS95], or an alternative

like the cluster­based probability model proposed in [PP97] may be considered as well.

Another approach views the concepts as if they are terms in a traditional IR system,

and estimates Pr(fj |Oi) directly like the InQuery model. The current prototype uses

this approach, in combination with AutoClass for clustering feature spaces. When

applied to image retrieval, the resulting retrieval engine is similar to the Viper image

retrieval system [SMMR99], which uses a text retrieval model and a grid clustering of

feature space. Chapter 5 discusses some experience with this implementation of the

retrieval engine.

CONTENT MANAGEMENT 77

4.7.2 Relevance feedback

Learning from the interaction with the user is an important source of evidence for

multimedia retrieval. In the current model, query­space modification (or short­term

learning) based on the user’s relevance feedback is easiest to implement.

Relevance feedback can be processed in several ways. One approach would be

to use the observed examples to update the distribution encoded in the network.

Unfortunately, it is not obvious how to perform this in the current model, since the

InQuery model uses approximations of real Bayesian inference, and, as mentioned

before, the probability estimates do not have a theoretical basis in the model. Further

research is necessary to investigate this option.

Alternatively, relevance feedback can be used for query expansion. Instead of

inference within a fixed query network, a new query network is constructed using

statistics derived from the relevant objects. Denoting the set of relevant objects as RO,

selecting the best concepts for expansion can be formulated as selecting the concepts

with the highest Pr(Cp|RO). This probability is estimated with a tf · idf measure,

using local tf and idf statistics derived from RO.

4.7.3 Thesauri and inductive bias

A thesaurus is a set of items plus a set of relations between these items. Often, the

relation represented in a thesaurus is similarity between concepts (known as asso­

ciation thesaurus), but thesauri can be used to represent other relationships as well,

like generalization or specialization. Van Doorn observed in his Master’s thesis that

the application of thesauri during query formulation provides an inductive bias for

multimedia retrieval [vD99]. Inductive bias is the machine learning term for prior

knowledge. Any learner needs an inductive bias to generalize beyond the observed

training examples [Mit97]. When the number of training examples is large, the need

for an inductive bias is low. But, the low­bias approach is not suitable in the interaction

with the user, because the sessions acquiring relevance feedback would simply take

too long.

Following the design of PhraseFinder [JC94], an association thesaurus can be seen

as measuring the belief in a concept (instead of in a document) given the query. By

representing these concepts as pseudo­documents consisting of their related concepts,

using a thesaurus becomes equivalent to the IR problem. Co­occurrence statistics are

used to automatically construct pseudo­documents for the similarity relation between

concepts. When the thesaurus is constructed temporarily from a part of the collection

(for example, using the hightest ranked objects without using prior knowledge), the

process is better known as local context analysis (LCA) [XC96].

Thesauri are a flexible approach to extend the Mirror architecture with an inductive

bias. Statistical association between captions and pictures has been exploited before

in the MARIE project [Row95]. Also, Picard and Minka have experimented with

‘visual thesauri’, that represent relationships between textual concepts and clusters

in various feature spaces [PM95]. In the prototype implementation of an image

retrieval system based on the Mirror architecture, thesauri have been used to represent

prior knowledge between media extensions Mi. This approach is mainly intended

78 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

to bootstrap the query process: a textual description is expanded with concepts from

the image extension query, using an automatically constructed association thesaurus.

The system recovers from falsely detected associations in the subsequent interaction

with the user. Adapting thesauri based on relevance feedback accross sessions would

provide a form of object­space modification, or long­term learning. However, in the

current implementation of the retrieval engine, the inductive bias does not change over

time.

4.8 IMPROVING THE MODEL

The current instantiation of the model is very simple. However, there is much room for

further improvements, and getting more out of the theoretical foundation of Bayesian

belief networks seems an interesting field for further exploration. This section gives

some directions for further improvements.

In the current model, applying Bayesian theory for parameter estimation is com­

plicated, because the model is incomplete: it does not describe how the probability

estimates are obtained. Extending the model to make it complete, using an approach

similar to Hiemstra’s linguistic view on IR, seems the most urgent improvement. An

extended model would open the gates to a huge resource of techniques for probabilistic

learning (see e.g. [Hec95], [Bun96], and [Kra98]). Learning seems especially useful

for the detection of dependencies between feature spaces, by estimating Pr(Fj |Oi).
The processing of relevance feedback requires a better foundation as well. Instead of

using the (very common) ad­hoc approaches to determine concepts for query expan­

sion, discussed in the previous subsections, this problem should be reformulated and

studied as a Bayesian learning task.

Learning dependencies is only one aspect of object­space modification. Object

representation is more uncertain than document representation in traditional IR. For

text retrieval, word sense disambiguation is one of the most promising approaches to

improve document representation. But, in multimedia retrieval, the concepts assigned

by the clustering process in the concept layer may in many cases have hardly any in­

terpretation for the user. Detecting such ill­defined concepts is an interesting learning

problem, that may improve the retrieval results significantly. However, because mul­

timedia retrieval is so subjective, the amount of learning data from various users is an

important factor that should be taken into account before modifying the object­space.

Finally, further revisions of the model should take into account the structural com­

position of objects from their component objects. For example, the InQuery model has

been adapted for the retrieval of compound documents in [Cal94]. Long documents

were split in several parts, that were assumed independent. In these experiments, it

was found that the best retrieval results were obtained by estimating Pr(I|Oi) as the

maximum of the beliefs in the partial documents. But, it is not known how these results

may generalize to other collections. Intuitively, it seems unlikely that the maximum

of the beliefs would lead to good results in the multimedia case. For instance, a video

matching on only the output of a speech recognizer would be retrieved before a video

that matches slightly less, but on both the output of a speech recognizer and the subti­

tles. A lot more research is necessary before modeling the media dependent structure

of multimedia objects can improve the retrieval process consistently.

CONTENT MANAGEMENT 79

4.9 SUMMARY

The kind of query facilities expected from a multimedia database system are similar

to the processes in information retrieval. Based on this observation, a three­layered

architecture for the retrieval engine has been proposed, and the tasks of each layer have

been explained in detail.

The advantages of the Bayesian network formalism have been discussed in the

context of the Mirror architecture, and an adapted form of its application to text retrieval

is proposed. The result is a powerful theoretical framework, that serves as a foundation

of developing the multimedia retrieval engine. The importance of the model is its direct

relationship with Bayesian inference, which should be further exploited in future

revisions of the model. Although the assumptions in the current instantiation of the

model are not very realistic, there are many approaches to improve the model within

the current framework. Despite of its simplicity, the current instantiation of the model

is sufficiently advanced to rival existing state­of­the­art multimedia retrieval systems.

80 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

Notes

1. Mirror comes from ‘Multimedia Information Retrieval Reducing information OveRload’. Also, I

find a mirror a nice metaphor for a system that learns what its users look like.

2. In general, the semantics of a retrieval status value are only defined with respect to the one ranking

under consideration, and it should not be used for any other purpose than ranking the documents. For

example, the RSV for query qa cannot be compared to the RSV of the same document for another query qb,

nor should the absolute difference between two RSVs be interpreted as an indication of the relative value of

the two documents for which it has been computed.

3. The use of probability theory for plausible reasoning dates back to La Place, who wrote: ‘The theory

of probability is no more than a calculus of good sense’ ([Lap02], quote taken from [HBH88]).

4. In general, Bayesians do not always write the background knowledge ξ explicitly in the notation for

probabilities, as a degree of belief is by definition conditioned on background knowledge.

5. Although this theorem is generally referred to as Bayes’ theorem, Jaynes notes that it had been

known long before, e.g. by Bernouilli [Jay96].

6. Cox’s original proof has been refined by several later publications, but its result remains known as

Cox’s theorem. The recent attempt by Halpern to construct a counter­example [Hal99], has been shown

incorrect (confirmed by Halpern). In a reaction to this event, Van Horn explains Cox’s theorems by presenting

a proof based on explicit axioms in [Hor99], which I found much easier to understand.

7. Jaynes remarks about certainty (or confidence) factors: ‘the AI theory of confidence factors is

stumbling about in a condition more primitive than the probability theory of Cardano, 400 years ago’

[Jay90]; he illustrates some counter­intuitive results of plausible reasoning with certainty factors in [Jay91].

8. Pearl explains how Dempster­Shafer theory computes the probability of provability Pr(e |= H)
rather than the conditional probability Pr(H|e) [Pea88, Chapter 9]. Thus, Dempster­Shafer theory answers

questions related to necessity and possibility rather than plausibility, e.g. ‘What is the chance that H is

necessarily true when observing e?’.

9. Fuzzy logic was not intended for plausible inference, however, it is often (wrongly) applied for that

purpose. Van Horn illustrates its inconsistent reasoning in a one­liner: assume proposition A is uncertain,

then 0 < (A|X) < 1, but since (A ∧ ¬A|X) = min((A|X), 1 − (A|X)), and also (A ∧ ¬A|X) = 0,

so (A|X) must be 0 or 1, which is inconsistent with the assumption of uncertainty [Hor99].

10. Of course, this result is not so surprising given that probability theory is a logic of plausible inference,

and belief networks are only a graphical representation of this logic.

11. Maybe I should formulate this more carefully; the current level of recall and precision indicate that

the estimates are still far from the desired interpretation in the real world. But, the model does not perform

significantly worse (nor better) than other IR systems.

12. The flaw in this argument recalls Searle’s ‘Chinese room’. For, the approximation F (xi, Γxi
)

resembles the book with translation rules from English (or any other language, say Dutch) to Chinese. The

mistake is to confuse knowing these rules with knowing the Chinese language.

5
THE MIRROR MULTIMEDIA DBMS

“A house can have integrity, just like a person,” said Roark,

“and just as seldom.”

—Ayn Rand, The fountainhead, p. 136

5.1 INTRODUCTION

This chapter presents the Mirror DBMS, the first prototype of a multimedia DBMS

addressing the requirements formulated in Chapter 3. Implementing the Mirror archi­

tecture requires the integration of IR and databases, a difficult problem that has never

been solved completely. Section 5.2 motivates the integration from a technical and

functional view. The next section discusses domain­specific structural extensions for

the So­Simple DBMS that provides the basic functionality to implement the retrieval

engine of the Mirror architecture. After detailing the mapping of these logical structures

and their operations to the physical data model in Section 5.4, Section 5.5 discusses

the application of these structures in the design and implementation of a prototype im­

age retrieval system. It also describes some qualitative observations about the image

retrieval prototype on a small image collection, and also describes some experiments

with music retrieval that have been performed. Experience using the Mirror DBMS for

TREC is the topic of Section 5.6, as well as some suggestions to improve the efficiency

of the current implementation of the belief network structures. The goal of following

an algebraic approach for IR is the opportunity to perform query optimization. Section

5.7 discusses the benefits of the Mirror DBMS with this respect. The chapter concludes

81

82 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

with a review of the advantages of the design of the Mirror DBMS, and a comparison

to other work. This chapter is based on [dVW99], [dV98], and [dVvDBA99].

5.2 INTEGRATION OF IR AND DATABASES

Chapters 3 and 4 have argued that the integration of IR and databases is a prerequisite

for the design of multimedia databases. But, current DBMSs do not sufficiently support

searching on content, and, on the other hand, IR systems are not extensible, and cannot

handle structured data appropriately. A new type of system is needed, that integrates

the management of structure and content. Unfortunately, using database management

systems for information retrieval has historically led to impractically slow systems (see

also the discussion in section 5.8); the efficient execution of IR techniques seems to

require special­purpose software systems.

A characteristic feature of applications that will benefit from integration of IR and

databases is the requirement of a combination of content management with the usual

manipulation of formatted data; these two aspects of data are often referred to as

the logical structure and the (implicit) content structure of a document [MRT91].

Consider for instance an information request in a digital library for ‘recent news

bulletins about earthquakes in Southern Europe’. In this example, ‘recent’ and ‘news’

refer to attributes of the objects in the library (which are part of their logical structure),

while ‘earthquake’ and ‘Southern Europe’ refer to the content of those objects (which

is part of their content structure). In multimedia digital libraries, such a combination

of both aspects plays an important role in the journalist’s scenario; the news value of

photographs depends in the first place on attributes like date, location, and the identity

of people in the picture. Other information systems have requirements that can only

be matched with a combination of data retrieval and information retrieval as well: e.g.

patient’s data in hospital systems, and business reports in office information systems.

Another important reason for integration of IR in databases, that has not widely

been recognized yet, is that such integration can help IR researchers to concentrate

on retrieval models and reduce the effort of implementation involved with empirical

studies. The layered design proposed in the previous chapter separates representation

from evidential reasoning and query formulation, which reduces the effort of changing

the application logic significantly. The notion of content independence allows using

the same applications while experimenting with new theory. Finally, the combination

of queries on content with queries on other attributes is a necessary condition for

improving the IR process with Mizzaro’s different notions of relevance (see [Miz98]).

5.3 IR PROCESSING IN A MULTI­MODEL DBMS

Objections against previous approaches to integrate information retrieval and databases

are discussed in Section 5.8. This thesis investigates whether IR and databases can

be integrated in a better way, by making the integration complete; i.e., neither a layer

on top of, nor a black box inside a database system. By extending the structures

supported in the So­Simple DBMS with special structures for the retrieval engine, a

prototype multimedia DBMS is developed with a much tighter integration than the

previous approaches. This prototype system is called the Mirror DBMS. The basic

THE MIRROR MULTIMEDIA DBMS 83

MOA queries

Merge

Inference

Network

Example

objects

Relevance

judgments

"Normal"

queries

MIL programs
Physical
design

Logical
design

design

Conceptual

Figure 5.1. Design

assumption is that such a design is better prepared to (eventually) scale up to very large

data collections.

Figure 5.1 shows the design of the research prototype. The research has focused on

the logical level and physical level. Its main characteristic is the strict separation be­

tween the logical and physical databases. This separation provides data independence,

and allows for algebraic query optimization in the translation from expressions at the

logical level to queries executed in the physical database. Also, parallelisation of the

physical algebra is orthogonal to the logical algebra, such that data can be distributed

transparently over different database servers by changing only the mapping between

the two views.

In the Mirror DBMS, the evidential reasoning process is performed by executing

database queries. For this purpose, Moa is extended with structures for components of

the inference network. The collection of IR structures extends core Moa with an algebra

for IR processing. Operations in this algebra model the propagation of beliefs within a

network component. The resulting language allows the specification of many different

network topologies, by simply choosing varying operators to combine different sources

of evidence. The relevance feedback layer can thus adapt the network structure by

simply generating different Moa expressions.

5.3.1 Generic belief network structures

The CONTREP structure covers the object network. It is defined as the content repre­

sentation of object Oi in feature space F . If an object has metadata representations

in several feature spaces, then each combination of object and feature space is mod­

elled in a distinct instantiation of this structure, reflecting the modular composition

of the network. Recall that the Pr(fj |Oi) are estimated directly from the statistical

distribution of occurrences of Cp in Oi, and in the collection.1 Separating the global

statistics (representing ξ) from the objects themselves, the object network is described

by the statistics about the Cp present in the object Oi. Thus, a CONTREP stores the

84 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

connections from node Oi to its associated nodes Cp inF , together with the frequency

tf .

Moa is further extended with two other structures, that are used to specify the

propagation of evidence through the query network. The INFNET structure models a

node xi with its parents Γxi
. It can be constructed from a set of probabilities, in which

each value corresponds to the belief in a node of Γxi
. The structure defines operators for

the class of functions F (xi,Γxi
) that is expressed by PIC­matrices [GCT98]. DOCNET

is a specialization of INFNET that is optimized for the assignment of default beliefs

α to nodes that do not occur in the content representation of an object.

5.3.2 Global collection statistics

Another structure has to be introduced before proceeding to examples of the role of

these Moa extensions in the various layers of the Mirror architecture. The computation

of Pr(fj |Oi) usually requires global statistics about the document collection. Because

several document collections can be managed in a single database, collection statistics

are represented explicitly, in a DCSTAT structure. A DCSTAT can be constructed for a

given document collection, using CONTREP’s aggregate operator getGS.2 Operation

nidf calculates the normalized inverse document frequency for the query terms in its

operand.

Another reason motivates explicit representation of the global statistics in a separate

Moa structure. When a collection is reduced using conditions on the logical structure of

documents, in some cases the statistics of the sub­collection should be used for content

querying (e.g. when selecting documents that are news items written in English), but in

other cases the statistics of the original collection (e.g. when selecting the documents

written at University of Twente). An explicit structure for the collection statistics makes

both strategies possible. The advantage of this flexibility is most clearly demonstrated

in the discussion of query expansion using the user’s relevance judgments, later this

chapter.

5.3.3 Ranking objects and propagation of evidence

The Moa extensions interact as follows in the computation of Pr(I|Oi). The relevance

feedback layer constructs a query network, based on the example objects provided

by the user. In the first step of belief computation, CONTREP’s operation getBL

connects the query network to the object network. Its operands are the fj nodes of the

same feature space as the CONTREP, and a DCSTAT for the global statistics of the

feature space. This operation computes estimates of Pr(fj |Oi), returning a DOCNET

structure capturing the instantiation of the nodes at the top level of the query network.

Evaluation of getBL uses the nidf operation from its DCSTAT operand to obtain

the idf values required for estimating Pr(fj |Oi).

The collected evidence then flows through the network as follows. First, a belief

operator F (qi,Γqi
) computes an estimate of Pr(qi|Γqi

). Next, we repeat constructing

an INFNET from these estimated probabilities, and computing the belief in the nodes

at the next level of the query network, until we reach node I. This procedure computes

Pr(I|Oi) using the joint probability distribution described by the inference network.

THE MIRROR MULTIMEDIA DBMS 85

As an example of this process, assume thatdocs is a set of content representations of

text documents, query is a collection of query terms (or a collection of tuples of query

terms with query weights), andstats provides collection statistics. The expression in

Example 5 computes Pr(I|Oi) using the InQuery model. Since the getBL constructs

a DOCNET, the inner map converts the set of document representations in a set of

DOCNET structures. The outer map uses the ‘sum’ belief operator to compute the

probability of relevance for each document.

Example 5

map[sum(THIS)](

map[getBL(THIS, query, stats)](docs));

One might have expected the belief calculation of Pr(I|Oi) to be specified com­

pletely in the getBL operator on structure CONTREP, instead of partly in an interme­

diate structure. Separation of belief computation in two steps has the advantage that

the INFNET structure permits the representation of more complex network structures,

as will be illustrated shortly in an example using compound documents. Furthermore,

this approach is better prepared for extensions of the belief network model with the

computation of probability estimates specialized for multimedia content. For example,

some structure (e.g. IMGCONTREP) can construct an INFNET for a given query as

well, but apply different belief computations than the current IR one. The process

of belief propagation encoded in INFNET is orthogonal to the computation of these

estimates and remains the same.

A network structure consisting of multiple layers can easily represent compound

documents. In Example 6, compounddocs is a nested collection of content rep­

resentations, with type SET<SET<CONTREP>>; here, each content representation

corresponds to a section in the document. This example illustrates the use of the

INFNET constructor, to express the belief propagation through an extra layer of nodes

in the query network. The topology of the inference network specified by this partic­

ular query is taken from [Cal94], in which experimental research found that the best

results are achieved when a document is ranked by the contribution of its best section.

Example 6

map[max(INFNET<THIS>)](

map[map[sum(getBL(THIS,query,stats))](THIS)](

compounddocs));

5.3.4 Combination of information retrieval with data retrieval

Since structures in Moa are orthogonal, schema definitions can represent both the

content structure and conventional attributes in a single language. In the following

example, let imgs be a (manually) categorized photo collection:

SET<

TUPLE<

86 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

Atomic<Image>: Photo,

Atomic<str>: Category,

CONTREP: Content

>

>;

Each photo in this collection has been assigned to some category (represented as a

string). Using Moa’s collection operations, it is straightforward to combine queries on

content with queries on category. The Moa expression in Example 7 retrieves holiday

images that are most similar to some query image. The select retrieves the photos

of the ‘holiday’ category, and the map constructs a tuple of the photos with their

probability of relevance. To find the ten most relevant holiday photos, simply combine

this query with the LIST structure and its ordering operations.

Example 7

map[TUPLE< THIS.Photo,

sum(getBL(THIS.Content,query,stats)) >](

select[THIS.Category = ‘holiday’](imgs));

Of course, if a photo can be assigned to more than one category, then the data

definition should choose a set­valued attribute for categories, instead of the atomic

attribute above. This minor change makes the Moa expression for similar holiday

photos more complicated, because it has to select the sets containing the value ‘holiday’.

Similarly, combining the content of several types of metadata increases the complexity

of the expressions as well, because each layer of the inference network corresponds

to extra operators to construct the next level of the network and propagate the beliefs.

Clearly, these latter examples illustrate the requirement for a higher level language at the

conceptual level, as discussed previously in Chapter 2. In the current implementation,

however, languages at the conceptual level are not available, and multimedia retrieval

applications have to access the Mirror DBMS at the logical level.

5.4 MAPPING FROM LOGICAL TO PHYSICAL ALGEBRA

The implementation of the Moa structures on Monet requires the mapping of data

structures to the binary relational model, and the mapping of operations to sequences

of MIL operations. These mappings introduce set­orientation in IR query processing,

allowing exploitation of Monet’s efficient main­memory query evaluation techniques

for the implementation of IR retrieval models.

5.4.1 Flattened representation of content

The representation of the belief network structures at the physical level is termed

the flattened representation of the content. Table 5.1 shows an example of a flattened

collection consisting of twoCONTREP structures. The Moa structure is stored in Monet

as three synchronized BATs dj, ti, and tfij. In the case of text documents, these

BATs store the frequency tf ij of term ti in document dj , for each term ti occurring in

THE MIRROR MULTIMEDIA DBMS 87

Table 5.1. Representation of content in BATs

d1: a c c a c

d2: a e b b e
query

a

b

dj ti tfij

1 a 2

1 c 3

2 a 1

2 b 2

2 e 2

intermediate results

qdj qti qtfij qntfij

1 a 2 0.796578

2 a 1 0.621442

2 b 2 0.900426

document collection

document dj ; which is a flat representation in the binary relational model of a nested

set of tuples with each three attributes. For multimedia objects the ti are the concepts

identified in the concept layer of the retrieval engine.

Computing the probability of relevance of the objects for query q proceeds as

follows. First, a table with the query terms is joined with the document terms in

ti (the result is called qti). Next, (using additional joins) the document identifiers

and the term frequencies are looked up (qdj and qtfij). Note that these joins are

executed very efficiently, because the Moa structures make sure that the BATs remain

synchronized all the time.

Next, the term beliefs are computed with some variant of the popular tf ·idf ranking

formula. To support these belief computations, Monet’s physical algebra has to be

extended with new operators. But, because there is no consensus about what belief

estimate results in the ‘best’ retrieval model, many different ranking formulas can be

chosen in this step. The various models differ most significantly in the normalization

of the term frequencies; some use the sum of term frequencies in a document, others

use the maximum, while Hiemstra’s model normalizes term frequencies with the sum

of all tf ij , the total number of occurrences of terms in the collection.

Monet can be extended with user­defined operators in two ways: define new pro­

cedures in MIL, or use ADT extensions (called modules) written in C or C++. Imple­

menting ranking formulas as MIL procedures is very convenient for experimentation;

trying a new ranking formula does not require re­compilation. For example, MIL

procedure ntf, defined in code Example 8, computes the normalized term frequency

component tf of InQuery’s (original) formula for belief estimation.3 Dynamic oper­

ator binding, another helpful feature of MIL, allows to keep the mapping of the IR

process from the logical level to the physical level roughly orthogonal from choosing

the probability estimates; in the implementation, switching between InQuery’s and

Hiemstra’s weighting requires only setting one string constant.

88 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

Table 5.2. Intermediate tables with and without outer join.

doc term belief

d1 a 0.56

d1 b default

d2 a 0.67

d2 b 0.82

doc term belief

d1 a 0.56

d2 a 0.67

d2 b 0.82

Example 8

PROC ntf(tf, maxtf) := {

RETURN 0.4 + 0.6*(log10(tf + 0.5)/log10(maxtf + 1.0));

}

Thus, after the qdj, qti, and qtfij BATs have been constructed by joining with

the query BAT, the user­defined ntf operator is used to compute the normalized term

frequencies for the terms in qti. The necessary document­specific normalization

constants are computed using Monet’s special set­aggregate versions of the MIL sum

or max operators. Analogously, inverse document frequencies are computed from

the collection statistics. As a final step, the term beliefs are computed by combining

these idf with the tf ; some retrieval models normalize the computed belief with the

document length as well.

5.4.2 Probabilistic reasoning in Monet

After the probability estimates for the separate concepts have been calculated, a com­

bined score is computed to express the belief in a document given the query. Monet’s

modular extension framework is used for the efficient implementation of this belief

computation in user­defined operators of module infnet (written in C). The class

of functions F (xi,Γxi
) studied by Greiff in [GCT98] has been implemented as the

probabilistic operators PICEval and PLFPICEval4. Notice that these operators

have been implemented both as a normal user­defined operators and as user­defined

set­aggregates.

Vasanthakumar et al. [VCC96] have also expressed the computations in the infer­

ence retrieval network model with user­defined functions, integrating inference with

SQL queries in the DEC Rdb V6.0 relational DBMS. A problem with the imple­

mentation of the operators given in [VCC96] is the computation of a full outer join

between the terms occurring in the query and the terms occurring in the documents.

Thus, the query terms not occurring in a document, are represented physically in the

intermediate results. If the query consists of nq terms and the collection consists of Nd

content representations, then the intermediate result requires space for nq ·Nd records.

Because most documents will only match a small portion of the query, the intermediate

result is likely to be a long but sparse table, and the storage requirements for this table

(in memory) will cause a significant performance bottleneck.5

The full outer join is only used to assign default beliefs to the terms that do not occur

in the document. A solution without the full outer join is possible when we handle

THE MIRROR MULTIMEDIA DBMS 89

Figure 5.2. Creating a co­occurrence thesaurus from two collections of CONTREPs

[vD99].

the assignment of default beliefs locally, inside the probabilistic operators. Hereto,

the aggregate function queryPICEval has been developed, a special version of

PICEval that takes the query terms as an extra operand. Query weighting (which

can be interpreted as attaching uncertain evidence to the query nodes) has also been

implemented in a variant of this operator. Instead of inserting default beliefs for all

documents beforehand, these operators insert (per document) the default beliefs inside

the implementation of the algorithm combining the evidence. Table 5.2 illustrates

the difference in processing between the two approaches. To allow an efficient im­

plementation of the queryPICEval aggregate, the dj and ti tables are not only

synchronized, but also lexicographically ordered. For some operators (e.g. the proba­

bilistic sum), the default beliefs could be removed from the computation beforehand,

and Monet’s kernel set­aggregates used instead. But, in general this is not true for

other operators; such improvements should be implemented in a query optimizer for

the mapping between the logical and physical level.

5.4.3 Thesauri and LCA

Figure 5.2 shows how an association thesaurus can be constructed from two sets of

content representations by calculating co­occurrence statistics between the two repre­

sentations. Building a global thesaurus is a resource­consuming process, that can only

be performed offline. But, a local thesaurus can be constructed on the fly, for example

between the concepts in the query and a small set of content representations. Xu has

introduced the term local context analysis to describe this idea of using temporary

thesauri for query expansion [XC96].

The Mirror DBMS supports LCA with the co operator, an aggregate for collections

of CONTREP structures. If contreps is a collection of content representations,

and query is a set of query terms, then the following query computes a nested data

structure containing co­occurrence statistics:

map[TUPLE<THIS,co(contreps, THIS)>](query);

90 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

This expression constructs a data structure with three levels of nesting. At the

outer level, each tuple stores a query concept, and a set containing a tuple for each

object with which it co­occurs. These tuples contain another set of tuples, with a

tuple for each concept associated to the query concept. These inner tuples contain the

co­occurrence frequency as well. The MIL implementation of this co operator does

not compute an intermediate sparse matrix of all possible pairs, but investigates only

the pairs of concepts that really co­occur.6 With some simple aggregates, the concepts

that co­occur frequently can be selected from the result. Xu’s rather complicated

formula to rank expansion terms (see [XC96]) has been rewritten in a form such that it

is conveniently expressed in a sequence of set­oriented Moa operations on this nested

data structure.

5.5 INSTANTIATING THE MODEL

The previous sections have described the mapping of the generic retrieval model into

Moa structures, and the implementation of these structures at the physical level. So, the

Mirror DBMS provides the primitives for managing multimedia data and its metadata,

and for probabilistic inference required during the interaction with the user. This sec­

tion discusses an instantiation of the model using these facilities, building the retrieval

engine of a prototype image retrieval system. Some experience with the prototype

regarding the quality of retrieval results is discussed, and some problems are identi­

fied. The advantages of using a multi­model DBMS architecture for implementing the

multimedia retrieval model are discussed in the concluding sections of this chapter.

5.5.1 An image retrieval application

To validate the ideas about multimedia retrieval proposed in this thesis, the Mirror

DBMS has been used as a foundation for a state­of­the­art image retrieval system;

aspects of its design are similar in spirit to both the Viper and the FourEyes image

retrieval systems. The prototype and its relationship to theories in cognitive science is

described in more detail by Van Doorn [vD99].

Content abstraction. The design of the prototype system is shown in Figure 5.3.

Obviously, the images can be (partially) annotated with manual descriptions. Also, six

different types of content­based metadata are extracted automatically for each image:

two color models (RGB and HSB [SB91]) and four texture models (Fractal dimension

[CSK93], Gabor Energies [FS89], Grey­Level Co­occurrence Matrix [CH80] and

Gaussian Markov Random Fields [CC85]). A combination of color and texture models

is used because each describe different aspects of an image. The main reason for

choosing these particular texture models was pragmatic: the availability of public

domain implementations.7

Because the application of learning techniques has not been studied in this thesis,

the dependencies between the metadata from various feature spaces are not known.

Modelling different nodes Fi for the color and texture features would only make the

Moa queries more complex, without changing the inference process performed in the

implementation. Therefore, the retrieval model of Chapter 4 has been simplified, such

THE MIRROR MULTIMEDIA DBMS 91

Figure 5.3. Querying image collections using the Mirror prototype [vD99].

that the automatically extracted metadata are used without modelling dependencies

between the feature spaces. Thus, the image content is represented by a tuple of two

CONTREP structures, one for the manual annotations, and one for the content­based

metadata.

User interaction. The dialogue between system and user takes place as follows.

The user starts a query session with an initial, textual query. This query is passed to

a ‘society of thesauri’, which expands the query concepts with related concepts. The

results of the expansion can either be fed back to the user for initial query refinement

(via ‘concept feedback’), or passed on directly to the evidential reasoning layer. The

results of the initial query are passed to the left column. Relevance judgements about

the returned documents are introduced in the process through the document feedback

unit, and the set of approved objects is examined for query expansion. Alternatively,

the highest ranked objects can be assumed relevant (without asking the user), which

is known as local context analysis and has performed well in text retrieval. The

related concepts discovered in the documents judged relevant by the user are further

92 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

handled by the middle column, which deals with concepts. The concepts that can be

presented in an intuitive way can be shown to the user for further feedback, however,

this requires further research. Another improvement that should be studied is the

learning component, which should modify the concept thesauri and/or the document

collection, to improve the performance of the system across sessions.

Dual­coding theory. An interesting observation, first made by Van Doorn, is that this

retrieval system can be considered an implementation of Paivio’s dual­coding theory,

a well­known theory in cognitive psychology (see e.g. [EK95]). Paivio claims that

human cognition can be explained by the existence of two basically independent, but

interconnected, symbolic coding systems. Each symbolic system is specialized in a

distinct type of information: the imagery system is specialized in processing non­verbal

information, and the verbal system is specialized in linguistic information. According

to Paivio, both coding systems use basic representational units: logogens for the verbal

system, and imagens for the imagery system. The two systems are interconnected by

referential links between logogens and imagens.

Paivio’s model has been criticized because it does not specify what these repre­

sentational units are. Although the prototype retrieval application has not been built

with the purpose to gain more understanding of human cognition, the (coincidental)

similarity between Mirror’s retrieval model and Paivio’s cognitive model is interest­

ing. In the prototype, the two components of the inference network can be viewed

as simple models of the two symbolic systems, in which the stemmed words are the

logogens, and the clusters in feature space correspond to the imagens. An association

thesaurus constructed between the two collections of CONTREPs models referential

links between the symbolic systems. Thus, the retrieval model developed for the Mirror

architecture can be considered as a (primitive) computational model based on Paivio’s

dual­coding theory.

5.5.2 Implementing the concept layer

The concept layer constructs the CONTREP from metadata extracted from the im­

ages. This requires operations for each feature space Fj , to map the metadata into

a CONTREP. As discussed before, in the multimedia case this implies clustering fea­

ture vectors, and in the text case may involve stemming and filtering with a list of

stop­words. Another task of the concept layer is to create the DCSTAT from the

SET<CONTREP>.

Figure 5.4 shows the process of creating the representation of the image content in

the image retrieval prototype. The first step is scene segmentation or region detection.

According to Marr’s theory of visual perception (again, [EK95] is a good reference),

scene segmentation plays a crucial role in the early stages of low­level perception. A

segmentation stage is necessary because most images, like text documents, typically

represent multiple concepts (a picture seldomly shows only a clear blue sky or a green

field). In the current system, a simple grid segmentation is used, but a high quality

region detection algorithm may provide a more natural segmentation.8 The second

step consists of feature extraction on the individual image segments. In the prototype,

clustering the set of feature vectors is performed outside the database. Perl scripts

THE MIRROR MULTIMEDIA DBMS 93

Figure 5.4. Creating the image representation [vD99].

convert the computed feature vectors to AutoClass input files, and, after clustering,

convert the AutoClass output files to Monet tables. These tables are then merged

and imported into Monet (step four), and transformed into tables for Moa’s content

representation structure CONTREP (step five).

94 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

Figure 5.5. Image clusters related to ‘street’ [vD99].

5.5.3 Query formulation in the relevance feedback layer

Query formulation relies completely on the available content abstractions of the images.

The user’s information need can only be expressed using example images and relevance

judgements; a textual query is considered an incomplete example object, that only refers

to the manual annotations of images and not their content.

After the first iteration, the user selects the good and bad images from the ranked

list returned by the system. These relevance judgements are used to improve the initial

query.9 With the Moa structures presented before, implementing relevance feedback is

trivial. First, the content representations of the relevant images are retrieved, joining

the user’s feedback information with the presented results from the previous iteration.

This results in a (smaller) collection of content representations of good images, from

which the global statistics are derived using the getGS aggregate. The operators

defined on DCSTAT then provide the concepts with the highest tf , as well as their

tf · idf which are used as weights.

After several iterations, the query process either converges to the best matching

images in the collection, or the user will decide that the system cannot find any

good images. But, as discussed in Chapter 4, without an inductive bias it may take

too many iterations before the query can be derived from the interaction with the

user. Automatically constructed association thesauri are therefore used to model prior

knowledge. If two concepts taken from the two different CONTREP dictionaries co­

occur frequently in the same object (e.g. ‘sea’ and ‘fractal 10’), this pair of concepts is

associated in some way, and it is added to the thesaurus. The co­occurrence statistics are

managed in another CONTREP structure, like a multimedia equivalent of PhraseFinder.

The thesaurus is used for query expansion with the same Moa expression as in Example

5, using the thesaurus as a set of pseudo­documents containing information about the

concepts.

THE MIRROR MULTIMEDIA DBMS 95

Figure 5.6. Top 10 for the query ‘tree, trees, forest’ [vD99].

5.5.4 Some observations about the image retrieval prototype

Some small­scale experiments have been performed, to illustrate the weaknesses of

the current retrieval model and stress the importance of interactive learning from

the user. But, the results of these experiments are presented modestly; for, this

research has mainly focused on developing an approach to integrate content­based

retrieval techniques with databases, and not on building ‘the best retrieval system of

this moment’. A discussion of problems with the evaluation of multimedia retrieval

is deferred to Chapter 7. Addressing evaluation seriously has been impossible in the

scope of this thesis, partially because the Mirror DBMS is still too experimental for real

applications with real users.

The image collection consisted of 99 images, and is known as the ‘BT collection’

[Min96]. It is small, but still challenging because of its diversity (it ranges from faces to

cities to landscapes), and the small amount of training data for thesaurus construction.

The images have been annotated manually, and the annotations are used to construct

a co­occurrence thesaurus. For example, Figure 5.5 shows the clusters co­occurring

frequently with the text concept ‘street’ (obviously, this representation of the image

clusters is not intended to be shown to end­users).

Figure 5.6 shows the response for the textual query consisting of the concepts

‘tree’, ‘trees’, and ‘forest’, expanded using the automatically constructed thesaurus.

By closer examination of the query formulation process, two classes of errors can be

recognized in the concept layer: clusters without an intuitive perceptual interpretation,

and clusters with wrong labels in the thesaurus.

In the first type of error, AutoClass finds some clusters of little semantic value,

like the cluster occurring in the images shown in Figure 5.7. Because it occurs

in images annotated with ‘tree’, ‘trees’, and ‘forest’, the process constructing the

thesaurus erroneously concludes that image concept fractal 23 is related to these

text concepts.

If several images have been annotated manually with ‘tree’ and ‘building’, co­

occurrence data can estimate an association between image clusters that represent

some visual aspects of buildings and the word ‘tree’. An example of this type of

mistake can be found in Figure 5.8.

96 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

Figure 5.7. Images containing cluster ‘fractal 23’ [vD99].

Figure 5.8. Images containing cluster ‘gabor 20’ [vD99].

In other cases though, the low­level image concepts detected in the concept layer

correlate nicely with some high­level concept like ‘leaves’. As an example, consider

cluster glcm 47 for which the images are shown in Figure 5.9.

Figure 5.9. Images containing cluster ‘glcm 47’ [vD99].

The main motivation behind the interactive query paradigm is that the user’s rel­

evance judgements allow the system to recover from the unavoidable errors in the

concept layer, and improve the query by removing image concepts like gabor 20

and fractal 23 and adding concepts such as glcm 47. The first impression of

relevance feedback is that it really improves the content­based query processing in the

prototype system. For example, if the first and fourth image of Figure 5.6 are given as

positive examples, the system returns the images shown in Figure 5.10. Also, it has

proven possible to retrieve images with faces by giving positive relevance feedback

on portaits, even though the current implementation does not have special features for

this purpose. But, from such a small collection, no strong conclusions can be made

yet about the current instantiation of the retrieval model.

THE MIRROR MULTIMEDIA DBMS 97

Figure 5.10. The top 6 after relevance feedback [vD99].

5.5.5 An experiment with music retrieval

As stressed in Chapter 3, emotional and aesthetic values play an important role in the

user’s evaluation process. Because subjective judgments seem especially important

when people compare music fragments, the multimedia query processor has also been

tested on a content representation of music objects. Notice that the similarity between

two fragments is assumed to be defined by the overall ‘sound’ of the music, and not

the melody or lyrics.

Data set Symbol­1, created in cooperation with the Dutch company ‘Symbol Au­

tomatisering’, consists of 287 songs. Symbol Automatisering develops tools sup­

porting the creation of radio programs and selecting background music in bars or

restaurants; for their users, the similarity between pieces of music is indeed defined by

a similar overall ‘sound’. Domain experts of Symbol Automatisering have manually

classified these songs into six main categories: rock, house, alternative, easy listening,

dance, and classical.

The extraction of metadata is based on the Musclefish feature vectors [WBKW96],

which have been extended with the output of a simple rhythm indicator, based on

peaks in the autocorrelation function of the lowest parts of the frequency domain. The

design of this feature extractor has been presented by Oortwijn in his Master’s thesis

[Oor98]. Between one and two minutes have been sampled of each song, that were

segmented into fragments of 5 seconds each. The result is a data collection of 3363

fragments, from which content­based metadata has been extracted. Feature clustering

with AutoClass identified 53 different clusters; each feature vector has been assigned

the concept node according to the cluster with the highest probability. A song has then

been modelled as a collection of these concepts. Like in the image retrieval prototype,

this representation of songs has been treated as if they were text documents in which

the concepts are the words.

Query formulation on this music collection depends completely on the interaction

with the user. A query has been constructed from the concepts that occurred most

frequently in half of the songs belonging to a category, simulating a significant amount

of online relevance feedback. This query has been entered, to study if it retrieves other

songs of the same category. Of the top 20 songs for the query based on ‘rock’, 15

had also been classified manually as rock. Of the other 5 songs, only 2 clearly do not

98 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

belong in the rock category. With the ‘classical’ and ‘house’ songs, hardly any misses

were found. Results for the category ‘alternative’ were however hardly better than

chance. Maybe this can partly be explained because the ‘alternative’ category is not so

well defined (as confirmed by Symbol); but, only more research with real users may

provide an answer to this question.

The resulting system cannot be used for automatic song classification. But, it seems

indeed possible to interactively retrieve groups of similar songs, particularly for well

defined categories. An improved version of this retrieval system could serve well as

the backend of a set of mobile clients: a portable radio with a relevance feedback

button, that learns your personal taste of music.

5.5.6 Discussion

This section has described an example of an advanced image retrieval system, based

on the functionality provided by Moa’s IR structures available in the Mirror DBMS.

The current implementation should not be regarded as ‘the’ image retrieval system

supported by the Mirror DBMS; there are numerous ways to improve the prototype. The

prototype is not intended to be more than a demonstration of the type of functionality

that can be specified with some fairly simple Moa expressions. The main contribution

of the Mirror DBMS is that improvements can be specified by simply changing the

sequence of Moa expressions. As a result, it is not much trouble to add new feature

models, use different clustering algorithms, or apply different techniques for query

expansion and query modification.

The techniques for automatic content extraction and learning from the interaction

are still too primitive to expect a system like this prototype to be very useful in realistic

digital library applications. But, the embedding of content management techniques in

a DBMS makes it much easier to integrate more domain knowledge into multimedia

applications. While exact data retrieval can be used to prune a large collection into

a much smaller set of about one thousand potentially relevant multimedia objects,

iterative content­based querying can assist the user with browsing this intermediate

result.

In future revisions of the prototype, dependencies between feature spaces should be

taken into account, and learning techniques should be used to improve both the object­

space and the automatically constructed thesauri. Grid segmentation of the images

is too trivial, and should be replaced with better region detection and segmentation

algorithms. Also, a pyramid approach to segmentation would improve the quality of

the content abstractions, i.e. segmentation should be done at various levels of detail.

Probably, the most significant improvements can be made by modelling the interac­

tion with the user more precisely. At least three possibilities should be investigated for

improving interaction with the user. First, binary relevance judgements are not very

informative about the user’s information need. Instead, users should be encouraged

to group the images into similar clusters, and judge these groups for their relevance.

Also, the user should be allowed to judge the relevance of segments of images, instead

of the complete images. Finally, the user should be asked to confirm hypotheses made

in the evidential reasoning layer. As an example of this idea, the PicHunter system

provides a good example how a (Bayesian) model of the interaction with the user

THE MIRROR MULTIMEDIA DBMS 99

can steer the dialogue between the user and the system, and make it converge more

efficiently [CMMY98].

5.6 EXPERIENCE WITH TREC

The previous section focused mainly on the functionality supported by the Mirror

DBMS. This section presents evidence that the system is a suitable experimentation

platform for IR research,10 and discusses the execution performance obtained with the

current mapping of Moa’s IR structures into binary relations.

5.6.1 What is TREC?

The most widely used benchmark for information retrieval systems is the TREC test

collection.11 TREC is a series of conferences that provides the research community

with a platform for large­scale evaluation of text retrieval methodologies (see e.g.

[VH97]). While the TREC collection is large and models a real­world problem, the

main target is the effectiveness of a retrieval system rather than efficiency. A system

that ‘performs well’ at TREC retrieves the best documents, and does not necessarily

retrieve these documents most efficiently.

The data set consists of several sub­collections of varying size. TREC­6 uses five

sub­collections, and for TREC­8 one of these sub­collections has been removed. Each

conference, relevance judgements are created for 50 queries (called topics), which

provide a ground truth for evaluating effectiveness. TREC defines a document relevant

if some piece of information contained in the document is relevant for writing a report

on the subject of the topic. Because the collection is too large to manually evaluate the

relevance of all documents, a pooling technique is used. The top ranked documents of

the participating systems (fifty­six groups participated in TREC­7) are gathered in the

pool, and this pool is assumed to contain all relevant documents. So, a new retrieval

system using old TREC relevance assessments may retrieve documents for a topic

that have never been judged, because none of the other systems had retrieved these

documents before; still, these are regarded unrelevant in the evaluation. Although the

pooling technique has been criticized for this reason, the TREC collection is the best

option for laboratory experiments.

5.6.2 Experiments with TREC­6 and TREC­8

An evaluation run processes 50 topics in batch, but the client interfaces of the Mirror

DBMS have been designed for interactive sessions with an end­user. Also, transferring

the data from Monet to the Moa client has been implemented with a lot of overhead.

Furthermore, optimizations such as using materialized views are not performed in the

current Moa rewriter. These minor flaws would have inferred an unfair performance

penalty to the evaluation of the architecture, and made logging the results rather

cumbersome. Therefore, as a (temporary) solution, the MIL program generated by the

Moa rewriter has been manually edited to loop over the 50 topics, log the computed

ranking for each topic, and use two additional tables, one with precomputed normalized

inverse document frequencies (a materialized view), and one with the document­

specific constants for normalizing the term frequencies.

100 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

The machine on which the experiments have been performed is a Sun Ultra 4 with

1 Gb of main memory, running SunOS 5.5.1. The machine is not a dedicated server,

but shared with some other research groups as a ‘compute server’. Monet effectively

claims one processor completely while indexing the collection, or processing the fifty

topics on each of the sub­collections. The division of the complete collection in five

sub­collections (as it comes on different compact discs) is maintained. The topics are

first run in each sub­collection, and the intermediate results are merged. Depending

on the size of the sub­collection, estimating the top 1000 ranking takes between 20

seconds and two minutes per topic. How to further improve this execution performance

is discussed in the next subsection. Some runs have used global statistics of the merged

collection, other runs use local statistics of the particular sub­collection in which the

topic is evaluated.

Preparation of the five sub­collections takes about six hours in total. Computing

the tfij table is performed using the module for crosstables. But, the CTgroup

operation allocates all available memory, and eventually crashes the DBMS because it

cannot get more, if it is run on the complete set of documents of any but the smallest sub­

collection.12 Therefore, the indexing scripts run on fragments of the sub­collections at

a time, and frequently write intermediate results to disk, obviously slowing down the

process more than necessary.

The importance of measuring effectiveness can be illustrated from the experience

with tuning some parameters of the algorithms implemented in the Mirror DBMS on

the TREC­6 topics. Using Hiemstra’s ranking, the baseline results on the TREC­6

are quite impressive. Based on its success on InQuery at previous TREC conferences,

a significant improvement was expected by using topics expanded with LCA. Also,

investigating the expansion terms, LCA seemed to do a good job. For example, on

topic 311 (which is about industrial espionage), it finds terms like ‘spy’, ‘intelligence’,

and ‘counterintelligence’, and from the financial times sub­collection it even identifies

‘Opel’, ‘Volkswagen’, and ‘Lopez’ as relevant terms. But, instead of improving the

effectiveness of retrieval, the measured performance turned out to have degraded.

Some tweaking of the parameters, reducing the weights of expansion terms and using

fewer of them, the performance improved upon the baseline, but only slightly; on the

runs submitted for TREC­8, it degraded performance a little bit.

A possible explanation for these disappointing results is that the algorithm has

been applied to documents instead of passages (as done in [XC96]), and the TREC

collection itself was used to find expansion terms instead of another, larger collection.

But, another possibility is that Hiemstra’s weighting provides such a high baseline, that

it is very hard to improve upon. A comparison between these results and InQuery’s

TREC­6 report (in [VH97]) favours the latter explanation, because the performance

of the Mirror DBMS with Hiemstra’s weighting scheme, without LCA, was almost as

good as InQuery’s performance after using LCA. With LCA, Hiemstra’s weighting

performed better on all reported precision and recall points, except for the precision at

twenty retrieved documents, at which InQuery performed slightly better.

THE MIRROR MULTIMEDIA DBMS 101

5.6.3 The road ahead

The execution performance of the Mirror DBMS on TREC is clearly better than a

naive (nested­loop) implementation in any imperative programming language, but,

the obtained efficiency is not fast enough to beat the better stand­alone IR systems

that participate in TREC. Compared to the techniques used in systems like InQuery

(see [Bro95]), the current mapping between the logical and physical level is too

straightforward: it does not use inverted files, has not fragmented the terms using their

document frequency, and it ranks all documents even if only the beliefs for the top 1000

are used. Also, Monet should make it relatively easy to take advantage of parallelism

in modern SMP workstations.

The merits of some possible improvements can only be evaluated experimentally.

For example, it is not so clear beforehand whether inverted files are really the way

to go. Query processing with inverted files requires merging the inverted lists before

beliefs can be computed, which is hard to perform without trashing the memory

caches frequently; which has been shown a significant performance bottleneck on

modern system architectures (see e.g. [BMK99] for experiments demonstrating this

for Monet).

Without experiments, much improvement can be expected from fragmentation of

the document representation BATs based on the document frequency, in combination

with the ‘unsafe’ techniques for ranking reported in [Bro95] (called unsafe because

they may affect the order of the ranking). Because the distribution of terms in IR

collections is very skewed, 5% of the terms occurs in 95% of the documents. Thus,

joining the collection tables with a set of query terms with high df constructs large

intermediate BATs (qdj, qti, and qtfij), which will degrade performance signif­

icantly. Estimating the ranking while leaving out the high df query terms should be

much cheaper, since the memory requirements for the intermediate results are much

lower, so less swapping will be required.

Although such (domain­specific) optimization techniques have not been used in the

current system, it should not be too complicated to integrate them in the mapping from

Moa structures to MIL, thanks to the declarative nature of the algebraic approach. A

similar argument applies to extending the Mirror DBMS with the buffer management

techniques discussed in [JFS98]. In MIL, buffer management is equivalent to directing

Monet to load and unload its tables. By integrating such directives in the generated

MIL programs, it is expected that these improvements can also be added without many

complications.

5.7 QUERY OPTIMIZATION AND MOA EXTENSIONS

This section discusses the opportunities and challenges for query optimization in a

multi­model DBMS architecture. It starts with a short example of query optimization

at the level of Moa expressions. Next, three types of optimization are identified that

affect the mapping from the logical to the physical level. Notice, however, that the

current implementation of the Mirror DBMS does not have a query optimizer.

102 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

5.7.1 Rewriting logically equivalent expressions

Recall the Moa expression from Example 7, retrieving holiday images that are relevant

for the query image. A semantically equivalent expression is given in Example 9.

Here, the Moa expression specifies that after computing the beliefs for all images, the

only images of interest are those in the ‘holiday’ category.

Example 9

map[THIS.Beliefs](

select[THIS.Category = ‘holiday’](

map[TUPLE< Category: THIS.Category,

Beliefs: sum(getBL(THIS.Content,query,stats))

>](

(imgs)

)));

In most cases, the process of query optimization should rewrite the expression of

Example 9 into the logically equivalent expression of 7, before generating the MIL

program. The underlying principle in this example is known as the ‘push select down’

heuristic. Even this straightforward optimization step is hard (if not impossible) to

achieve without following an algebraic approach. Conversely, the design of the Mirror

DBMS with a strict separation between the logical and physical level can clearly be

adapted to perform this style of optimization.

5.7.2 Domain­specific structures can increase efficiency

The content representation in a CONTREP structure can also be modelled in Moa

without domain­specific extensions, using a nested set of normal tuples; similar to

Schek and Pistor’s proposal to use NF2 algebra for the integration of IR and databases

[SP82]. Although queries expressing belief computation are much more complicated

in a nested relational model, ease of use is not the only motivation for the introduction of

theCONTREP structure. The domain­specific mapping provided in the implementation

of the CONTREP structure requires less algebraic operations than the generic mapping

of an equivalent query expressed in NF2. The mapping to MIL of the NF2 equivalent

of Example 5 requires 10 joins and a select; the CONTREP version only uses 6 joins,

and the same select. Of course, the number of operations is not directly proportional

to the amount of processing that is required. But, better efficiency is obtained here,

because the designer of domain­specific structures can apply knowledge about the

IR process to keep the tables physically synchronized and lexicographically ordered.

Notice that this type of performance improvement takes place beforehand, at design

time, and does not further improve query processing at runtime.

A similar example relates to the nidf operator defined on the DCSTAT structure.

Without operand, nidf returns a tuple, containing a term and its normalized idf

value, for each term occurring in the indexing vocabulary. Thus, a semijoin between

the result of nidfwithout query operand and a collection of query terms is a logically

equivalent expression for the result of nidf with a query as operand (Example 10

shows the queries for both approaches).

THE MIRROR MULTIMEDIA DBMS 103

Example 10

nidf(stats, query);

semijoin[THIS.nidf, THIS, TUPLE<>](

nidf(stats), query);

The DCSTAT structure can compute its answer with fewer operations than the

standard Moa query using the semijoin. The domain­specific mapping contributes

to the generation of more efficient MIL programs, because it ‘knows’ in advance the

properties of the result.

5.7.3 Defining alternative mappings

In the ideal situation, query optimization searches the complete space of semantically

equivalent algebraic expressions for the one expression with the highest estimated

performance. Because this search problem is NP­complete, real­life query optimizers

only consider a small subspace of all possible candidate expressions. It is more

important to avoid very inefficient query plans, than to find the most efficient plan.

Because the designers of Moa structures have detailed knowledge about the high­

level process supported by the structure, they could provide a set of semantically

equivalent algebraic expressions. This set of alternatives may be used as candidate

expressions by a query optimizer, reducing the search space significantly. Consider

belief computation in the CONTREP structure as an example. When computing a

ranking function, two competing strategies can be followed to calculate the required

max tf values. The first approach computes max tf for all documents, and then select

the values that are needed for the query under consideration:

djmaxtfij := {max}(join(dj.mirror, tfij))

join(qdj, qdjmaxtfij);

The second strategy preselects the document identifiers of documents in which the

query terms occur. This way, the normalizing constants max tf are only computed for

those documents that are relevant for the query.

djreq := semijoin(dj.mirror, qdj.mirror);

djmaxtfij := {max}(join(djreq, tfij));

join(qdj, qdjmaxtfij);

The choice between both evaluation strategies should be made at runtime. The

second strategy may be more efficient than the first, if the query terms do not occur

in many documents. Although the alternatives in this example may well be generated

automatically (it follows the well­known ‘push selects down the tree’ strategy), more

complex logical operators have alternative mappings that are not so likely to be found

by a query optimizer at the binary relational level. The rewriting process of Moa

structures should therefore be adapted to dynamically rewrite structures, selecting the

best alternative based on the run­time data distribution.

104 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

5.7.4 Search accelerators in Moa extensions

Finally, a third type of optimization can be identified that should be taken into account

when designing structures. Consider once more the example of computing max tf

values. Instead of computing these results on­the­fly whenever they are needed, this

intermediate result can also be stored as a materialized view on BAT djmaxtfij.

Similarly, access structures may be defined on the results of complex computations.13

These types of optimization can of course be hard­coded in the mapping defined

in the implementation of structures. But, this violates Codd’s notion of index inde­

pendence; applying search accelerators like materialized views and index structures

should be orthogonal to the specification of the mapping of the complex structure to

the flattened database model. An open question though is how these accelerators can

be defined. In relational databases, the database administrator defines indexes using

the SQL CREATE INDEX command. But, these indexes are defined on tables that

exist in the schema. In this case, the tables and functions for which search accelerators

should be defined are hidden within the structure’s mapping and may not be visible in

the schema at all. The identification of useful search accelerators may only be solved

as an additional task for the Moa rewriter, either semi­automatically in interaction with

the database administrator, or fully automatically.

5.8 DISCUSSION AND COMPARISON TO OTHER WORK

This section puts the Mirror DBMS in context of other approaches. After discussing its

merits, the integration of IR in the Mirror DBMS is compared to approaches extending

relational and object­oriented databases. Finally, some other related work is discussed

briefly.

5.8.1 Advantages

The combination of Moa and its extensions for IR makes it possible to flexibly combine

constraints on the content of documents with constraints on their logical structure.

The nested data model also allows modelling of compound documents. Similarly,

several versions of the same underlying collection can be managed easily, e.g. using

different stemming algorithms, or extracting concepts with varying NLP techniques.

The separation of tasks between the MIL procedures defined in the database and the

structural definition of the document collection in Moa supports IR researchers with

experimentation. The Moa expressions that define the experiment are invariant to

tweaking parameters of the retrieval model.

The clear distinction between the specification of a retrieval model in algebraic

operations and its physical execution provides another advantage for experimental

research in (multimedia) IR. The researcher can develop new retrieval models without

worrying too much about low­level implementation issues like hash tables, index trees

and parallelisation. The kernel chooses at runtime from a variety of algorithms to

execute the algebraic operations as efficient as possible. Similar to the use of indices in

relational databases, we may increase performance by the definition of access structures

on the BATs without having to change the code. Furthermore, when executing on

THE MIRROR MULTIMEDIA DBMS 105

a parallel machine, the IR code automatically benefits from the implementation of

parallel kernel algorithms.

These benefits can in principle also be achieved using just Monet. However, writing

MIL programs on the flattened document representation requires a lot of knowledge of

the mapping from documents to BATs. For example, the expression given in Example

7 is translated into a MIL program consisting of 36 operations, and is already quite

complex to comprehend, let alone construct. Clearly, Moa expressions have a great

advantage over the low­level BAT manipulation. Also, the reduced complexity of

the logical Moa expressions makes them easier to manipulate for an algebraic query

optimizer. A ‘push select down’ strategy that first evaluates constraints on the logical

structure and then constraints on the content should be easily implemented for Moa

expressions; for MIL programs, however, the search space would be too large to

accomplish the equivalent rewrite.

5.8.2 Information retrieval and the relational model

The main interest in databases from IR researchers has always been the more traditional

database support: concurrent insertion, update, and retrieval of documents, see e.g.

[Mac91], [GTZ93], and [DDSS95]. The idea is that, in general, database management

systems provide such support, of which the IR systems could benefit. This is certainly

regarded an important issue for further study; but, addressing concurrent updates

without degrading performance of the complete system is less trivial than it may seem

at the first glance. In this thesis, scalability and retrieval have been considered more

important problems, that are more or less orthogonal to transaction management.

Early research attempted to represent documents in the data model of a standard

DBMS, and express the retrieval model as queries. MacLeod compared the model

of text retrieval systems with the data models in relational databases [Mac91], but he

concluded that many difficulties arise when mapping a document into a record­oriented

structure. Schek and Pistor suggested the use of NF2 algebra for the integration of IR

and databases [SP82]. Written in a time when ADTs were not common, their work is

only directly applicable to Boolean retrieval models, which cannot handle the intrinsic

uncertainty of the IR process. Also, modelling IR directly in either a relational or

a nested­relational DBMS is unlikely to provide sufficient performance to be of any

practical usage.

Similar to the development of geographical information systems, researchers then

started to build ‘coupled’ systems: an information retrieval component handles the

queries on content and the database component handles the queries on the logical

structure. The most primitive approach is to use two completely different systems with

a common interface, an example of which is described in [GTZ93]. Modern extensible

database systems enable a tighter integration, in which the extension model of the

database is used to encapsulate the otherwise completely separated IR component (see

e.g. [DDSS95], [VCC96] and [DM97]).

But, the objections against encapsulation given in Chapter 2 apply here equally.

Query processing will often fall back to object­at­a­time evaluation instead of the pre­

ferred set­orientation. This makes it more complicated to scale up using parallel query

processing. The lack of support for inter­operator optimization seems a problem for

106 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

multimedia retrieval in particular, because of the larger amount of content abstractions

that are necessary. Each feature space requires its own ‘miniature’ IR component, but

query evaluation should avoid the computation of unnecessary intermediate results,

for example in feature spaces that will not further influence the final ranking.

5.8.3 IR in an OO­DBMS

Previous approaches to IR and database integration have also suggested the application

of object­oriented databases, see [Mil97] for an overview. An object­oriented model

is very suited for the implementation of IR. Object data models allow nesting, and in

addition to sets, work with multiple collection types. A good example of the design of

IR in an OO­DBMS is the Mills’s Cobra system, described in [MMR97] and [Mil97].

Mills has developed a very nice environment for rapid development of IR prototypes,

that is more easily extended with new IR algorithms compared to the Mirror DBMS.

But, its design also has some major drawbacks, most of which are founded in the

same objections as have been expressed against OO­DBMSs before. Its design is

much more a persistent programming environment than an integration of IR and

databases. Like most OO­DBMSs, Cobra is implicitly intended to support some

specific application, rather than sharing the same data set across applications. This

is very clearly demonstrated in the modelling of collection statistics: Cobra defines

the statistics as a property of the document representation type rather than a property

of some collection. This decision renders it impossible to manage more than one

collection in the OO­DBMS, unless these collections share the global statistics. Long­

term learning applied to one collection would automatically affect the statistics used

for querying the other collection, which is not desirable in all cases.

Representing the content representations in the schema, as proposed in the Mirror

DBMS, seems a more elegant solution than making the IR indices explicit like in Cobra.

Mills gives the example of one implementation of inverted files that handles updates one

at a time, and another that handles them in batches. In the Mirror DBMS, choosing an

index structure is orthogonal to defining the schema, and therefore the choice between

the two indices is deferred until runtime, and does not have to be known at compile

time as in Cobra. Despite of this objection, one of Mills’s motivations for adding the

indices to the schema is interesting. If the Mirror DBMS would be extended with an

inverted file index structure, the content representations would be stored twice: both

in the physical representation of the CONTREP structure and in the index structure. It

may be an interesting idea to extend Monet with ‘shadow types’, whose instances are

only materialized in the index structure. This way, index independence is maintained

(as Monet will materialize the values when the index is removed) while the data is only

stored once.

Finally, the Cobra system does not help application programmers with obtaining

scalability and exploiting parallelism. Instead of increasing data independence, making

the index structures explicit in the conceptual schema decreases the data independence.

Set­orientation is hard to achieve, because using Cobra involves hard­wiring many

nested­loops. Again, although Cobra’s object­orientation is very useful for modelling

complex objects and their behaviour, the implementation of the objects at the database

level should not be the same as the view on the objects at the conceptual level.

THE MIRROR MULTIMEDIA DBMS 107

Obviously, providing mappings between the different levels of the Mirror DBMS is

more complicated than using Cobra’s classes, that map directly on the physical level.

But, the mappings between different layers in the design and implementation of the

Mirror DBMS seem unavoidable if the goal is to develop truly scalable systems.

5.9 SUMMARY

This chapter reported the integration of IR and databases using structural object­

orientation, and demonstrated the feasibility of this approach with the prototype im­

plementation of the Mirror DBMS. Various advantages of an integrated approach to

IR and databases were identified, and illustrated with the type of queries and data

modelling that can be specified in the Mirror DBMS.

The Mirror DBMS prototype has been evaluated for two different applications. First,

an advanced image retrieval system has been built to experiment with the multimedia

retrieval model, and validate the expressiveness of the language elements provided

in Moa’s IR extensions. Improvements of the prototype with new algorithms, or

a different query formulation process, can be implemented by simply changing the

(order of) Moa operators applied. Second, to evaluate if sufficient efficiency can be

achieved to be competitive for stand­alone IR systems, the Mirror DBMS has been

used to index the TREC collections. Although the efficiency still needs improvement

before the current implementation really challenges the more advanced systems, query

processing is already fast enough to be a useful platform for IR experiments on TREC’s

ad­hoc collection.

The belief computations for the retrieval model developed in the previous chap­

ter have been expressed as algebraic operations in the database kernel, with a strong

emphasis on set­at­a­time operations. This approach provides desirable data indepen­

dence between the logical and the physical database. As a result, parallelisation and

the selection of access structures have become orthogonal to the development of an

information retrieval model. More importantly, this provides the opportunity for query

optimization in the mapping from the logical level to the physical level.

Several non­traditional query optimization strategies have been identified, which

stimulates further research into the design of the Moa rewriter. First, the domain­

specific extensions of Moa allow for a task­specific mapping to operations at the

physical level. Second, several semantically identical query translations may be pos­

sible for the same Moa expression. A query optimizer at the physical level, that

manipulates sequences of operators on binary relations, is likely to have trouble gener­

ating these equivalent expressions automatically, due to lack of contextual information.

Alternatively, rewriting Moa expressions into MIL query plans should generate several

alternative expressions, each defined by the designer of the Moa structure. The best

alternative can then be chosen at runtime, using information about the runtime state of

the database. Finally, search accelerators like materialized views and indices on path

expressions can be used within the mapping from the logical to the physical level.

108 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

Notes

1. Note that a complete implementation of the InQuery model also requires proximity operators.

Proximity lists should probably be added as atomic types, similar to the polygons in Monet’s geographical

extensions. This problem has been ignored in this thesis, especially because it is not clear how important

the proximity operators are for information retrieval.

2. A DCSTAT can also be created manually, using a collection name, the dictionary (or indexing

vocabulary), the number of documents in the collection, and the document frequencies (df) of the indexing

terms.

3. In later InQuery implementations (since TREC­6 for sure), they have instead used a variant inspired

by the Okapi metric.

4. PLFPICEval is a more efficient version of the PICEval algorithm (O(n) instead of O(n2)), for

the subclass of PIC matrices describing partially linear functions. I actually found a mistake in Greiff’s

report, and he confirmed that the PLFPICEval algorithm had never been implemented in InQuery; which

I would consider as (indirect) evidence in favour of the hypothesis that it is more easy to experiment with

the implementation of some operators in an algebra for IR than with the code of a complete custom­made

IR system.

5. Even when the user enters a short query, it is common to increase the number of query terms

significantly using query expansion techniques; a query consisting of more than 100 terms is definitely not

outrageous.

6. The difference between these two strategies is quite impressive. For example, the number of possible

pairs in the LATIMES collections for TREC topic 311 is 3842250, while the number of really co­occurring

terms is only 93241.

7. The texture feature extractors are part of the MeasTex framework, see http://www.cssip.

elec.uq.edu.au/˜guy/meastex/meastex.html.

8. The grid segmentation is performed using PerlMagick, available through CPAN (see URL http:

//www.perl.org).

9. Only positive feedback has been implemented in the current prototype; but, extending the system for

handling negative feedback is straightforward.

10. Although more of anecdotal than scientific value, the story of participation in TREC­8 with the

Mirror DBMS demonstrates the usability of this architecture for IR experiments. Eight days before the

deadline, it still seemed impossible to participate with this year’s TREC, as Monet kept crashing while

indexing the data; until, the seventh day, the new release suddenly made things work! After a quick consult

with Djoerd Hiemstra, I decided to try our luck and see how far we could get. And I admit: it has been

a crazy week. It meant running the topics on TREC­6 first, to compare the results with Djoerd’s former

runs; as well as changing the ranking formula to integrate document length normalization. In the weekend,

I made long hours implementing LCA, which turned out to be not so useful as expected. But, in one week

I managed to index the data, perform various experiments on the TREC­6 data for calibration, run the best

experiments on TREC­8, and submit five runs, just before the final deadline.

11. TREC stands for Text REtrieval Conference.

12. This may seem ‘a typical problem of using an academic prototype’. But, Sarawagi et al. report

similar memory problems with DB2 when using normal SQL queries for a non­standard application, mining

for associations hidden in a large data set [STA98]. Now, a bug in Monet is usually fixed within two or three

weeks (see also the acknowledgements!), which I do not suspect to happen with a commercial DBMS used

in some non­profit research project. . .

13. In the context of multimedia data, one may even define an access structures like an R­tree on the

result of a function, without maintaining the results themselves in the database. Consider for example an

index on some rarely used feature space. If for some query this feature space seems very appropriate, the

access structure is only used as a filter to reduce the set of objects for which the expression then must be

recomputed.

6
DATABASES AND DIGITAL LIBRARIES

’If you don’t help me, I’ll set fire to the woods,’ the girl persisted.

That brought the man to his feet, but the girl had already struck one of her matches.

She held it to a tuft of dry grass which flared up instantly.

‘God help me!’ he shouted. ‘The red cock has cowed!’

The girl looked up at him with a playful smile.

‘You didn’t know I was a communist, did you?’

—Jostein Gaarder, excerpt from Sophie’s world

6.1 INTRODUCTION

Chapters 3, 4, and 5 focused on the problem of retrieval in multimedia DBMSs. But,

other database related functionality can be identified in the design of multimedia digital

libraries as well. This chapter argues that multimedia digital libraries are inherently

distributed and open. Keeping this in mind, the common approach to constructing a

DBMS as a monolithic software system has to be reconsidered. As a solution, this

thesis suggests to integrate modern middleware into the DBMS architecture, to ensure

an extensible and open framework to connect various participants in the digital library.

The various user groups and their needs motivating an open distributed architecture

for multimedia digital libraries, have been studied while spending a summer at the

Cambridge Research Laboratory (CRL) (formerly Digital, now Compaq). The original

implementation of a digital library prototype for this project, based on Perl scripts,

the Postgres extensible relational DBMS, and the HTTP protocol for communication

109

110 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

between its components, has been discussed in [dVEK98]; the project has resulted in

some (pending) patent applications as well. Subsequent papers from CRL ([EFI+99]

and [Swa99]) have discussed further development of this prototype, among other things

by switching to a professional DBMS (Oracle 8) and scaling up to larger amounts of

data.

Compared to the CRL project, this chapter presents a more experimental architec­

ture, although it is similar in spirit. It has evolved from the original implementation

by a more radical redesign: opening the black box of the relational DBMS, and using

CORBA middleware instead of the HTTP protocol. It has been described previously

in [dVB98a], [vhHdVBB98], and [vhH98].

The chapter is organized as follows. It starts with the identification of several user

groups. The requirements of these users are the basic argument motivating the open

distributed architecture proposed in Section 6.3. After discussing the functionality

of the architecture’s components briefly, an outline of necessary interfaces is given.

To test the usability of these ideas, a prototype environment has been implemented.

Section 6.5 concludes with some aspects of this design that need more research.

6.2 CHARACTERISTICS OF USER GROUPS

An important observation is that a multimedia digital library involves several more or

less independent actors. The following broad classes of actors can be distinguished,

based on their role in the digital library [dVEK98]:1

end­users;

content providers;

content access providers;

annotators.

The end­users are the consumers of the digital library. They want to search and

browse the digital library to retrieve multimedia objects that satisfy their information

need. The requirements of this user group has been the major topic of this thesis

so far. The other actors are the producers in this environment. They collect and

manage the multimedia data; their requirements are the topic of this chapter. The

first type of producers are the content providers, who own the multimedia data. They

decide in which format the data is delivered to the end­users, and they may want to

charge money for usage of the footage. Another producer, the content access provider,

manages the metadata for searching the collection. Content abstraction (describing the

content of multimedia objects using metadata) is the task of the annotators, the third

type of producing actors; these include both human annotators and (semi­) automatic

metadata extraction software.

A content access provider is not necessarily part of the same enterprise as the

content provider. Conversely, a successful access provider may manage metadata

about multimedia footage of many different owners. For example, a news archive

may provide access to video fragments from both public and commercial broadcasters.

And, each owner may desire a different policy to serve the data. The end­user decides

DATABASES AND DIGITAL LIBRARIES 111

whether to pay for (possibly) better quality data, based on the summary information

provided by the content access provider.

Because of copyright issues, content providers are reluctant to have other parties take

care of their data. Therefore, it is an unrealistic assumption that the metadata required

by the content access provider and the content itself may reside at the same physical

location. When multimedia digital libraries start to move out of research laboratories

into the real world, legal issues become suddenly a significant factor influencing the

success or failure of software that supports the management of a multimedia digital

library.

Similar to the different roles for owners and access providers, which can take

place in different organizations, the annotation process does not have to take place

in the same business as the content provider or content access provider. The rise of

small innovative enterprises may be expected, developing very specialized extraction

software that uses a lot of domain knowledge, e.g. ‘face recognition of European

politicians’. Such parties will prefer to sell their extraction service rather than their

software. Even in the unlikely case when all annotation is performed by the content

provider itself, the people involved in (human) annotation typically work in different

departments to the ones responsible for content delivery.

6.3 IMPLICATIONS FOR THE DESIGN OF DIGITAL LIBRARIES

The independence of each of these cooperating parties conflicts with the traditional

approach of using a centralized database system. Apart from the organizational mat­

ters mentioned in the previous section, technical arguments also favour a separation

between content and metadata. Searching and browsing with many simultaneous users

has different system requirements to streaming multiple video streams; for the latter,

see e.g. [Gem95]. Multimedia communication technology develops fast and is best

handled by the operating system, as argued in [LMB+96]. Similarly, metadata extrac­

tion should be handled separately from its usage in retrieval. The extraction process

may involve much computational processing, demand access to special knowledge

bases, or use specific hardware. A good example of the latter is the extraction of

closed caption from the analog video using special decoder hardware.

6.3.1 An architecture for multimedia digital libraries

Both the requirement of cooperation between independent parties, and the technical

considerations mentioned above, make it impossible to use a centralized monolithic

DBMS that controls the whole environment. An open distributed architecture is

needed, that is in many ways similar to the web. But, instead of leaving the database

approach completely behind (a step that advocates of ‘intelligent agents’ seem to

encourage), this thesis argues that management of the digital library requires some

central unit of control; which can be achieved with a high­level schema describing the

data and operations in the digital library. The database idea of central schema, specified

in an abstract data model, is very important for designing multimedia digital libraries.

Data independence, separation of the specification and structure of the data from the

data itself, is too valuable to disregard completely. Other important benefits of the

112 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

�✂✁☎✄✝✆✟✞✡✠☞☛✍✌✏✎

✑✓✒✕✔✟✖✘✗✚✙✜✛✍✢✏✣

✤✦✥★✧✪✩✝✫✭✬✮✥✰✯✍✱✲✥✟✯✴✳✍✵✏✶ ✷✦✸✰✹✻✺★✼✡✺✟✹✻✺✾✽✓✺✟✹✻✺❀✿✜✺❂❁✴✸

❃✓❄✰❅✻❄❆❃✭❇✝❈✟❅❉❇✝❊✚❋✲❄✟●■❍❑❏▲❃✭❇▼●❖◆✕❈✟❅✻❊✚●✍❍

Figure 6.1. An open distributed architecture for multimedia digital libraries.

database approach (such as algebraic query optimization and concurrency control) rely

on data independence. Furthermore, as motivated in Chapter 3, content independence

is another requirement for multimedia digital libraries, which is impossible to achieve

without central coordination as well.

Figure 6.1 shows an open distributed architecture, developed especially for multi­

media digital libraries. It offers a solution somewhere in between the two extremes

of no control (like the WWW) and complete control (like traditional DBMSs). The

architecture consists of clients, daemons, media servers, a metadata database, and the

data dictionary/directory2. A ‘software bus’ connects the component systems and

provides a single name­space for all components.

The data dictionary/directory manages the specifications of data types and oper­

ations on these types. It is also the only interface to access the data, hiding the

details of the physical implementation of the data model from the other components.

Extensions to and usage of data types or operations must be registered with the data

dictionary/directory. It thus has a complete overview of data and operations in the mul­

timedia digital library, providing an opportunity for query optimization, concurrency

control and transaction management. This is also the place to implement caching poli­

cies and handle security issues. Finally, this overview is used to keep track of necessary

contracts between the different participants of the digital library. Content providers

will demand guarantees about their property of the data, ensuring that e.g. annotators

will not violate the copyright protecting their content. If all access to the data has

to pass through the data dictionary/directory, this allows the partners to monitor what

happens to the content, and restrict access to multimedia objects that are covered by a

legal contract.

The metadata database supports the retrieval functionality, and should be a multi­

media DBMS as defined in Chapter 3. Instead of the objects themselves, it stores the

locations of multimedia objects (referred to as object descriptor in the rest of this chap­

ter) in the media servers, together with all other schema information about the media

items, like their relationships to other objects, as well as their content abstractions.

DATABASES AND DIGITAL LIBRARIES 113

When a new data type is registered in the architecture, the data dictionary/directory

creates tables in the metadata database to store (references to) instances of the new

type, and it manages the access to these tables. So, the metadata database should

be tightly connected to the data dictionary/directory, because the latter drives the

query processing in the metadata database. In a research prototype such as the Mirror

DBMS, these two components can be fully integrated. In practice, however, people

constructing a digital library will prefer a commercial DBMS for storing the metadata.

Because a commercial (read relational) DBMS is essentially a black box that cannot be

opened, these components will have to be implemented in different software systems,

hence the separation in two components in the figure.3

In a multimedia digital library, operations include complex metadata extraction

techniques, but also relatively simple operations like moving an object from one loca­

tion to another or performing data format conversions. Because such operations may

be implemented by annotators, content providers, as well as the access provider, whose

computing equipment may reside at different physical locations in different subnets,

the daemon paradigm is introduced to provide an extra level of indirection. Daemons

perform operations specified in the schema, but they are only loosely connected to

the other components. The daemon paradigm is further explained in the following

subsection.

Media servers are managed by the content providers. A media server handles the

delivery of multimedia data to the clients. It is responsible for playing synchronized

audio and video streams. The media servers also communicate with daemons that

need the multimedia data for their operations. Because the media servers are separate

components, they may be implemented on special hardware with an operating system

that is especially suited to handle multiple streams of varying quality of service.

6.3.2 The daemon paradigm

Daemons are components of the architecture performing operations. A daemon re­

quires an input object, and generates an output object; for example, a daemon can be

used to transcribe a video object. A daemon can operate on its own initiative (called a

client daemon) or on request (called a server daemon). An example of the latter is the

implementation of thesauri in the image retrieval prototype discussed in the previous

chapter.

Conceptually, a daemon is simply a user­defined function in the multimedia database

system. But, unlike user­defined functions in extensible databases, daemon operations

are only loosely connected to the metadata database. These operations may be per­

formed on a different machine than the database server, for the purpose of separating

the creation of metadata from its management. Thus, this design provides a simple

form of (manual) load­balancing; further development of the software bus may enable

automatic load­balancing.

Some degree of autonomy, obtained through the notion of client daemons, is consid­

ered very important for a multimedia digital library. First, it increases the extensibility

of the architecture. In general, the process of (semi­) automatic content abstraction

is not well understood. A loosely coupling between the actual code doing the ab­

straction and the specification of content abstraction techniques in the schema enables

114 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

experiments with new algorithms. Also, new products or research prototypes can be

integrated without having to produce an ADT for an extensible DBMS, which is usu­

ally a complicated task, and certainly impossible without knowing the inner workings

of the extraction software. Another (quite pragmatic) argument in favour of loosely

coupling is the fact that daemons may crash, especially on slightly different input

data than expected, because of different implementations of compression ‘standards’

and the like. Finally, such autonomy allows each participating organization to move

daemons around, perform software upgrades, and assign resources, without depending

on some central staff function like a database administrator.

Client daemons, the class of daemons that initiate their operation themselves, request

input objects by issuing a get work query. The data dictionary/directory registers

the work that has been assigned to each daemon. The daemon has to commit to

performing its operation within a certain time; after that time, its input objects may be

assigned to a different daemon in subsequent get work calls. At an abstract level,

the get work query should specify three conditions: the parent condition p and two

child conditions c1 and c2. The data dictionary/directory returns a collection of object

descriptors for media items that satisfy p, are connected (through relations defined in

the schema) to an object fulfilling c1, but are not connected to an object fulfilling c2.

For example, a daemon may specify that it operates on video objects (p) that have a

transcript (c1) but do not have subtitle annotations (c2). Most daemons can specify

their requested input objects with conditions p, c1, and c2 that only use constraints on

data types and normal attributes (e.g. ‘CNN news bulletins of last week’); these are

classified as type­triggered daemons. But, in some cases, it may be important to filter

also on the content of the media items. A simple example of such a daemon, classified

as content­triggered daemon, is a client daemon that performs speech recognition; the

data dictionary/directory must be capable of processing get work queries specifying

that the input audio fragments should have a high likelihood to contain speech.

6.3.3 The software bus

The software bus takes care of communication between the various components of
the digital library architecture described in the previous sections. Ritter has reviewed
different classes of middleware that is used to connect a DBMS with its applications
[Rit98]. Quoting Ritter, it is clear that middleware is used in ‘normal’ database
applications for reasons similar to the motivation of the daemon paradigm:

If the server is performing an application­specific task for one resource­hungry user,

it’s unavailable to serve the needs of all other users. It is better to partition this work

so hardware resources can focus more accurately on the neediest activities.

Middleware that supports interoperability between distributed components seems

an excellent choice for the realization of Figure 6.1. For example, the CORBA standard

(see e.g. [OH97]) supports the low­level functionality required to support daemons

in heterogeneous environment. It allows interoperability between daemons devel­

oped in different programming languages and running on different operating systems.

CORBA’s naming service can be exploited for locating currently available daemons,

possibly in combination with the property service or the trading service. Once the inter­

faces of the components have been specified in CORBA’s interface definition language

DATABASES AND DIGITAL LIBRARIES 115

(IDL), any CORBA­compliant object request broker (ORB) provides an implementa­

tion of the software bus. In principle, each participant in the digital library may even

use a different ORB, in which case CORBA’s communication protocol (IIOP) will

transparently process requests and replies between the ORBs.

6.4 PROTOTYPE IMPLEMENTATION

This section explains how the proposed architecture can be applied to build a prototype

digital library for images collected from the WWW. The software bus is based on the

ORBacus (public domain) object request broker.4 The data dictionary/directory and

the metadata DBMS are integrated using the Mirror DBMS.

6.4.1 Interface definitions

To illustrate the interaction between different components of the digital library using

CORBA, the interfaces used in the communication with the Mirror DBMS are now

described in more detail. The general idea of the interface definitions is that they

provide an IDL wrapper around the Mirror DBMS. This makes the conceptual level of

the Mirror DBMS (cf. Figure 5.1) available to all participants in the digital library.

Each media item in the digital library has a unique identifier, the object descriptor,

which encodes the location of the multimedia object in the media server. Assuming

that the media servers and the metadata database share common knowledge about the

representation and semantics of these object descriptors, it is sufficient to specify its

data type as any, which matches the type of any IDL specification.

typedef any media object descriptor;

In the Mirror DBMS, query formulation proceeds by providing examples and rele­

vance judgements. A collection of example objects can simply be represented by a

sequence of object descriptors:

typedef sequence<media object descriptor> id list;

The user’s relevance judgement about an object is represented by a structure con­

taining its object descriptor and a long indicating its relevance. A sequence of such

structures models the collected relevance judgements in each iteration of the query

process.

struct query feedback item {

media object descriptor id;

long relevance;

};

typedef sequence<query feedback item> query feedback;

For simplicity, it is now assumed that the schema of the metadata database consists

of tuples with object descriptors and their associated metadata. The following sample

IDL defines data types for the result of queries. The object field stores the metadata

116 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

for the returned object. The current protocol between client and metadata database

does not provide more information about the type of the returned object.

struct query result item {

any object;

media object descriptor id;

};

typedef sequence<query result item> query result;

Using these definitions, the wrapper around the Mirror DBMS query interface is very

simple. This example discusses only retrieval by content; Section 6.5 touches briefly

upon the topic of more advanced queries.

interface database wrapper {

query result query by example(in id list ids);

query result relevance feedback(in query feedback f);

}

Any client that finds the object request broker of the digital library and uses these

interface definitions can now interactively query the Mirror DBMS by example. In

his Master’s thesis [vhH98], Van het Hof has performed a similar exercise to define

the interfaces for the data dictionary/directory, media servers, and client and server

daemons. As a result, by implementing the daemon interfaces, any actor in the

multimedia digital library can extend the digital library with new algorithms to extract

metadata from content.

6.4.2 Demonstration system

A simple web­based image retrieval system demonstrates the use of the wrapped Mir­

ror DBMS in the proposed distributed architecture (see Figure 6.2). In this prototype

implementation, the object resolution task of the data dictionary/directory has been

delegated to CORBA’s naming service. Because the current implementation does not

do load­balancing, and assumes that daemons can formulate their get work query

directly in Moa, the other tasks of the data dictionary/directory have not been imple­

mented. Despite of these simplifying assumptions, the result has provided sufficient

functionality to create the image retrieval prototype discussed in Chapter 5.

To minimize the effort of developing daemons, daemon writers can use an abstract

daemon framework. They only have to extend from the base classes provided by this

framework, and implement the daemon’s core functionality. A ‘daemon starter’ makes

sure the daemon is loaded and initialized correctly, which is based on the builder design

pattern (see [GHJV95]).

Six client daemons have been implemented for automatic content abstraction; these

implement the two colour and four texture feature extractors mentioned in the previous

chapter. These daemons request object descriptors of images that they have not

processed before. Two different implementations of server daemons form the ‘society

of thesauri’ in the image retrieval prototype. The first is a wrapper around the Wordnet

DATABASES AND DIGITAL LIBRARIES 117

�✂✁☎✄✝✆✟✞✡✠
☛✌☞✎✍✑✏✓✒✔✍✕✒✗✖

✘✚✙✜✛✣✢✝✤✦✥✧✙✟★✪✩✧✙✫★ ✬✚✭✫✮✰✯✜✱✡✯✟✮✲✯✴✳✵✯✟✮✲✯✎✶✕✯✔✷✸✭

✹✻✺✟✼✲✺✽✹✿✾✝❀✟✼✰✾✝❁✗❂✧✺✟❃✪❄❆❅❇✹✿✾❈❃❊❉❋❀✫✼✲❁✗❃✪❄

●✚❍✗■✧❏✽❑✻▲❋❏✟▼◆❍✗❖

P✝◗❙❘❯❚❲❱❳◗❙❚❨❘
❩❭❬✑❪✝❫❵❴✲❛✣❜❞❝❊❡✫❢❤❣✻❡❋✐✫❢❥❛✗❦

Figure 6.2. The demonstration system.

thesaurus, which can be consulted to expand textual queries. The other implementation

of a server daemon uses a private instance of the Mirror DBMS to query association

thesauri, automatically constructed from the collection as discussed in Section 5.4.3.

Connected through the software bus, together these components form a digital

library. The WebRobot daemon searches the Internet for image URLs, and inserts

them into the metadata database. At regular time intervals, the Move daemon submits

its get work query, which requests image URLs whose images have not yet been

stored on the media server. It then moves a copy of the image to the media server.5

Notice that in this scenario, the URLs are metadata about the source of the images, and

not the object descriptors in the digital library. Next, the feature extraction daemons

start to create content abstractions of the image data.6

The user interface of the client application consists of two parts: a graphical user

interface, and a non­graphical part. The non­graphical part hides the underlying

complexity (a façade pattern [GHJV95]) and provides a common high­level interface

to GUI designers. When starting a client, the non­graphical part connects to the data

dictionary/directory of the digital library, bootstrapping with its IOR (a large number

encoding all necessary information to locate an object) retrieved from a publicly

known URL (the only parameter determining which digital library will be accessed).

Next, the remaining components of the digital library are located through the data

dictionary/directory. The current implementation of the client application is a stand­

alone Java application.7

6.5 DISCUSSION

Every component of the architecture can in principle take advantage of the full power

of the Mirror DBMS for multimedia retrieval (including content­triggered daemons).

But, as mentioned before, in the current implementation the clients have to express

their queries directly in Moa, since there exists no proper compiler from OQL to Moa

yet. Also, the wrapper hides the schema of the Mirror DBMS behind the interface, which

is clearly demonstrated in the definition of query result. To parse the returned

118 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

any objects, only clients that ‘know’ the schema can formulate queries against it. This

situation should be improved upon with a tight mapping of Moa’s data type definitions

onto IDL specifications. Furthermore, the definition of get work queries would be

greatly improved if it can use a transitive closure operator on the schema. Ideally, the

data model and query language would support data modelling with semantic networks,

as suggested in [dVEK98].

The complete distributed architecture, including the daemons and the media servers,

may together be viewed as a distributed multimedia DBMS. The suggested application

of CORBA in this distributed DBMS takes one step beyond using middleware to

‘simply’ connect between a traditional DBMS and its applications: the middleware is

pushed into the implementation of the database management system. This matches the

way the CORBA standard develops: it starts to provide more and more services that

used to be the domain of DBMSs, such as transaction management and security. But,

CORBA itself does not address query optimization and efficient processing of data­

intensive operations, as it encourages encapsulation even more than object­oriented

database systems; it should not be expected to replace the database approach. More

research is required to develop a new type of distributed database management systems

that exploit CORBA services maximally, in combination with declarative schema

definitions and query processing as is being developed in the So­Simple DBMS and the

Mirror DBMS.

6.6 SUMMARY

Examining the environment in which a multimedia digital library typically has to oper­

ate, it turns out that the traditional monolithic DBMS architecture is clearly unsuited.

An open distributed architecture is the only solution to address copyright issues on

the one hand, and widely varying requirements on hardware and software on the other

hand. This chapter has proposed to develop a new type of distributed DBMS, in which

advanced middleware is an integrated part of its architecture. A first prototype imple­

mentation has been presented, based on the Mirror DBMS and CORBA middleware.

This implementation has been applied effectively to build an image library that is pop­

ulated with images retrieved by a Web robot. The integration of CORBA and database

approach looks promising. But, much research remains to be done, especially with

respect to load­balancing, updates, recovery, and security.

DATABASES AND DIGITAL LIBRARIES 119

Notes

1. This categorization is largely based on informal talks between researchers of the Cambridge Research

Laboratory and media archivers of WGBH, a part of the US Public Broadcasting System; see also [dVEK98,

EFI+99, Swa99].

2. This is called the data dictionary/directory to distinguish it from the (local) data dictionary of the

metadata database system.

3. The reluctance of database vendors to start development of DBMSs with a different architecture

than those developed in the 1970s explains the success of so­called application servers. Application servers

provide the type of functionality attributed to the data dictionary/directory in the distributed architecture

described in this chapter. Such software manages extra information about the data and its applications,

outside the scope of the DBMS. For administrative applications, such extra information is usually referred

to as the ‘business logic’.

4. ORBacus is available from URL http://www.ooc.com.

5. In the prototype implementation of the architecture, the media server is just a simple Java server that

uses the file system to store its data.

6. Unfortunately, not all steps of Figure 5.4 have been implemented as daemons yet. This is mainly due

to the fact that a CORBA language binding for Perl is still very experimental, and both image segmentation

and clustering of the feature vectors use Perl and its modules extensively.

7. A preliminary version of the client application could run within the Netscape web browser, whose

private ORB communicated transparently with the ORB of the multimedia database. Unfortunately, varying

bugs in different versions of the browser’s implementation (for different platforms) render this not a very

usable solution yet.

7
THE EVALUATION PROBLEM

karma police

arrest this man

he talks in maths

he buzzesLikeAfridge

hes like a detuned radio.

—Radiohead, Karma police

7.1 INTRODUCTION

Today, there are no satisfactory methods for measuring the effectiveness of multimedia

search techniques. Precision and recall types of metrics have been used in some of the

literature but are impractical due to the tedious process of measuring relevances. The

process is complicated because of human subjectivity in tasks involving multimedia.

Also, multimedia collections quickly grow very large, making evaluation expensive

with respect to the required hardware. There seem to be no standard corpora or

benchmark procedures.

In the previous chapters, the functionality provided in the Mirror DBMS has been

evaluated by building actual systems, and its performance has been tested on the TREC

collection. Measuring its effectiveness for multimedia retrieval has been discussed only

shortly. The main purpose of this chapter is to explain the problems with evaluation

of multimedia information retrieval, and demonstrate that most previous ‘evaluations’

reported in literature are neither very useful, nor very convincing. Another goal is to

121

122 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

Table 7.1. Overview of amount of papers reviewed

topic # papers # projects

audio/speech 7 4

image features 14 14

image databases 20 9

video 7 6

web, multimedia 8 4

identify the basic ingredients of a better evaluation procedure; for, proper evaluation

is a necessary step to further improve multimedia retrieval techniques.

This chapter starts with a review of evaluation approaches that have been taken in

literature about multimedia retrieval systems. Table 7.1 summarizes the distribution of

the studied papers over relevant research topics. Papers dealing with image retrieval

have been divided in two categories, one focused on feature representations themselves

and one on the retrieval of images using these representations. The web/multimedia

category consists of papers on research projects that attempt to address retrieval of

multimedia documents rather than base objects of some particular new medium. The

last field provides a rough estimate of the number of different research projects that are

reported upon in the papers used. The review covers far from all related publications,

but the sample of papers studied is sufficiently large to draw some sad conclusions,

which are the topic of Section 7.5. Section 7.6 identifies some important aspects

that should be addressed in the development of a better evaluation methodology for

multimedia retrieval systems.

A summary of the literature review presented in this chapter has been published

before as part of [PMS+98].

7.2 QUANTATIVE EVALUATION

Quantitative evaluation uses corpora, for which a set of queries with previously col­

lected relevance judgments provide a ground­truth for evaluation. Although mainly

used in information retrieval community, with a variety of test collections available for

public use, other research fields have started to develop similar collections.

7.2.1 IR evaluation methodology

Information retrieval research has developed a strong scientific evaluation method­

ology. Using large data collections, and ground­truth data for a set of queries, the

quality of the retrieval systems is measured and then used to compare different ap­

proaches. Evaluation with ground­truth data in traditional IR is based on the following

assumptions:

The user reads all the results;

Reading one relevant document does not influence the judgment of other documents

in the result set;

THE EVALUATION PROBLEM 123

Relevance is considered a binary property.

Under these assumptions, the quality of the result for a query can be expressed using

recall (how many of the relevant documents in the collection have been retrieved?) and

precision (how many of the retrieved documents are relevant?).

For systems that produce ranked output, it is not likely that the user checks all

query results. This is resolved by choosing several cut­off points, to represent the fact

that not every user will evaluate as many documents of the result set, and computing

average recall and precision values for these sets. A common method is to compute

the 11­point average precision. This measure is computed by averaging the precision

over the standard recall points (0%, 10%, 20%, etc.). To get the precision for these

standard recall points, precision and recall are calculated for each relevant document

in the result set and interpolated.

Comparison of the performance of different approaches requires a decision whether

the observed difference in performance is statistically significant. For, IR experiments

are stochastic experiments affected by random errors. It is not sufficient to compare

different retrieval approaches by their mean performances, because these can be heavily

affected by outliers. Instead, the distributions of the observations should be compared.

The statistical significance of the performance difference is best checked using non­

parametric tests, because these tests make least assumptions on the experimental data.

The sign­test and the paired t­test (which is parametric though) are most widely used

in IR.

7.2.2 Test collections

Text Many different collections are available to evaluate retrieval performance of full­

text retrieval systems. The Cranfield collection is an old collection that is rather small,

but has complete relevance judgements. The TREC collection is more popular because

of its more realistic size, but it has incomplete relevance judgements due to the pooling

technique, as discussed in Section 5.6. The complete data set consists of approximately

five Gigabytes of text documents with relevance judgments for 400 topics. The data

set is continuously expanding, especially with documents in different languages for

the evaluation of cross­lingual retrieval systems, and with a static subset of the WWW

for the evaluation of web retrieval. Another benefit of the TREC collection is that

it comes with some scripts to process the output of retrieval systems to compute the

interpolated precision at various recall points, and compare the performance between

different systems.

Speech Schäuble and Wechsler did innovative work in speech retrieval with an open

vocabulary [SW95, Sch97]. For this work, they developed a test collection of 1289

documents with relevance judgments for 26 queries [WS95].1 A different collection

was constructed by Cambridge University together with Olivetti research, to evaluate

their video mail retrieval system. For evaluation purposes, they collected relevance

assessments for 50 requests on a (fairly small) collection of 300 messages, the VMR1

message set [JFJY96, BFJ+96].

The situation with test collections for speech retrieval has started to improve, since

in TREC­6, the Spoken Document Retrieval (SDR) track has been started, aimed at the

124 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

evaluation of speech retrieval systems. The collection consists of a human transcribed

text and the output of a speech recognizer of the same data. The TREC­6 collection

consisted of 50 hours of broadcast news, and 49 queries with one relevant document

per query [VH97]. The TREC­8 SDR corpus is significantly larger. It consists of

approximately 385 hours of broadcast news, in about 900 files, for which 50 topics

have been defined. Because the same data set has been used for TREC­7 SDR, 23

topics have relevance judgements. Evaluation is done in two conditions, with or

without known story boundaries.

Other audio Musclefish is a small company in Silicon Valley that specializes in

audio retrieval techniques. They developed feature extraction for audio retrieval, and

evaluated the performance against a manually classified collection [WBKW96]. The

collection is rather small; it consists of about 400 samples varying from 1 to 15 seconds,

that has been manually classified in groups like ‘bells’, ‘crowds’, and ‘laughter’. For

his evaluation of machine learning techniques for audio retrieval, generalized from

speaker identification research, Foote [Foo97] too used the collection gathered by

Musclefish, but only provides details about classifying the data into a small amount

of groups. In a demonstration on the web, Foote applied the same classifier to search

music based on similarity, but this has not been evaluated.

Image The Brodatz texture collection is used often to evaluate image retrieval al­

gorithms; e.g., in this review, [SC94], [LP96], [MM96], [RSZ96], [ZCA97], [PP97],

[MP97], [CSZSM97], [SJ], and [VL99] based their evaluation on the Bordatz col­

lection. The complete Brodatz database consists of 112 classes of each 9 images

[PMS96]. But, most of these papers mention only the existence of 112 images, and

a small subset of 13 homogeneous textures is really used widely. In some of these

papers, the Brodatz set is used to construct larger data sets, using images composed of

several pieces of different textures.

VisTex, provided by the MIT Media Lab, has 167 textures from natural scenes,

categorized into 19 mutually exclusive groups. This collection is used in [Min96] and

[ZCA97]. The MIT papers also use a collection of 96 vacation photo’s, e.g. [MP97]

and [PM95], and another data set called the ‘BT collection’ (also used in Chapter 5)

[Min96]. De Bonet (of the MIT AI Lab) used a collection based on 29 Corel CD, each

containing 100 images of some thematic class [Bon97, BV97]. Later, he evaluated his

texture features on a SAR data set for vehicle classification in radar images [BVI98].

Note that he argues that the Brodatz set is ‘too easy’ for proper evaluation of texture

models [BV98]. But, he does not mention that the images in the Corel collection are

not very suited for the evaluation of image retrieval systems either. For, the number of

images per class is high in comparison to the number of classes, making the retrieval

task of similar images (defined as images from the same class) too easy.

The MeasTex initiative of University of Queensland provides a common frame­

work for evaluation of texture classification algorithms.2 This framework contains

software and test suites necessary to measure performance of an algorithm, as well

as implementations of and results for some well known texture classification algo­

rithms. The MeasTex framework rates an algorithm based on its average performance

THE EVALUATION PROBLEM 125

on a test­suite. The data set consists of the Brodatz collection and the VisTex col­

lection, supplemented with the MeasTex images (artificial and natural textures) and

the ‘Ohanian and Dubes’ images. Although the task of texture classification is only

partially related to building multimedia retrieval systems, the availability of a common

evaluation framework for this subtask is definitely a step in the right direction.

Gevers and Smeulders evaluated the effectiveness of several color models for color

invariant retrieval [GS96]. They use a collection of 500 images of 2­D and 3­D

domestic objects, recorded with a CCD color camera. They randomly selected a

set of 70 objects, and recorded those objects again (so these have different lighting

conditions) to create a query set. De Bonet did some similar experiments with the

Corel data, by varying visual characteristics of some of the images (such as brightness,

contrast, and varying degrees of additional noise) and measuring the effect on retrieval

[BV97, Bon97].

Some initiatives aim to create huge image collections using the WWW as a source.

Sclaroff et al. developed a fully operational system ImageRover [STC97]. Their

fleet of 32 robots is estimated to collect approximately 1 million images monthly.

To ensure diversity of images, they start the robot at several Yahoo categories. The

Dutch national SION­AMIS project3 has started to construct the large Acoi benchmark

[NK98]. The benchmark is geared at provision of 1 million still images, hundreds of

video sequences, and thousands of audio tracks. Unfortunately, the current setting

of these benchmarks only measure the execution performance, not the quality of the

retrieved images, rendering the data set useless for evaluation of effectiveness.

Video None of the reviewed papers has performed an evaluation experiment to

measure the quality of video retrieval. But, some papers reviewed the qualitity of

scene segmentation algorithms. Gargi and Kasturi [GK96] evaluated different color

spaces and frame difference measures used in video segmentation algorithms. They

constructed a test set of 21,000 frames from 9 movies, with 200 ground truth cuts.

The human subjects first previewed the video data at full­speed, and then marked the

cuts during half­speed viewing. They found that this procedure resulted in the most

consistent results. Zhang et al. [ZKS93] used only three videos.

The MITRE corporation used an adapted version of the Text­tiling algorithm (see

[Hea94]) on the captions of broadcast news to find program boundaries [MHMG97].

The adapted algorithm did not only find topic boundaries, but provided topic classifica­

tions. They collected captions for 17 1/2 hours of video data, but did not hand­segment

topic boundaries, only program boundaries. They did notice that the program changes

that they missed using the text had visual cues, so an algorithm combining text and

vision might work better.

7.3 REDUCING THE COST OF EVALUATION

The most significant problem with the creation of test collections for multimedia

retrieval is the cost involved; both in time (of researchers and test users), and, especially

in case of high­quality video data, in the required hardware for storage and distribution.

Another problem is the definition of the ground truth: which multimedia objects are

126 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

relevant for some task? This section discusses some approaches that somehow reduce

these problems, without limiting the applicability of the results too much.

Lakshmi Ratan and Grimson evaluated the performance of their method for the

classification of scenes in images without a manually annotated image collection.

They compared the retrieval performance of their method to the performance of QBIC

[NBE+93] on the same data set, counting the number of false positives in the result

sets of both systems [RG97]. The collection used is created from the Corel photo

library, this particular version consisting of 800 annotated images of natural scenes.

La Cascia et al. also avoid manual annotation of the data set [CSS98]. They

describe a small user study to measure the performance of their retrieval system

collecting images from the web ([STC97]). In an evaluation, they randomly select

100 images from a 10,000 image collection. The subjects then have the task to try

and find those images using the retrieval system. A search is considered successful

if the subjects could get the image displayed in the top 100 within four iterations of

relevance feedback. They vary the following conditions: use visual, textual, or both

for content representation, and use visual, textual, or both for the relevance feedback.

The experiments have been repeated for larger database sizes, up to 100,000 images.

Only two subjects have been studied however, and these were the same in the different

conditions.

A similar experimental setup has been used by Papathomas et al. [PCC+98],

there described as the ‘identical­target testing paradigm’. This paper is unique in the

thoroughness of experimental evaluation, and is further discussed in the beginning of

Section 7.6.

Minka uses identical­target testing as well, but evaluated the algorithms in his

Foureyes learning agent on learning time using simulation instead of real users [Min96,

PMS96]. He measured the number of corrections that a user would have to supply

until the database system ‘knows’ the correct classification for all objects, taking this

number as an approximation of the quality of the system.

Lienhart et al. describe the MoCA video abstracting project in [LPE97]. They

avoid the problem of generating ground truth for the evaluation, using commercial

video abstracts broadcast on German television, to compare with the quality of the

generated abstracts. The evaluation experiment had a setup similar to the Turing­

test. They found that the human subjects could not tell the difference between the

automatically generated abstracts and the commercial abstracts. Notice however that

they did not evaluate whether it is possible to do worse, by using some randomly

selected fragments of the video data as a baseline performance.

Vasconcelos and Lippman presented a Bayesian video modeling framework for

segmentation and classification of the segments [VL97]. They performed some ex­

periments to select the best movie classification algorithm, using 24 trailers of two

minutes duration. This small collection contains about 100 shots (which consumes 26

Gb disk space though). They used the manual classification from the ‘Internet Movie

Database’ to evaluate the quality of the automatic classification against.

THE EVALUATION PROBLEM 127

7.4 MINIMAL EVALUATION

Another approach to reduce the cost of evaluation is to perform only some minimal

evaluation as ‘proof­of­concept’. A great deal of published multimedia retrieval re­

search barely has an evaluation phase. The techniques are explained, and the results

of a small set of example queries are given to convince us that the techniques work.

Although some authors seem to realize the relative weaknesses in these evaluations,

others are perfectly happy with the ‘proof’ derived from their experiments. The fol­

lowing list gives some examples of multimedia retrieval projects, that claim to have

evaluated their systems:

The QBIC image retrieval project by IBM was very influential, which demonstrated

the potential usage of image querying by similarity for the first time [NBE+93]. In

[FBF+94], the effectiveness of the color­based image retrieval has been measured

for a relatively small database (1000 images for 10 queries). Retrieval by shape

has been evaluated on an even smaller scale (259 test images and 7 queries).

The Chabot project at Berkeley [OS95] used the Postgres DBMS to implement

image retrieval techniques. They evaluated the system using a single query (‘yellow

flower’), on a database containing 11,643 images (with 22 yellow flowers).

Vellaikal and Kuo (UCLA) used a set of 3,400 color images with four queries in

the ground­truth [VK95]. In [VK96] 12,000 images were used in an evaluation

experiment with three queries.

The MARS project at University of Illinois ([MRC+97]) used a collection from the

Getty museum to experiment with shape based retrieval. This collection has 300

images of ancient African artifacts . In [ORC+97], the quality of retrieval has been

evaluated for thirteen conceptual queries, like ‘stone masks’ or ‘golden pots’. In

other work, they did not evaluate the quality of the retrieval, but they did study the

relevance information provided by users from the system [RHMO97a, RHMO97b,

RHM98]. Their main conclusion is that different users have very different measures

of what images are ‘similar’, and hence need relevance feedback methods.

The work on multimedia retrieval from the National University of Singapore. They

developed search engines for retrieval of faces (FACEit) and trademarks (STAR)

[NL95]. STAR has been evaluated against a database of 500 trademarks, in

which two ‘ideal’ ranked retrieval sets have been constructed by ten people (using

voting to get agreement). The results of the system are compared to this ideal

result [WLM+97]. The same group developed the more general content­based

retrieval engine CORE [WNM+95]. For the evaluation of content­based retrieval

of segmented images, Chua et al. used a small collection of about 100 images

divided in 10 different categories [CLP94].

Columbia University, NY, has projects on both image and video retrieval. Smith

and Chang evaluate color retrieval in their VisualSEEK system using a collection

3100 images using a single request to select the 83 images of lions in the collection

[SC96, SC97]. The video retrieval system VideoQ, allows some dynamic aspects

128 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

in the query language [CCM+97]. They use a collection of 200 shots, categorized

into sports, science, nature, and history. For evaluation they used only 4 queries.

In the Informedia project at Carnegie Mellon University, an impressive amount of

tools for video retrieval have been implemented [WKSS96]. But, for evaluation

of their News­on­demand application, only the quality of the output of the speech

recognizer has been evaluated [HW97].

Ardizzone and La Cascia describe the JACOB video retrieval system developed

at University of Palermo [AC97]. Their evaluation uses a collection of 1500

keyframes extracted from about 500 shots. They use a test set of five example

queries, for topics ‘water polo’, ‘interview’, ‘TV­show’, ‘TV­movie’, and ‘cycling

race’.

The research of Sheikholeslami et al. of State University of New York at Buffalo

includes the usage of clustering techniques to improve retrieval. In [SCZ98a]

they evaluated their system with 29,400 texture and color feature vectors (without

mentioning the number of images used). The database is classified in five classes

(cloud, floral, leaves, mountain, water). ‘Recall’ and ‘precision’ ratios are used to

express the quality of the resulting clusters. Retrieval is evaluated using 19 query

images. In [SCZ98b] they evaluate a neural network to learn weights (off­line)

for combining feature spaces during retrieval. In this paper, they use judgments

for 400 pairs of images, classified as similar or non­similar. They neither mention

how many different images are used to construct the set of pairs, nor who did

classification.

7.5 DISCUSSION

Summarizing, we may conclude that there exists no appropriate methodology for

the evaluation of a multimedia retrieval system. The traditional information retrieval

methodology using test collections with ground­truth is hard to apply to the multimedia

case for two reasons. First, increasing the size and widening the scope of collections

faces high costs. Most collections are small, or consist of a small amount of rather

homogeneous groups (like the collections based on the Corel data). Some collections

have been tailored to evaluate only a very specific low­level task, e.g. the evaluation

of texture algorithms based on the Brodatz collection. Larger collections can be

gathered from the WWW with relatively low cost, but consequently have no relevance

judgements attached. Second, in most application scenario’s in which content­based

retrieval techniques seem useful, there exists no objective ground truth, because this

‘truth’ will depend heavily on the user. Therefore, it seems unlikely that an evaluation

methodology without input from several real users can draw valid conclusions about

the effectiveness of some multimedia retrieval system.

Together, these two observations can be summarized as the evaluation problem

of multimedia retrieval. As a result of this problem, the effectiveness of multimedia

retrieval systems (including the image retrieval prototype based on the Mirror DBMS)

has never been evaluated well. This lack of evaluation makes it hard to say anything

useful about the relative value of the different retrieval systems that have appeared in

THE EVALUATION PROBLEM 129

literature. Although this conclusion may seem to disqualify the field as unscientific, that

is not the intended message of this chapter: multimedia retrieval research is still in its

infancy, and the introduction of new techniques is therefore viewed as more important

than thorough (but expensive) experimental evaluation of prototypes that are not yet

powerful enough for real applications. But, the lack of evaluation methodology will

become more and more a limiting factor in the development of the field of multimedia

retrieval, and this problem should be placed high on the research agenda.

Until a better approach is found to measure the performance of multimedia retrieval

systems, it is very important that researchers realize the limitations of their experimental

‘proof’. Far too often, the results on some small collection with a narrow scope are

generalized to very different, high­level search tasks. Most papers claim to present

a novel, better approach to multimedia query processing. As proof that the novel

approach really is ‘better’, results provided in the paper’s evaluation section are vaguely

based on concepts borrowed from the scientific evaluation methodology used in IR.

The evaluation sections in the papers mentioned in Section 7.4 proof however mainly

the authors’ lack of understanding of that methodology, as:

only a small number of queries is used (often one or two);

only precision­recall measures for one cut­off point in a ranking are presented;

a significance test is not applied;

the data is divided in a small number of classes, and these are considered both the

relevance judgments and the complete description of the user’s information need;

relevance judgments are considered completely objective, but usually made by the

paper’s authors and not by real users.

Also, multimedia retrieval constitutes typically much more to end­users than ‘just’

the identification of objects of some particular class. The inherent subjectivity of

multimedia search is usually ignored completely. Almost all evaluation experiments

with multimedia search test only the success on a task of object identification; e.g.

does the image contain a lion or not.4 The emotional and aesthetic values, that play an

important role in the evaluation process of the user, are overlooked. Or, even worse,

the underlying techniques are ‘improved’ in such a way that they are less sensitive to

exactly those aspects that are important for such values.

7.6 TOWARD BETTER TEST COLLECTIONS

This section makes some recommendations for future evaluation experiments mea­

suring effectivity of retrieval in multimedia digital libraries. The first comments are

directly related to the construction and usage of test collections:

Big isn’t always better;

Define the baseline performance.

First, the variety in content of the images in the collection may matter more than

the size of a data set. Second, a baseline performance is needed to compare with.

130 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

Both issues are illustrated perfectly by [PCC+98], which reports experiments with the

PicHunter system. These authors found that even a random presentation of images

performs ‘surprisingly well when users are given the ill­defined task of judging when

images are similar rather than identical to a query’. Another quote from this paper:

‘This casts doubt on the strength of results given in other reports where no baseline is

established’. The possible explanation they offer is based on the nature of the Corel

collection that they used. Because of its small number of relatively large thematic

clusters, the probability of selecting randomly an image from the same cluster as the

query image is quite high. Remarkably, they found also that a version of PicHunter

that only uses textual annotation, and no other content­based features, performed best

with finding the target image identical to the query image. Although this can also

be explained by the nature of the collection, it provides also another indication that

content­based metadata are still not adequately modelling human perception, despite

of all the ‘great’ results presented in the reviewed papers.

The inherent subjectivity in multimedia searching makes it impossible to develop

a test suite that is not based on a user task that is performed by real users. Because

one user task can be quite different from another, proper evaluation of a multimedia

retrieval model requires the evaluation with different test sets. These different sets

should evaluate different aspects of the retrieval model of the system to be evaluated,

and in particular:

Does it effectively support the user’s task?

Can it adapt to the user’s subjectivity?

In general purpose photo archives, e.g. in the context of journalism, it seems

possible to improve existing (text­based) search systems with content­based retrieval

techniques, to assist the user with browsing large intermediate result sets acquired with

broad text queries. Sormunen et al. [SMJ99] have further developed the rough outline

of [PMS+98] into a proposal of a task­oriented evaluation framework and an efficient

procedure for constructing test collections for this task. The aim of the framework

is to base the evaluation of the retrieval system on the photo similarity judged by

users in the context of a real task: in their case, journalists performing an illustration

task. The browsable sets of relevant photos are retrieved using textual search. The

idea is to let the journalists define what perceptual similarity is between all relevant

photos (the user­perceived similarity), and later use these judgements for evaluation of

content­based retrieval systems. The advantage of the evaluation framework is that the

normal (text­based) systems in the photo archives can be used to construct the test set,

independent of the algorithms in the system to be evaluated. The recall base is built on

the test user’s similarity judgements, so these are subjective. Thus, the performance

of the content­based retrieval algorithms can be evaluated on realistic criteria.

With image collections, problems with object identification may easily hide the

problems with adapting to the subjective aspects of the user’s query. If the user

searches a ‘sad image of a lion’, an image of a small kitten with a sad atmosphere is

probably of less value than a ‘happy’ image of a lion. The music domain provides a

context that is better suited to evaluate how the query process adapts to subjectivity of

the users. Especially in music, aesthetic value is more important than objective notions

THE EVALUATION PROBLEM 131

like words, melody, or instruments used. It seems therefore a good idea to investigate

the use of a music retrieval task for measuring a retrieval model’s quality with respect

to adapting to subjectivity. A drawback is that content abstraction of music is not easy,

and the success criteria are vaguely defined and implicit to the user.

Finally, test collections for multimedia retrieval grow automatically when people

use them, because the interactive style of multimedia querying creates new relevance

judgements. When image retrieval systems become available at the WWW, or are used

in a real workplace, it is important to collect this ‘free’ input about their operation:

Log the interaction between user and system;

Give users the opportunity to enter comments.

Historical data of experiments with real users, on a publicly known data set, may

proof a very valuable source of information. It allows to replay the interaction, and

analyze reported ‘mistakes’ of the system. Given a collection and a user task, such

data is crucial to allow comparison in the laboratory between different approaches. Of

course, such data should become available just like the collection itself, in a format

suitable for exchange, so that the development of multimedia retrieval systems can

benefit from the same type of interaction between different research groups as is

common in the text retrieval community.

7.7 SUMMARY

This chapter has revealed ‘the evaluation problem’ of multimedia retrieval, which is

caused by the cost of creating test collections on the one hand, and the high degree

of subjectivity inherent to multimedia retrieval on the other hand. It reviewed the

evaluation approaches of a reasonable amount of scientific literature about multimedia

retrieval systems. Common mistakes have been identified, made when borrowing from

the quantitative IR evaluation methodology without fully understanding its underlying

assumptions. The chapter concluded with some reflections on important aspects of

evaluating multimedia retrieval systems. Further research into multimedia retrieval

systems can only be successful if the evaluation problem is addressed more seriously,

and the development of new prototypes is based on real applications, with real users,

and real user needs.

132 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

Notes

1. Their original proposal of a speech retrieval system, published in [GS92], provides a good example

of the risks involved with laboratory experiments. By using a text collection, they attempted to evaluate

their proposed retrieval system without building a speech recognizer. But, the simulated speech processing

assumed the spaces between words in the text corpus were known: they overlooked the fact that a real

speech recognizer would never be capable of detecting word boundaries.

2. See URL http://www.cssip.elec.uq.edu.au/˜guy/meastex/meastex.html.

3. More information is available at URL http://www.cwi.nl/˜acoi/Amis/.

4. The (Australian) researcher David McSquire, who works on the Viper system, characterized this

type of experiment (in personal communication) as the ‘quest for the kangaroo detector’.

8
CONCLUSIONS

The struggle itself towards the heights

is enough to fill a man’s heart.

One must imagine Sisyphus happy.

—Albert Camus, The Myth of Sisyphus

8.1 SUMMARY

A database management system is a general­purpose software system that facilitates

the processes of defining, constructing, and manipulating databases for various ap­

plications. The main characteristic of the ‘database approach’ is that it increases the

value of data by its emphasis on data independence. DBMSs, and in particular those

based on the relational data model, have been very successful at the management of

administrative data in the business domain.

This thesis has investigated data management in multimedia digital libraries, and

its implications on the design of database management systems. The main problem of

multimedia data management is providing access to the stored objects. The content

structure of administrative data is easily represented in alphanumeric values. Thus,

database technology has primarily focused on handling the objects’ logical structure.

In the case of multimedia data, representation of content is far from trivial though, and

not supported by current database management systems.

The information retrieval (IR) community has since long studied the retrieval of text

documents by their content. Also, research in topics like computer vision and image

133

134 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

analysis has led to content­based retrieval techniques for querying image and audio

collections. Retrieval systems based on these ideas are typically standalone systems

that have been developed for very specific applications. There is not much consensus

on the integration of these techniques in general­purpose DBMSs. State­of­the­art

solutions simply make new functions available in the query language. These functions

interface to otherwise still standalone software systems. This leaves to the user the

burdens of both query formulation and the combination of results for each single

representation into a final judgement. Also, this leads to inefficient query processing

for queries involving several content representations.

Like any DBMS, a MM­DBMS is a general­purpose software system that supports

various applications; but, the support is targeted to applications in the specific domain

of digital libraries. Four new requirements have been identified for this domain: (1)

multimedia objects can be active objects, (2) querying is an interaction process, (3)

query processing uses multiple representations, and (4) query formulation provides

content independence. The Mirror architecture and its implementation in the Mirror

DBMS therefore provide basic functionality for the management of both the content

structure and the logical structure of multimedia objects.

In the Mirror DBMS, content management and databases are completely integrated.

Recognizing the strong relationship with IR query processing, the inference network

retrieval model has been adapted for multimedia retrieval. The logical algebra of the

DBMS has been extended with operators for probabilistic inference in this retrieval

model. This approach to integration enables the study of new query optimization

techniques, and simplifies the introduction of parallellism and distribution in IR query

evaluation.

Other characteristics of multimedia digital libraries demand the support for distri­

bution of both data and operations, and extensibility of data types and operations. As a

solution, the integration of advanced middleware and database technology is proposed

to replace the monolithic design of traditional database systems. Again, this idea has

been worked out in a prototype implementation.

The proposed MM­DBMS architecture has been evaluated in three ways, using the

Mirror DBMS prototype implementation. First, the advantages of the integration of

content management in the Mirror DBMS have been illustrated by several example

queries capturing different information needs. The multimedia IR model developed in

this thesis has been tested in some small­scale experiments in the domains of music

and image retrieval, confirming that reasoning with multiple representations is both

possible and useful. Finally, the execution performance of IR query processing has

been evaluated using a standard text retrieval benchmark.

8.2 CONCLUSIONS

Recall the research questions motivating this dissertation:

Can we identify requirements with respect to data management that are specific

for applications in a multimedia digital library?

If so, can we support these requirements in a subclass of DBMSs (that will be called

multimedia DBMSs); that is, without violating the design principles (especially the

CONCLUSIONS 135

notion of data independence) that characterize ‘the database approach’ to data

management?

If so, can we provide this support in an efficient and scalable manner?

Regarding the first research question, Chapter 3 has clearly shown that multime­

dia data management requires specific facilities, that are not supported in traditional

database systems. A ‘normal’ DBMS stores metadata about the structure of the data in

its catalog. But, the query formulation problem of (multimedia) information retrieval

requires multimedia applications to reason about the content of the stored data. There­

fore, multimedia DBMSs have to manage metadata about the content of the data as

well. Content independence has been identified as a desirable property with respect to

the management of such content­based metadata.

With respect to the second research question, the Mirror architecture discussed in

Chapter 4 addresses the new requirements through the identification of three compo­

nents: the data abstraction component, the content abstraction component, and the

retrieval engine. Strict separation between the latter two enforces content indepen­

dence. It has been argued that the retrieval engine should preferably be based on

the Bayesian formalism, by adapting probabilistic retrieval models that have been

developed previously in IR. Chapter 5 has explained how the retrieval engine can be

integrated with a DBMS, by using the multi­model DBMS architecture proposed in

Chapter 2. Contrary to other approaches, this maintains data independence, and does

not obstruct the goal of efficient set­oriented processing. Furthermore, developing a

new retrieval model has become equivalent to changing the queries that express its

characteristics, in a high­level, declarative database language.

The third research question has not been answered completely. Although the design

of the Mirror DBMS has aimed for scalability and efficiency, the current prototype is not

sufficiently efficient to challenge the best stand­alone retrieval systems. But, it seems

possible to overcome these efficiency problems by improving the mapping between

the logical and physical levels of the architecture.

Another contribution of this thesis may have been less explicit, being slightly hidden

beneath the more technical discussions. But, this dissertation also demonstrated the

importance of considering the end­user in the design of complex software systems.

It emphasizes that the foundation of a software architecture for multimedia digital

libraries should be based on the interaction pattern between user and system. A digital

library can only become useful if it supports a dialogue in which both cooperate to

achieve the goal of satisfying the user’s information need. For, in multimedia retrieval

it is most important to find out what the user wants. This observation establishes a

relationship between the design of multimedia retrieval systems and cognitive science.

8.3 FURTHER WORK

The current result of this research is that the overall structure of a MM­DBMS has

been determined. It is now clear how the interaction between database and IR model

can take place through Moa. The core functionality works, and has been tested in some

small case studies. But, a lot of work needs to be done. The current system does not

have an implementation at the conceptual level, only at the logical and physical levels.

136 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

More development is required for a user interface at the conceptual level, and also for a

smooth integration of the open distributed architecture with the current implementation

of the metadata database. As mentioned several times, the efficiency of the mapping

between the logical and physical levels should be improved as well. At the moment,

the specification of Moa queries is done by hand, which should be generated from a

high­level language like OQL with extensions for multimedia. A tool is needed to

translate the end­user schemas without content­based metadata into internal database

schemas, and to derive an appropriate inference network from this schema.

The experimental evaluation of this work has been rather limited. Unfortunately,

evaluation of the effectiveness of multimedia retrieval systems has been shown prob­

lematic. The development of an evaluation methodology for multimedia retrieval

systems is probably the most important topic for further research. Once an acceptable

evaluation framework has been set up, Bayesian learning techniques should be studied

for both short­term and long­term learning. A more advanced dialogue between user

and system may be especially beneficial to improve multimedia information retrieval.

Also, retrieval models that integrate structure and content in a common reasoning

framework are of interest.

Finally, this thesis has mainly looked at retrieval problems. But, many other

topics are significant challenges for data management in digital libraries. Transaction

processing and security have not been addressed in this thesis, but are very important

issues. Maybe, the middleware in the open distributed architecture presented in Chapter

6 can help in addressing these problems. Furthermore, the desire for distribution of

operations and data is not unique in multimedia applications; it may apply equally in the

business domain. Further research should investigate whether opening the black box

of relational database systems, and unifying their functionality with the functionality

provided in so­called application servers, will lead to better performing systems, as

well as increased data independence.

References

[AB87] M.P. Atkinson and O.P. Buneman. Types and persistence in database pro­

gramming languages. ACM Computing Surveys, 19(2), June 1987.

[ABC+76] M.M. Astrahan, M.W. Blasgen, D.D. Chamberlin, K.P. Eswaran, J.N. Gray,

P.P. Griffiths, W.F. King, R.A. Lorie, P.R. McJones, J.W. Mehl, G.R. Putzolu,

I.L. Traiger, B.W. Wade, and V. Watson. System R: relational approach to

database management. ACM Transactions On Database Systems, 1(2):97–

137, 1976.

[AC97] E. Ardizzone and M. La Cascia. Automatic video database indexing and

retrieval. Multimedia tools and applications, 1(4):29–55, 1997.

[ACD+97] M. Asgarian, M.J. Carey, D.J. DeWitt, J. Gehrke, J.F. Naughton, and D.N.

Shah. The BUCKY object­relational benchmark. In Proceedings of the ACM

SIGMOD International Conference on Management of Data, pages 135–146,

Tucson, Arizona, May 1997.

[Atk89] M.P. Atkinson. The object­oriented database system manifesto. In Proceed­

ings of the first international conference on deductive and object­oriented

databases, Kyoto, Japan, 1989.

[AY96] N. Adam and Y. Yesha. Strategic directions in electronic commerce and digital

libraries: towards a digital agora. ACM Computing Surveys, 28(4):818–835,

December 1996.

[Bar95] J.D. Barrow. The artful universe. Little, Brown and company, 1995.

[BCF97] E. Bertino, B. Catania, and E. Ferrari. Multimedia Databases in Perspective,

chapter Query Processing, pages 181–217. Springer Verlag, 1997.

[BFJ+96] M.G. Brown, J.T. Foote, G.J.F. Jones, K. Spärck Jones, and S. J. Young. Open­

vocabulary speech indexing for voice and video mail retrieval. In Proceedings

ACM Multimedia, Boston, November 1996.

[Bis95] C.M. Bishop. Neural networks for pattern recognition. Oxford university

press, Oxford, 1995.

137

138 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

[BK95] P.A. Boncz and M.L. Kersten. Monet: An impressionist sketch of an advanced

database system. In BIWIT’95: Basque international workshop on information

technology, July 1995.

[BK99] P.A. Boncz and M.L. Kersten. MIL primitives for querying a fragmented

world. The VLDB Journal, 1999. To appear.

[BKS98] S. Boll, W. Klas, and A. Sheth. Multimedia data management. Using metadata

to integrate and apply digital media, chapter Overview on using metadata to

manage multimedia data, pages 1–24. In Sheth and Klas [SK98], 1998.

[BMK99] P.A. Boncz, S. Manegold, and M.L. Kersten. Database architecture optimized

for the new bottleneck: Memory access. In Proceedings of 25th International

Conference on Very Large Databases (VLDB ’99), Edinburgh, Scotland, UK,

September 1999. To appear.

[Bon97] J.S. De Bonet. Novel statistical multiresolution techniques for image synthe­

sis, discrimination, and recognition. Master’s thesis, MIT, 1997.

[BQK96] P.A. Boncz, C.W. Quak, and M.L. Kersten. Monet and its geographic exten­

sions. In Proceedings of the 1996 EDBT conference, 1996.

[Bro95] E.W. Brown. Execution performance issues in full­text information retrieval.

PhD thesis, University of Massachusetts, Amherst, October 1995. Also ap­

pears as technical report 95­81.

[Bun96] W. Buntine. A guide to the literature on learning probabilistic networks from

data. IEEE Transactions on knowledge and data engineering, 8(2):195–210,

April 1996.

[BV97] J.S. De Bonet and P. Viola. Structure driven image database retrieval. In

Advances in Neural Information Processing, number 10, 1997.

[BV98] J.S. De Bonet and P. Viola. Texture recognition using a non­parametric multi­

scale statistical model. In Proceedings IEEE Conf. on Computer Vision and

Pattern Recognition, 1998.

[BVI98] J.S. De Bonet, P. Viola, and J.W. Fisher III. Flexible histograms: A multires­

olution target discrimination model. In E.G. Zelnio, editor, Proceedings of

SPIE, volume 3370, 1998.

[BWK98] P.A. Boncz, A.N. Wilschut, and M.L. Kersten. Flattening an object algebra

to provide performance. In Fourteenth International Conference on Data

Engineering, pages 568–577, Orlando, Florida, February 1998.

[Cal94] J.P. Callan. Passage­level evidence in document retrieval. In Proceedings of

the Seventeenth Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, Dublin, Ireland, July 1994.

[Cam96] R. Camps. Domains, relations and religious wars. SIGMOD Record, 25(3),

September 1996.

[Cat91] R.G.G. Cattell. What are next­generation database systems? Communications

of the ACM, 34(10):31–33, October 1991.

REFERENCES 139

[CB97] R.G.G. Cattell and D.K. Barry, editors. The Object Database Standard:

ODMG 2.0. Morgan Kaufmann Publishers Inc., 1997.

[CC85] R. Chellappa and S. Chatterjee. Classification of textures using Gaussian

Markov random fields. IEEE Transactions on Acoustics Speech and Signal

Processing, 33:959–963, 1985.

[CCM+97] S.­F. Chang, W. Chen, H. Meng, H. Sundaram, and D. Zhong. VideoQ: an au­

tomated content based video search system using visual cues. In Proceedings

of ACM Multimedia 1997, Seattle, November 1997.

[CD96] M. Carey and D.J. DeWitt. Of objects and databases: a decade of turmoil. In

Vijayaraman et al. [VBMS96], pages 3–14.

[CH80] R.W. Conners and C.A. Harlow. A theoretical comparison of texture algo­

rithms. IEEE Transactions on Pattern Analysis and Machine Intelligence,

2:204–222, 1980.

[CK85] G.P. Copeland and S.N. Koshafian. A decomposition storage model. In

Proceedings of the SIGMOD Conference, pages 268–279, 1985.

[CLP94] T.­S. Chua, S.­K. Lim, and H.­K. Pung. Content­based retrieval of segmented

images. In ACM Multimedia 94, pages 211–218, San Francisco, 1994.

[Clu98] S. Cluet. Designing OQL: allowing objects to be queried. Information systems,

23(5):279–305, 1998.

[CLvRC98] F. Crestani, M. Lalmas, C.J. van Rijsbergen, and I. Campbell. “Is this docu­

ment relevant? . . . probably”: a survey of probabilistic models in information

retrieval. ACM Computing Surveys, 30(4):528–552, December 1998.

[CMMY98] I.J. Cox, M.L. Miller, T.P. Minka, and P.N. Yianilos. An optimized interaction

strategy for Bayesian relevance feedback. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR’98), 1998.

[Cod70] E.F. Codd. A relational model of data for large shared data banks. Communi­

cations of the ACM, 13(6):377–387, June 1970.

[Col94] M. Colton. Illustra: The multi­media DBMS. Technical report, Illustra Infor­

mation Technologies, Inc., 1994.

[Coo90] G.F. Cooper. The computational complexity of probabilistic inference using

Bayesian belief networks. Artificial Intelligence, 42:393–405, 1990.

[CP85] S. Ceri and G. Pelagatti. Distributed databases. Principles and systems.

McGraw­Hill, 1985.

[CS95] P. Cheeseman and J. Stutz. Bayesian classification (AutoClass): Theory and

results. In Advances in Knowledge Discovery and Data Mining. AAAI Press,

1995.

[CSK93] B.B. Chaudhuri, N. Sarkar, and P. Kundu. Improved fractal geometry based

texture segmentation technique. IEEE Proceedings, 140:233–241, 1993.

140 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

[CSS98] M. La Cascia, S. Sethi, and S. Sclaroff. Combining textual and visual cues

for content­based image retrieval on the World Wide Web. In IEEE Workshop

on Content­based Access of Image and Video Libraries, Santa Barbara, CA,

June 1998.

[CSZSM97] W. Chang, G. Sheikholeslami, A. Zhang, and T. Syeda­Mahmood. Efficient

resource selection in distributed visual information systems. In ACM Multi­

media’97, Seattle, WA, November 1997.

[CvR95] F. Crestani and C.J. van Rijsbergen. Probability kinematics in information

retrieval. In Proceedings of the 18th annual international ACM SIGIR confer­

ence on Research and development in information retrieval (SIGIR’95), pages

291–299, 1995.

[Dat85] C.J. Date. An introduction to database systems. Addison­Wesley, third edition,

1985.

[DD98] C.J. Date and H. Darwen. Foundation for Object/Relational Databases: the

third manifesto. Addison­wesley, 1998.

[DDSS95] S. DeFazio, A. Daoud, L.A. Smith, and J. Srinivasan. Integrating IR and

RDBMS using cooperative indexing. In Proceedings of the 18th annual inter­

national ACM SIGIR conference on Research and development in information

retrieval (SIGIR’95), pages 84–92, 1995.

[Dit88] K.R. Dittrich. Advances in object­oriented database systems, volume 334 of

Lecture notes in computer science, chapter Preface. Springer­Verlag, 1988.

[Dit91] K.R. Dittrich, editor. On object­oriented database systems, chapter Object­

oriented database systems: the notion and the issues, pages 3–10. Springer­

Verlag, 1991.

[DM97] S. Dessloch and N. Mattos. Integrating SQL databases with content­specific

search engines. In Proceedings of the 23rd VLDB conference, Athens, Greece,

1997.

[dV98] A.P. de Vries. Mirror: Multimedia query processing in extensible databases.

In Proceedings of the fourteenth Twente workshop on language technology

(TWLT14): Language Technology in Multimedia Information Retrieval, pages

37–48, Enschede, The Netherlands, December 1998.

[dVB98a] A.P. de Vries and H.M. Blanken. Database technology and the management of

multimedia data in Mirror. In Multimedia Storage and Archiving Systems III,

volume 3527 of Proceedings of SPIE, pages 443–455, Boston MA, November

1998.

[dVB98b] A.P. de Vries and H.M. Blanken. The relationship between IR and multimedia

databases. In The 20th IRSG colloquium: discovering new worlds of IR,

Grenoble, France, March 1998.

[dVEK98] A.P. de Vries, B. Eberman, and D.E. Kovalcin. The design and implementation

of an infrastructure for multimedia digital libraries. In Proceedings of the 1998

International Database Engineering & Applications Symposium, pages 103–

110, Cardiff, UK, July 1998.

REFERENCES 141

[dVvDBA99] A.P. de Vries, M.G.L.M. van Doorn, H.M. Blanken, and P.M.G. Apers. The

Mirror MMDBMS architecture. In Proceedings of 25th International Con­

ference on Very Large Databases (VLDB ’99), Edinburgh, Scotland, UK,

September 1999. Technical demo.

[dVvdVB98] A.P. de Vries, G.C. van der Veer, and H.M. Blanken. Let’s talk about it:

Dialogues with multimedia databases. Database support for human activity.

Displays, 18(4):215–220, 1998.

[dVW99] A.P. de Vries and A.N. Wilschut. On the integration of IR and databases.

In Database issues in multimedia; short paper proceedings, international

conference on database semantics (DS­8), Rotorua, New Zealand, January

1999.

[Edw93] B. Edwards. Drawing on the right side of the brain. Harper Collins Publishers,

London, 1993.

[EFI+99] B. Eberman, B. Fidler, R.A. Ianucci, C. Joerg, L. Kontothanassis, D.E. Koval­

cin, P. Moreno, M.J. Swain, and J.­M. Van Thong. Indexing multimedia for

the internet. Technical report, Cambridge Research Laboratory, March 1999.

Also appears at Visual ’99.

[EK95] M.W. Eysenck and M.T. Keane. Cognitive Psychology. A student’s handbook,

chapter Mental representation. Lawrence Erlbaum Associates, 3 edition, 1995.

[EN94] R. Elmasri and S.B. Navathe. Fundamentals of database systems. The Ben­

jamin/Cummings Publishing Company, Inc., Redwood City, CA, second edi­

tion, 1994.

[EV94] B. Eaglestone and R. Vertegaal. Intuitive human interfaces for an audio­

database. In Proceedings of the Second International Workshop on Interfaces

to Database Systems (IDS94). Lancaster University, 1994.

[Fal96] C. Faloutsos. Searching multimedia databases by content. Kluwer Academic

Publishers, Boston/Dordrecht/London, 1996.

[FBF+94] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic, and

W. Equitz. Efficient and effective querying by image content. Journal of

Intelligent Information Systems, 3:231–262, 1994.

[FF95] R.M. Fung and B.A. Del Favero. Applying Bayesian networks to information

retrieval. Communications of the ACM, 38(3):43–48, March 1995.

[FLGD87] G.W. Furnas, T.K. Landauer, L.M. Gomez, and S.T. Dumais. The vocabulary

problem in human­system communication. Communications of the ACM,

30:964–971, November 1987.

[Foo97] J. Foote. A similarity measure for automatic audio classification. In Proc.

AAAI 1997 Spring Symposium on Intelligent Integration and Use of Text,

Image, Video, and Audio Corpora, March 1997.

[FS89] I. Fogel and D. Sagi. Gabor filters as texture discriminator. Journal of

Biological Cybernetics, 61:103–113, 1989.

142 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

[GCT98] W. Greiff, W.B. Croft, and H. Turtle. PIC matrices: A computationally

tractable class of probabilistic query operators. Technical Report IR­132,

The Center for Intelligent Information Retrieval, 1998. submitted to ACM

TOIS.

[Gem95] D.J. Gemmell. Multimedia storage servers: A tutorial. IEEE Computer,

28(5):40–49, May 1995.

[GFJ98] W.I. Grosky, F. Fotouhi, and Z. Jiang. Multimedia data management. Using

metadata to integrate and apply digital media, chapter Using metadata for

the intelligent browsing of structured media objects, pages 123–148. In Sheth

and Klas [SK98], 1998.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements

of Reusable Object­Oriented Software. Addison­Wesley, 1995.

[GHK+96] Nita Goyal, Charles Hoch, Ravi Krishnamurthy, Brian Meckler, and Michael

Suckow. Is gui programming a database research problem? In H. V. Jagadish

and Inderpal Singh Mumick, editors, Proceedings of the 1996 ACM SIG­

MOD International Conference on Management of Data, Montreal, Quebec,

Canada, June 4­6, 1996, pages 517–528. ACM Press, 1996.

[GJ97] A. Gupta and R. Jain. Visual information retrieval. Communications of the

ACM, 40(5):70–79, May 1997.

[GK96] U. Gargi and R. Kasturi. An evaluation of color histogram based methods in

video indexing. In Proceedings of the first international workshop on Image

databases and multi­media search (IDB­MMS ’96), pages 75–82, Amsterdam,

The Netherlands, August 1996.

[Gra93] G. Graefe. Query evaluation techniques for large databases. ACM Computing

Surveys, 25(2):73–170, June 1993.

[GS92] U. Glavitsch and P. Schäuble. A system for retrieving speech documents. In

Proceedings of the 15th annual international SIGIR, pages 168–176, Den­

mark, June 1992.

[GS96] T. Gevers and A.W.M. Smeulders. A comparative study of several color mod­

els for color image invariant retrieval. In Proceedings of the first international

workshop on Image databases and multi­media search (IDB­MMS ’96), pages

17–26, Amsterdam, The Netherlands, August 1996.

[GTZ93] J. Gu, U. Thiel, and J. Zhao. Efficient retrieval of complex objects: Query

processing in a hybrid DB and IR system. In Proceedings of the 1st German

National Conference on Information Retrieval, 1993.

[Gut84] A. Guttman. R­trees: a dynamical index structure for spatial searching. In

Proceedings of the SIGMOD Conference, pages 47–57, Boston, June 1984.

[Hal99] J.Y. Halpern. A counterexample to theorems of Cox and Fine. Journal of

Artificial Intelligence Research, 10:67–85, 1999.

[Har98] H.L. Hardman. Modelling and Authoring Hypermedia Documents. PhD

thesis, University of Amsterdam, 1998.

REFERENCES 143

[HBH88] E.J. Horvitz, J.S. Breese, and M. Henrion. Decision theory in expert systems

and artificial intelligence. International journal of approximate reasoning,

2:247–308, 1988. (Special issue on Uncertainty in Artificial Intelligence).

[HC93] D. Haines and W.B. Croft. Relevance feedback and inference networks. In

Proceedings of the sixteenth annual international ACM SIGIR conference on

research and development in information retrieval (SIGIR’93), pages 2–11,

1993.

[HCL+90] L.M. Haas, W. Chang, G.M. Lohman, J. McPherson, P.F. Wilms, G. Lapis,

B. Lindsay, H. Pirahesh, M. Carey, and E. Shekita. Starburst mid­flight: As the

dust clears. IEEE Trans. on Knowledge and Data Engineering, 2(1):143–160,

March 1990.

[Hea94] M.A. Hearst. Multi­paragraph segmentation of expository text. In ACL ’94,

Las Cruces, 1994.

[Hec95] D. Heckerman. A tutorial on learning with Bayesian networks. Technical

Report MSR­TR­95­06, Microsoft Research, Advanced technology division,

March 1995. Revised edition November 1996.

[Hie98] D. Hiemstra. A linguistically motivated probabilistic model of information

retrieval. In Ch. Nicolaou and C. Stephanidis, editors, Proceedings of the

Second European Conference on Research and Advanced Technology for

Digital Libraries: ECDL ’98, pages 569–584. Springer Verlag, 1998.

[HJ98] A. Hampapur and R. Jain. Multimedia data management. Using metadata to

integrate and apply digital media, chapter Video data management systems:

metadata and architecture, pages 245–286. In Sheth and Klas [SK98], 1998.

[HM95] R.S. Heller and C.D. Martin. A media taxonomy. IEEE MultiMedia, 2(4):36–

45, Winter 1995.

[Hor99] K.S. Van Horn. If it ain’t Bayesian, it’s broken: an examination of Cox’s

theorem. Appeared on UAI mailing list, UAI@cs.orst.edu, June 1999.

[HRT+94] M.­Y. Hwang, R. Rosenfield, E. Thayer, R. Mosur, L. Chase, R. Weide,

X. Huang, and F. Alleva. Improving speech recognition performance via

phone­dependent VQ codebooks and adaptive language models in SPHINX­

II. In Proceedings of ICASSP­94, pages 549–552, 1994.

[HS95] A. Hauptmann and M. Smith. Text, speech, and vision for video segmentation:

The informedia project. In AAAI Fall 1995 Symposium on Computational

Models for Integrating Language and Vision, 1995.

[HT98] Laura M. Haas and Ashutosh Tiwary, editors. SIGMOD 1998, Proceedings

ACM SIGMOD International Conference on Management of Data, June 2­4,

1998, Seattle, Washington, USA. ACM Press, 1998.

[HW97] A.G. Hauptmann and M.J. Witbrock. Intelligent multimedia information

retrieval, chapter Informedia: news­on­demand multimedia information ac­

quisition and retrieval, pages 215–239. AAAI Press/MIT Press, 1997.

144 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

[HWC95] A.G. Hauptmann, M.J. Witbrock, and M.G. Christel. News­on­demand ­ an

application of informedia technology. D­LIB Magazine, September 1995.

[Iac93] J. F. Iaccino. Left brain­right brain differences. Lawrence Erlbaum Associates,

Publishers, 1993.

[Jay90] E.T. Jaynes. Maximum­Entropy and Bayesian Methods, chapter Probability

theory as logic, pages 1–16. Kluwer, Dordrecht, 1990.

[Jay91] E.T. Jaynes. Maximum entropy and Bayesian methods, chapter Notes On

Present Status And Future Prospects, pages 1–13. Kluwer, Dordrecht, 1991.

[Jay96] E.T. Jaynes. Probability theory: The logic of science. The book

will be published by Cambridge university press. Available online from

http://bayes.wustl.edu/etj/prob.html., 1996.

[JC94] Y. Jing and W.B. Croft. An association thesaurus for information retrieval.

Technical Report 94­17, University of Massachusetts, 1994.

[JFJY96] G.J.F. Jones, J.T. Foote, K. Spärck Jones, and S.J. Young. Retrieving spo­

ken documents by combining multiple index sources. In Proceedings of the

19th International Conference on Research and Development in Information

Retrieval (SIGIR ’96), Zürich, Switzerland, August 1996.

[JFS98] B.Th. Jónsson, M.J. Franklin, and D. Srivastava. Interaction of query evalu­

ation and buffer management for information retrieval. In Haas and Tiwary

[HT98], pages 118–129.

[JK84] M. Jarke and J. Koch. Query optimization in database systems. ACM Com­

puting Surveys, 16(2):111–152, June 1984.

[KdVB97] Wolfgang Klas, Arjen de Vries, and Christian Breiteneder. Multimedia

Databases in Perspective, chapter Current and emerging applications, pages

13–30. Springer Verlag, 1997.

[Ken79] W. Kent. Limitations of record­based information models. ACM Transactions

On Database Systems, 4(1):107–131, March 1979.

[Kic96] G. Kiczalis. Beyond the black box: open implementation. IEEE Software,

8­11, 1996.

[Kim94] W. Kim. Observations on the ODMG­93 proposal for an object­oriented

database language. SIGMOD Record, 23(1), March 1994.

[KN98] M.L. Kersten and N.J. Nes. Fitness joins in the ballroom. CWI, July 1998.

[Kra98] P.J. Krause. Learning probabilistic networks. Knowledge Engineering Review,

13(4), 1998. To appear.

[Lap02] P.S. Laplace. A philosophical essay on probabilities. Wiley and Sons, New

York, 1902. Translated from the 6th French edition, 1812.

[LLOW91] C.W. Lamb, G. Landis, J.A. Orenstein, and D.L. Weinreb. The ObjectStore

system. Communications of the ACM, 34(10):50–63, October 1991.

REFERENCES 145

[LLPS91] G.M. Lohman, B. Lindsay, H. Pirahesh, and K.B. Schiefer. Extensions to

starburst: objects, types, functions, and rules. Communications of the ACM,

34(10):79–92, October 1991.

[LMB+96] Ian Leslie, Derek McAuley, Richard Black, Timothy Roscoe, Paul Barham,

David Evers, Robin Fairbairns, and Eoin Hyden. The Design and Implemen­

tation of an Operating System to Support Distributed Multimedia Applica­

tions. IEEE Journal on Selected Areas in Communication, 14(7):1280–1297,

September 1996.

[LP96] F. Liu and R.W. Picard. Periodicity, directionality, and randomness: Wold

features for image modeling and retrieval. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 18(7):722–733, July 1996.

[LPE97] R. Lienhart, S. Pfeiffer, and W. Effelsberg. Video abstracting. Communica­

tions of the ACM, 40(12), December 1997.

[Mac91] I.A. Macleod. Text retrieval and the relational model. Journal of the American

society for information science, 42(3):155–165, 1991.

[MHMG97] I. Mani, D. House, M. Maybury, and M. Green. Intelligent multimedia infor­

mation retrieval, chapter Towards content­based browsing of broadcast news

video, pages 241–258. AAAI Press/MIT Press, 1997.

[Mil97] T.J. Mills. Content modelling in multimedia information retrieval systems.

The Cobra retrieval system. PhD thesis, University of Cambridge, July 1997.

[Min96] T.P. Minka. An image database browser that learns from user interaction.

Master’s thesis, MIT, 1996. Also appeared as MIT Media Laboratory technical

report 365.

[Mit97] T.M. Mitchell. Machine learning. McGraw­Hill, 1997.

[Miz98] S. Mizzaro. How many relevances in information retrieval? Interacting With

Computers, 10(3):305–322, 1998. In press.

[MJL76] G.A. Miller and P.N. Johnson­Laird. Language and perception. Cambridge

university press, 1976.

[MM96] B.S. Manjunath and W.Y. Ma. Texture features for browsing and retrieval of

image data. IEEE Transactions on Pattern Analysis and Machine Intelligence,

18(8):837–842, August 1996.

[MMR97] T.J. Mills, K. Moody, and K. Rodden. Cobra: a new approach to IR system

design. In Proceedings of RIAO’97, pages 425–449, July 1997.

[MP97] T.P. Minka and R.W. Picard. Interactive learning using a “society of models”.

Pattern Recognition, 30(4), 1997.

[MRC+97] S. Mehrotra, Y. Rui, K. Chakrabarti, M. Ortega, and Th.S. Huang. Multi­

media analysis and retrieval system. In Proceedings of the 3rd International

Workshop on Information Retrieval Systems, Como, Italy, September 1997.

[MRT91] C. Meghini, F. Rabitti, and C. Thanos. Conceptual modeling of multimedia

documents. IEEE Computer, 24(10):23–30, October 1991.

146 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

[MS98] M. Markkula and E. Sormunen. Searching for photos ­ journalists’ practices

in pictorial IR. In The challenge of image retrieval, Newcastle upon Tyne,

UK, 1998. University of Northumbria.

[NBE+93] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D. Petkovic,

P. Yanker, and C. Faloutsos. The QBIC project: querying images by content

using color, texture and shape. Technical Report RJ 9203, IBM Research

Division, 1993.

[NK98] N. Nes and M. Kersten. The Acoi algebra: A query algebra for image retrieval

systems. In Advances in Databases. 16th British National Conference on

Databases, BNCOD 16, pages 77–88, Cardiff, Wales, UK, July 1998.

[NKJ96] N.J. Nes, M.L. Kersten, and A. Jonk. Database support for line clustering. In

ASCI conference, pages 277–282, Vosse­Meren, June 1996.

[NL95] A. Desai Narasimhalu and M.­K. Leong. Experiences with content based

retrieval of multimedia information. In Final Workshop on Multimedia Infor­

mation Retrieval (MIRO’95), October 1995.

[OH97] R. Orfali and D. Harkey. Client/Server programming with JAVA and CORBA.

John Wiley & Sons, Inc., 1997.

[Oor98] H. Oortwijn. Content­based retrieval van muziek. Master’s thesis, University

of Twente, Database group, August 1998. In Dutch.

[ORC+97] M. Ortega, Y. Rui, K. Chakrabarti, S. Mehrotra, and Th.S. Huang. Supporting

similarity queries in MARS. In Proceedings of ACM Multimedia 1997, Seattle,

Washington, November 1997.

[OS95] V.E. Ogle and M. Stonebraker. Chabot: retrieval from a relational database of

images. IEEE Computer, 28(9):40–48, September 1995.

[Pap95] C. Papadimitriou. Database metatheory: asking the big queries. In PODS,

pages 1–10, 1995.

[Par96] S. Parsons. Current approaches to handling imperfect information in data and

knowledge bases. IEEE Transactions on knowledge and data engineering,

8(3):353–372, June 1996.

[PCC+98] Thomas V. Papathomas, Tiffany E. Conway, Ingemar J. Cox, Joumana Ghosn,

Matt L. Miller, Thomas P. Minka, , and Peter N. Yianilos. Psychophysical

studies of the performance of an image database retrieval system. In Proc.

SPIE, 1998.

[Pea88] J. Pearl. Probabilistic reasoning in intelligent systems: Networks of Plausible

Inference. Morgan Kaufmann, California, 1988.

[PM95] R.W. Picard and T.P. Minka. Vision texture for annotation. Journal of multi­

media systems, 3:3–14, 1995.

[PMS96] R.W. Picard, T.P. Minka, and M. Szummer. Modeling user subjectivity in

image libraries. In IEEE International Conference on Image Processing,

Lausanne, September 1996.

REFERENCES 147

[PMS+98] A. Mark Pejtersen, M. Markkula, E. Sormunen, M. Tico, and A.P. de Vries.

Evaluation method for content­based photo retrieval. In Mira Workshop,

Dublin, October 1998.

[PP97] K. Popat and R.W. Picard. Cluster­based probability model and its application

to image and texture processing. IEEE Transactions on Image Processing,

6(2):268–284, February 1997.

[RG97] A. Lakshmi Ratan and W.E.L. Grimson. Training templates for scene classi­

fication using a few examples. In Proceedings IEEE Workshop on Content­

based Access of Image and Video Libraries, San Juan, Puerto Rico, June

1997.

[RHM98] Y. Rui, Th.S. Huang, and S. Mehrotra. Relevance feedback techniques in

interactive content­based image retrieval. In Proceedings of IS&T and SPIE

Storage and Retrieval of Image and Video Databases VI, San Jose, CA, January

1998.

[RHMO97a] Y. Rui, Th.S. Huang, S. Mehrotra, and M. Ortega. Automatic matching tool

selection via relevance feedback in MARS. In Proc. of The 2nd Int. Conf. on

Visual Information Systems, San Diego, California, December 1997.

[RHMO97b] Y. Rui, Th.S. Huang, S. Mehrotra, and M. Ortega. A relevance feedback

architecture for content­based multimedia information retrieval systems. In

Proceedings IEEE Workshop on Content­based Access of Image and Video

Libraries, San Juan, Puerto Rico, June 1997.

[Rit98] D. Ritter. The middleware muddle. SIGMOD Record, 27(4), December 1998.

[RM96] B.A.N. Ribeiro and R. Muntz. A belief network model for IR. In Proceedings

of the 19th International Conference on Research and Development in Infor­

mation Retrieval (SIGIR ’96), pages 253–260, Zürich, Switzerland, August

1996.

[Row95] N. C. Rowe. Retrieving captioned pictures using statistical correlations and

a theory of caption­picture co­reference. In Fourth Annual Symposium on

Document Analysis and Retrieval, Las Vegas, April 1995.

[RSZ96] E. Remias, G. Sheikholeslami, and A. Zhang. Block­oriented image decom­

position and retrieval in image database systems. In The 1996 International

Workshop on Multi­media Database Management Systems, Blue Mountain

Lake, New York, August 1996.

[SB91] M. J. Swain and D. H. Ballard. Color indexing. International Journal of

Computer Vision, 7(1), 1991.

[SC94] J.R. Smith and S.­F. Chang. Quad­tree segmentation for texture­based image

query. In ACM Multimedia 94, pages 279–286, San Francisco, 1994.

[SC96] J.R. Smith and S.­F. Chang. VisualSEEk: a fully automated content­based

image query system. In ACM Multimedia 96, Boston, MA, 1996.

148 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

[SC97] J.R. Smith and S.­F. Chang. Intelligent multimedia information retrieval,

chapter Querying by color regions using the VisualSEEK content­based visual

query system, pages 23–41. AAAI Press/MIT Press, 1997.

[Sch97] P. Schäuble. Multimedia information retrieval. Content­based information

retrieval from large text and audio databases. Kluwer Academic Publishers,

1997.

[SCZ98a] G. Sheikholeslami, W. Chang, and A. Zhang. Semquery: Semantic clustering

and querying on heterogeneous features for visual data. In ACM Multimedia

98, Bristol, UK, September 1998.

[SCZ98b] G. Sheikholeslami, S. Chatterjee, and A. Zhang. Neuromerge: An approach for

merging heterogeneous features in content­based image retrieval systems. In

4th International Workshop on Multi­Media Database Management Systems

(IW­MMDBMS’98), Dayton, Ohio, August 5­7 1998.

[Sen75] M.E. Senko. Information systems: records, relations, sets, entities, and things.

Information systems, 1(1):3–13, 1975.

[Ses98a] P. Seshadri. Enhanced abstract data types in object­relational databases. The

VLDB Journal, 7(3):130–140, 1998.

[Ses98b] P. Seshadri. Predator: A resource for database research. SIGMOD Record,

27(1), March 1998.

[SJ] S. Santini and R. Jain. Similarity matching. Submitted to IEEE Transactions

on Pattern Analysis and Machine Intelligence.

[SK91] M. Stonebraker and G. Kemnitz. The POSTGRES next­generation database

management system. Communications of the ACM, 34(10):79–92, October

1991.

[SK98] A. Sheth and W. Klas, editors. Multimedia data management. Using metadata

to integrate and apply digital media. McGraw­Hill, 1998.

[SLR96] P. Seshadri, M. Livny, and R. Ramakrishnan. The design and implementation

of a sequence database system. In Vijayaraman et al. [VBMS96], pages

99–110.

[SM95] U. Shardanand and P. Maes. Social information filtering: Algorithms for

automating "word of mouth". In CHI’95 Proceedings, Denver, CO, USA,

1995.

[SM99] M. Stonebraker and Dorothy Moore. Object­relational DBMSs: Tracking the

next great wave. Morgan Kaufmann Publishers, Inc., second edition, 1999.

[SMJ99] E. Sormunen, M. Markkula, and K. Järvalin. The perceived similarity of

photos ­ seeking a solid basis for the evaluation of content­based retrieval

algorithms. In Final Mira Conference, Glasgow, April 14­16 1999. To appear

in British Computer Society (BCS) electronic Workshops in computing.

REFERENCES 149

[SMMR99] D. McG. Squire, W. Müller, H. Müller, and J. Raki. Content­based query

of image databases, inspirations from text retrieval: inverted files, frequency­

based weights and relevance feedback. In The 11th Scandinavian Conference

on Image Analysis, pages 7–11, Kangerlussuaq, Greenland, June 1999.

[SP82] H.­J. Schek and P. Pistor. Data structures for an integrated data base man­

agement and information retrieval system. In Proceedings of the Eighth

International Conference on Very Large Data Bases, pages 197–207, Mexico

City, 1982.

[SRH90] M. Stonebraker, L.A. Rowe, and M. Hirohama. The implementation of POST­

GRES. IEEE Transactions on Knowledge and Data Engineering, 2(1):125–

142, March 1990.

[SS86] H.­J. Schek and M.H. Scholl. The relational model with relation­valued

attributes. Information systems, 11(2):137–147, 1986.

[STA98] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating mining with relational

database systems: Alternatives and implications. In Haas and Tiwary [HT98],

pages 343–354.

[STC97] S. Sclaroff, L. Taycher, and M. La Cascia. Imagerover: A content­based

image browser for the world wide web. In Proceedings IEEE Workshop on

Content­based Access of Image and Video Libraries, San Juan, Puerto Rico,

June 1997.

[Ste95] H. Steenhagen. Optimization of object query languages. PhD thesis, Univer­

sity of Twente, The Netherlands, 1995.

[Sub98] V.S. Subrahmanian. Principles of multimedia database systems. Morgan

Kaufmann Publishers, Inc., San Francisco, California, 1998.

[SW95] P. Schäuble and M. Wechsler. First experiences with a system for content

based retrieval of information from speech recordings. In IJCAI Workshop:

Intelligent multimedia information retrieval, August 1995.

[Swa99] M.J. Swain. Searching for multimedia on the world wide web. Technical

report, Cambridge Research Laboratory, March 1999. Invited paper at ICMCS

’99.

[SWKH76] M. Stonebraker, E. Wong, P. Kreps, and G. Held. The design and implemen­

tation of INGRES. ACM Transactions On Database Systems, 1(3):189–222,

1976.

[SZ96] A. Silberschatz and Stan Zdonik. Strategic directions in database systems ­

breaking out of the box. ACM Computing Surveys, 28(4):764–778, December

1996.

[TC91] H. Turtle and W.B. Croft. Evaluation of an inference network­based retrieval

model. ACM Transactions of information systems, 9(3), 1991.

[TC92] H.R. Turtle and W.B. Croft. A comparison of text retrieval models. The

computer journal, 35(3):279–290, 1992.

150 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

[TK78] D. Tsichritzis and A. Klug. The ANSI/X3/SPARC DBMS framework report

of the study group on database management systems. Information systems,

3:173–191, 1978.

[Tur91] H.R. Turtle. Inference networks for document retrieval. PhD thesis, Univeristy

of Massachusetts, 1991.

[VBMS96] T.M. Vijayaraman, A.P. Buchmann, C. Mohan, and N.L. Sarda, editors. Pro­

ceedings of the 22nd VLDB conference, Mumbai (Bombay), India, September

1996.

[VCC96] S.R. Vasanthakumar, J.P. Callan, and W.B. Croft. Integrating INQUERY with

an RDBMS to support text retrieval. Bulletin of the technical committee on

data engineering, 19(1):24–34, March 1996.

[vD99] M.G.L.M. van Doorn. Thesauri and the mirror retrieval model. Master’s

thesis, University of Twente, Database group, July 1999.

[Vel98] D.D. Velthausz. Cost­effective network­based multimedia information re­

trieval. PhD thesis, University of Twente, 1998.

[VH97] E.M. Voorhees and D.K. Harman, editors. Proceedings of the Sixth Text Re­

trieval Conference (TREC­6), number 500­240 in NIST Special publications,

November 1997.

[vhH98] E. van het Hof. Een architectuur voor multimedia databases. Master’s thesis,

University of Twente, Database group, 1998. In Dutch.

[vhHdVBB98] E. van het Hof, A.P. de Vries, H.E. Blok, and H.M. Blanken. Een architectuur

voor multimedia databases. In CIW ’98: Bouwen aan het informatielandschap,

Antwerp, December 1998. In Dutch.

[VK95] A. Vellaikal and C.­C. J. Kuo. Content­based image retrieval using multireso­

lution histogram representation. In SPIE Digital Image Storage and Archiving

Systems, pages 312–323, Philadelphia, October 1995.

[VK96] A. Vellaikal and C.­C. J. Kuo. Joint spatial­spectral indexing for image

retrieval. In IEEE International Conference on Image Processing, pages 867–

870, Lausanne, September 1996.

[VL97] N. Vasconcelos and A. Lippman. A Bayesian video modeling framework for

shot segmentation and content characterization. In Proceedings of the IEEE

workshop on content­based access of image and video libraries, San Juan,

Puerto Rico, June 1997.

[VL99] N. Vasconcelos and A. Lippman. Probabilistic retrieval: new insights and

experimental results. In Workshop on CAIVL, CVPR ’99, Denver, 1999.

[vR79] C.J. van Rijsbergen. Information retrieval. Butterworths, Lon­

don, 2nd edition, 1979. Out of print, available online from

http://www.dcs.glasgow.ac.uk/Keith/Preface.html.

[vR86] C.J. van Rijsbergen. A non­classical logic for information retrieval. The

computer journal, 29(6):481–485, 1986.

REFERENCES 151

[WBKW96] E. Wold, Th. Blum, D. Keisler, and J. Wheaton. Content­based classification,

search, and retrieval of audio. IEEE Multimedia, 3(3), 1996.

[Wie99] R. Wieringa. A survey of structured and object­oriented software specification

methods and techniques. ACM Computing Surveys, 30(4):459–527, December

1999.

[Wil93] A.N. Wilschut. Parallel query execution in a main­memory database system.

PhD thesis, University of Twente, 1993.

[WKSS96] H. Wactlar, T. Kanade, M. Smith, and S. Stevens. Intelligent access to digital

video: The Informedia project. IEEE Computer, 29(5), May 1996.

[WLM+97] J.K. Wu, C.P. Lam, B.M. Mehtre, Y.J. Gao, and A. Desai Narasimhalu.

Content­based retrieval for trademark registration. Multimedia tools and ap­

plications, 1(3), 1997.

[WNM+95] J.K. Wu, A. Desai Narasimhalu, B.M. Mehtre, C.P. Lam, and Y.J. Gao. CORE:

a content­based retrieval engine for multimedia information systems. Multi­

media Systems, 3:25–41, 1995.

[WS95] M. Wechsler and P. Schäuble. Speech retrieval based on automatic indexing.

In Final Workshop on Multimedia Information Retrieval (MIRO’95), October

1995.

[WY95] S.K.M. Wong and Y.Y. Yao. On modeling information retrieval with proba­

bilistic inference. ACM Transactions on Information Systems, 13(1):38–68,

January 1995.

[XC96] J. Xu and W.B. Croft. Query expansion using local and global document

analysis. In Proceedings of the 19th International Conference on Research

and Development in Information Retrieval (SIGIR ’96), pages 4–11, Zürich,

Switzerland, 1996.

[ZCA97] A. Zhang, B. Cheng, and R. Acharya. A fractal­based clustering approach in

large visual database systems. Multimedia tools and applications, 1(3):225–

244, 1997.

[ZKS93] H.J. Zhang, A. Kankanhalli, and S.W. Smoliar. Automatic partitioning of

full­motion video. Multimedia Systems, 1(1):10–28, 1993.

[ZM98] J. Zobel and A. Moffat. Exploring the similarity space. SIGIR Forum, 32(1),

Spring 1998.

Samenvatting

Een database management systeem (DBMS) is een generiek softwareprodukt dat het

mogelijk maakt om gegevensbanken te definiëren en beheren ten behoeve van verschil­

lende toepassingen. Relationele database management systemen worden al jaren met

succes toegepast voor het beheer van administratieve data in zakelijke toepassingen.

Dit onderzoek bestudeert het beheer van data in digitale multimediale bibliotheken,

en dan met name de implicaties van dit toepassingsgebied op het ontwerp van database

management systemen. Het grootste verschil met administratieve toepassingen zit in

het verschaffen van toegang tot multimedia gegevens. Omdat de inhoud van admin­

istratieve gegevens eenvoudig is te representeren met alfanumerieke waarden, heeft

de databasegemeenschap zich geconcentreerd op de rol van de logische structuur van

gegevens. Het representeren van de inhoud van multimediale gegevens is helaas niet

zo eenvoudig, met als gevolg dat het beheer van die gegevens niet voldoende wordt

ondersteund in huidige database management systemen.

Onderzoek naar information retrieval (IR) heeft het mogelijk gemaakt tekstuele

documenten terug te zoeken op basis van hun inhoud. Daarnaast heeft onderzoek naar

bijvoorbeeld computer visie en beeldanalyse geleid tot zoektechnieken voor verza­

melingen van plaatjes en geluiden. Zulke systemen zijn echter vaak losstaande sys­

temen, die slechts enkele zeer specifieke toepassingen kunnen ondersteunen; er is

maar weinig consensus over de manier waarop deze technieken in generieke database

management systemen geı̈ntegreerd zouden moeten worden. Gangbare oplossingen

voegen een beperkt aantal nieuwe functies toe aan de op structuur gerichte vraagtalen,

maar deze functies vormen niet meer dan een gemeenschappelijke interface naar nog

steeds compleet gescheiden systemen. Dit veroorzaakt twee lastige problemen voor

gebruikers van deze systemen: (1) het formuleren van vragen in termen van deze tech­

nieken en (2) het samenvoegen van de resultaten op basis van verschillende technieken

tot één eindantwoord. Bovendien leidt deze aanpak tot inefficiënties bij het verwerken

van vragen die meerdere verschillende abstracties van de inhoud van multimediale

gegevens gebruiken.

Net als een gewoon DBMS, is een multimedia DBMS (MM­DBMS) een gene­

riek software systeem dat verschillende toepassingen kan ondersteunen. De geboden

functionaliteit richt zich echter specifiek op het domein van digitale bibliotheken. Dit

153

154 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

proefschrift identificeert vier eisen aan zulke systemen: (1) de inhoud van multime­

diale objecten kan gerepresenteerd worden, (2) het bevragen van de database is een

interactief proces, (3) de verwerking van vragen kan gebruik maken van verschil­

lende representaties van de inhoud van objecten, en (4) het formuleren van vragen

garandeert de in dit proefschrift geformuleerde notie van content independence. Om

aan deze eisen tegemoet te komen, ondersteunen de Mirror architectuur en het Mirror

DBMS, een prototype implementatie van deze architectuur, naast het beheer van de

logische structuur van gegevens tevens het beheer van abstracties van de inhoud van

deze gegevens.

In het ontwerp van het Mirror DBMS vormen het beheer van inhoud en structuur

één geheel. Als theoretische basis voor zoeken op inhoud van multimediale gegevens

is eerst het ‘inference network model’ aangepast voor multimedia retrieval. Om het

zoeken met dit model te integreren met de verwerking van het zoeken op structuur

in database management systemen, wordt in het Mirror DBMS de logische algebra

uitgebreid met operatoren voor probabilistisch redeneren. Zo’n volledige integratie

opent de weg tot nieuwe technieken voor query optimalisatie, en vereenvoudigt het

gebruik van distributie en parallellisme voor de evaluatie van typische IR­vragen.

Andere karakteristieke eigenschappen van multimediale bibliotheken vereisen de

ondersteuning van distributie van zowel data als operaties, en de uitbreidbaarheid

van het systeem met nieuwe data typen en operaties. Als een oplossing voor deze

problemen stelt dit proefschrift voor om het monolithische ontwerp van traditionele

database systemen te vervangen door een architectuur op basis van integratie van

geavanceerde middleware met database technologie. Dit idee is eveneens uitgewerkt

in het onderzoek door middel van de implementatie van een prototype.

De voorgestelde architectuur voor multimedia database management systemen is

op drie manieren geëvalueerd, met behulp van de prototype implementatie van het

Mirror DBMS. De voordelen van een integrale aanpak zijn geschetst in een serie voor­

beeldvragen voor verschillende soorten informatiebehoeften. Het voor dit onderzoek

ontwikkelde multimedia retrieval model is getest in enkele kleinschalige experimenten,

op een collectie met muziekfragmenten en op een collectie met foto’s. Deze exper­

imenten bevestigen het vermoeden dat het redeneren op basis van verschillende ab­

stracties van de inhoud van multimedia gegevens nuttig en mogelijk is. Ten slotte is de

snelheid van het systeem getoetst op een grote standaard benchmark voor het zoeken

in tekstuele documenten.

Topic Index

11­point average precision, 131

1NF, 29

Moa, 36

NF2, 30

Predator, 32

O2, 25

ANSI/SPARC architecture, 15

Abstract data types, 26

Access path dependence, 14

Active objects, 51

Ad­hoc query support, 25

ADL, 31

ADTs, 26

Algebra, 19

Annotator, 118

Approximate retrieval, 54

Audiovisual content, 53

Base type, 37

Base types, 29

BATs, 39

Bayesian belief networks, 72

Behavioral object­orientation, 29

Binary Association Tables, 39

Binary relation, 14

BLOBs, 28

Calculus, 19

Causal independence, 78

Complex object model, 29

Composite multimedia object, 51

Concept layer, 75

Concepts, 75

Conceptual level, 16

Conceptual representation, 13

Conceptual schema, 16

Consumers, 118

Content abstraction, 52

Content access provider, 118

Content independence, 62

Content provider, 118

Content structure, 88

Content­based metadata, 52

Content­based retrieval, 54

Copyright issues, 119

Daemon paradigm, 121

Data abstraction, 56

Data cardridge, 26

Data control language, 17

Data definition language, 17

Data dictionary, 13

Data independence, 12

Data manipulation language, 17

Data model, 13

Database, 12

Database management system, 12

Database schema, 13

Database system, 12

Datablade, 26

DBMS, 12

DCL, 17

DDL, 17

Degree, 14

Digital libraries, 2

Digitized representation object, 56

DML, 17

Domain, 14

Dynamic optimization, 40

E­ADTs, 32

Encoding specificity principle, 54

End­user, 118

Enhanced ADTs, 32

Evidential reasoning, 70

Evidential reasoning layer, 75

Extensible database systems, 25

Extensible relational database management

systems, 26

External level, 16

External schemas, 16

Feature clustering, 80

Feature space, 54

File processing, 12

155

156 CONTENT AND MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

First normal form, 29

Flat relational model, 30

Frequentist, 70

Full object­orientation, 29

Head, 39

Hematoma of duplication, 34

IDL, 123

IIOP, 123

Imagens, 98

Impedance mismatch, 24

Indexing dependence, 14

Indexing features, 75

Inductive bias, 81

Information sciences, 7

Ingres, 14

Interface definition language, 122

Internal level, 16

Internal schema, 16

LCA, 81

Local context analysis, 81, 95

Logical algebra, 21

Logical data independence, 17

Logical data model, 36

Logical structure, 88

Logogens, 98

Mappings, 17

Media independent structure, 50

Media item, 50

Media taxonomy, 48

Metadata, 13

MIL, 40

MM­DBMS, 47

Monet, 39

Monet Interface Language, 40

Multi­model DBMS, 34

Multimedia data, 48

Multimedia database management system, 47

Multimedia object, 51

N1NF, 30

Nest, 30

Nested relational model, 30

Nested­loop evaluation, 20

Nestjoin, 31

Object network, 76

Object request broker, 123

Object­oriented database systems, 25

Object­relational database management systems, 26

Object­relational database systems, 25

Object­space modification, 76

Objects, 24

ObjectStore, 25

OO­DBMSs, 25

Open implementation, 34

OR­DBMSs, 25–26

ORB, 123

Ordering dependence, 14

Orthogonal, 29

Passive objects, 51

Physical algebra, 21

Physical data independence, 17, 39

Physical data model, 36

Plausible reasoning under uncertainty, 70

Pnorm­operators, 78

Postgres, 25–26

Probability ranking principle, 72

Producers, 118

PRP, 72

Pseudo object, 51

QBE, 54, 60

QBIC, 54

Query by example, 54

Query network, 76

Query optimization, 19

Query plan, 19

Query processing, 19

Query­space modification, 75

RDBMS, 13

Relation, 14–15

Relation value, 15

Relation variable, 15

Relational data model, 13

Relational database management system, 13

Relationally complete, 20

Relevance feedback layer, 75

Relvar, 15

Retrieval model, 70

Retrieval status value, 70

RSV, 70

SDL, 17

Search accelerators, 113

Semantic content, 52

Semantic content, 53

Social information filtering, 55

Starburst, 25–26

Storage definition language, 17

Structural object­orientation, 29

Structure, 51

Structured type, 37

Structured types, 29

Subjectivist, 70

Symbol­1, 103

Synchronized BATs, 40

Syntactic content, 53

System catalog, 13

System R, 14

Tail, 39

The evaluation problem, 136

Thesaurus, 81

Three­schema architecture, 15

Type constructors, 29

UDFs, 26

Universe of Discourse, 12

Unnest, 30

UoD, 12

TOPIC INDEX 157

User groups, 118

User views, 16

User­defined functions, 26

VDL, 17

View definition language, 17

Vocabulary problem, 54

XNF, 30

Author Index

Barrow, 63

Bertino, 51

Boncz, 23

Cattell, 18

Codd, 13–14, 30, 51

Copeland, 39

Cox, 70

Croft, 74, 79

Darwen, 14–15, 26–27, 43

Date, 14, 26–27, 43

Del Favero, 74

Dittrich, 29

Edwards, 63

Elmasri, 12

Fung, 74

Goyal, 23

Graefe, 21

Greiff, 79

Grosky, 48, 52

Hampapur, 52

Hardman, 50

Heller, 48

Hiemstra, 72–73

Iaccino, 53

Jain, 52

Kent, 24

Khoshafian, 39

Kiczalis, 33–34

Klug, 16, 42

Lippman, 73

Maes, 55

Markkula, 2–3

Martin, 48

Minka, 74, 81

Navathe, 12

Nes, 23

Paivio, 98

Papadimitriou, 13

Pearl, 71–72, 83

Picard, 81

Ribeiro, 78

Sarawagi, 27

Schek, 30

Scholl, 30

Seshadri, 23, 32

Shardanand, 55

Silberschatz, 18

Steenhagen, 31

Stonebraker, 24, 27, 42

Tsichritzis, 16, 42

Turtle, 73, 79

Van Doorn, 81, 96, 98

Van Rijsbergen, 69, 73

Vasconcelos, 73

Velthausz, 51

Wieringa, 42

Wilschut, 34

Xu, 95

Zdonik, 18

