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Content and task-based view selection from multiple video

streams

Fahad Daniyal · Murtaza Taj · Andrea Cavallaro

Received: date / Accepted: date

Abstract We present a content-aware multi-camera selection technique that uses object-
and frame-level features. First objects are detected using a color-based change detector.
Next trajectory information for each object is generated using multi-frame graph matching.
Finally, multiple features including size and location are used to generate an object score.
At frame-level, we consider total activity, event score, number of objects and cumulative
object score. These features are used to generate score information using a multivariate
Gaussian distribution. The algorithm. The best view is selected using a Dynamic Bayesian
Network (DBN), which utilizes camera network information. DBN employs previous view
information to select the current view thus increasing resilience to frequent switching. The
performance of the proposed approach is demonstrated on three multi-camera setups with
semi-overlapping fields of view: a basketball game, an indoor airport surveillance scenario
and a synthetic outdoor pedestrian dataset. We compare the proposed view selection ap-
proach with a maximum score based camera selection criterion and demonstrate a significant
decrease in camera flickering. The performance of the proposed approach is also validated
through subjective testing.

Keywords Content scoring · information ranking · feature analysis · camera selection ·
content analysis · autonomous video production

1 Introduction

Multi-camera settings are becoming increasingly common in scenarios ranging from sports
to surveillance and smart meeting rooms. An important task is the quantification of view
quality to help select a single camera or a subset of cameras for optimal observability. The
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Fig. 1 Block diagram of the proposed approach, composed of three main blocks i.e. feature extraction, con-
tent scoring and camera selection.

ranking of each view can assist in applications such as summary production, highlight gen-
eration, and action replay. Although extensive work has been done in autonomous content
production, camera selection and scheduling for site or target monitoring (Table 1), not much
literature is available on the quantification of the quality of a view. View quality is depen-
dent on the task at hand and on the features that one aims to observe [5]. Hence the overall
view selection problem splits into three sub-problems (Fig. 1): (i) to analyse the features
of each frame in each video stream; (ii) to assign a score to each camera that is dependent
on context and scene content; (iii) to select the camera based on the calculated score and
contextual information. The selection should be done such that frequent and short switches
are avoided.

The contributions of this paper are twofold. First we introduce a novel quality measure
based on the combination of local and global features, which is used to assign a visibility

score to each view over time. The assignment of this score is based on a Gaussian obser-
vation model which can be used to select a single camera at any given time. The second
contribution is the use of scene-centric state modeling. This modeling is based on a Dy-
namic Bayesian Networks (DBN) to integrate camera network information as a prior for
selection. DBN allows us to achieve an optimal number of camera switches by enforcing
temporal smoothing.

The organization of the paper is as follow. Section 2 discusses the state-of-the-art in
content ranking and camera selection. In Sec. 3 we define the problem of content scoring
and best view selection. Section 4 describes the features extraction procedure. Section 5
deals with event detection. Section 6 describes the proposed algorithms for feature merging
and content scoring. Methods employed for view selection are discussed in Sec. 7. In Sec. 8
we discuss the experimental results. Finally, in Sec. 9 we draw conclusion.

2 Related work

The state-of-the-art for best-view selection can be divided into two parts, namely methods
on content analysis and ranking and methods on camera selection and view planning across
cameras.

2.1 Content ranking

Content ranking involves the extraction of features and their ranking across time and across
cameras. The choice of these features and the ranking criterion are driven by the task at
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Fig. 2 Configuration of the cameras in (a) sports (basketball court); (b) surveillance (airport [22]) and (c) a
simulated road scenario.

Table 1 State of the art on best-view selection (FS:resilience to frequent camera switching; FOV: field of
view; KTSP: Kinetic Traveling Salesman Problem; POMDP: Partially Observable Markov Decision Process)

Ref. Features Method FS.

[27] Camera pose & configuration, task constraints Volumetric intersection No

[10] Object size, pose & orientation Dynamic Programming Yes

[5] Object size, deadline, orientation, events Feature visibility & weighting No

[9] Object position, appearance & pose Heuristic-based greedy programming No

[15] Event probability and priority Event ranking No

[12] Target and camera location Automatic determination of FOV lines No

[2] Tracking predictions and appearance KTSP with deadlines Yes

[4] Target location and velocity Greedy scheduling No

[18] Object detections Weighted round robin No

[6] Path observations, activity patterns Incremental learning No

[13] Tracking, occlusion Markov Chains Yes

[23] Target appearance Weighted fusion of features No

[19] Estimation entropy POMDP Yes

hand and the network configuration. In [23] target appearance is used as a ranking measure.
The weighted average of each color channel in the segmented pixels is used to select the
most appropriate set of sensors. The goodness of the proposed approach is demonstrated in
terms of detection and tracking error through the selected sensor. Although this approach
is general enough for wide variety of scenarios, being based only on low-level features it
results in higher ranks whenever there is a change in the scene that does not necessarily
correspond to an interesting activity.

The view angle and the distance between target and sensor are other features used to
determine the quality of a view obtained from multiple overlapping sensors. In [21] frontal
images of each person are captured as they enter the scene. This work lacks a formulation
for multiple targets and is applicable only to a single pedestrian. Moreover the view angle
estimation draws heavily on the 3D knowledge of the scene (both in terms of camera and
the target), which may not be always available. In [3], visibility factor is associated to an
occlusion metric and hence a camera configuration that minimizes occlusion is chosen. A
similar method is proposed in [27], where the visibility is measured in terms of observability
of features of interest. Features of interest in the environment are required to simultaneously
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be visible, inside the field of view, in focus, and magnified as per the specification of the
task at hand. Features extracted from the track information are fused to obtain a global score
to mark regions as interesting on the basis of the quality of view.

In [7] the rank for each sensor is estimated as a weighted sum of individual features
of each target. The combination of features (blob area, detection of face, its size and the
direction of motion of the target) is used to rank individual object features. Since this ap-
proach does not incorporate high-level scene analysis (e.g., event detection), it is very likely
that the highest rank may be given to the sensor with the largest number of targets, whereas
sensors with fewer targets but containing interesting or abnormal behaviors may be ignored.
Similarly the problem of content ranking is considered in [5] as an observation on multiple
features. Ranking is performed on the basis of the features and events associated to each
object. The overall approach in this work is deadline driven and based on a constant direc-
tion motion model. The work in [15] uses event information as a cue to select the best view
where the event recognition probability and the information about its importance are used
as selection criterion.

In [16] a dual camera system is proposed for indoor scenarios with walking people. Tar-
gets are repeatedly zoomed in to acquire facial images using a supervised learning approach
driven by skin, motion and detectability of features. Priors such as size (height) and the
motion path of the target are set to narrow the choice in selection of targets in the scene.
However this work lacks a formulation for target scheduling and its performance degrades
in crowded scenes. In [2, 18], target features such as gaze direction and motion dynamics
are used to compute the minimum time that the target will remain in the monitored area
(deadline). This deadline can be used to assign weights to active cameras in order to decide
which sensor can attend to the target with minimum adjustment cost [18].

In [29] the occupancy map of the objects is constructed and used as shape approxima-
tion. Several features are then extracted from the occupancy map (distance covered, speed,
direction, distance from the camera center, visibility and face visibility). The construction of
the occupancy map reduces the amount of noise due to spurious detections. A similar voxel
representation is used for different body parts in [9] to determine pose of the target in order
to obtain its probability of visibility.

2.2 Camera selection

Camera selection takes into account physical constraints such as the scheduling interval,
orientation speed (in case of an active camera) and location of sensors in the network. In [2]
Time Dependent Orienteering (TDO), target motion, position, target birth and deadline are
used to trigger a PTZ camera that capture targets in the scene. To minimize the number of
switches a scheduling interval is used. The cost of the system is associated to the number
of targets not captured. The scheduling strategy used is Kinetic Traveling Salesperson Prob-
lem with deadlines. A schedule to observe targets is chosen which minimizes the path cost
in term of TDO. This work does not consider target occlusions and does not provide any
formulation for the prediction of the best time intervals to capture images. In [10] a cost
function is proposed that depends on the view quality measures using features such as ob-
ject size, pose and orientation. This cost function also includes a penalizing factor to avoid
frequent switches.

In [31] a single person is tracked by an active camera and when there is more then one
person in the view of the static camera, the active camera focuses on the closest target. The
performance of the system degrades in case of crowded scenes as the camera switches from
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target to target. In [17], a surveillance system is proposed, comprising of passive cameras
with wide field-of-view and an active camera which automatically captures and labels high-
resolution videos of pedestrians. A Weighted Round Robin technique is used for scheduling
each target that enters the monitored area. The approach is scalable both in terms of number
of cameras and targets.

The work in [4] uses greedy scheduling policies to observe people where targets are
treated as network packets and a routing approach based on techniques such as First Come
First Served (FCFS), Earliest Deadline First (EDF) and Current Minloss Throughput Opti-
mal (CMTO). However these approaches do not include the transition cost for the camera
that is associated with target swaps. A system for automatically acquiring high-resolution
images by steering a pan-tilt-zoom (PTZ) camera is described in [20]. The system uses cali-
brated master cameras to steer slave cameras. However, in case of multiple targets, the slave
PTZ cameras focuses on the target which was detected first in the scene and then based
on the arrival time of the targets subsequent scheduling of targets is done. In [8] a ceiling
mounted omni-directional camera provides input for a PTZ camera mounted at head height
to capture facial images of the targets moving in the scene. No formulation is provided to
tackle lost objects and for cluttered scenes there is significat degradation in the performance
of the system. In addition there needs to be accurate calibration between the master and
slave cameras.

The work in [1] concentrates on active tracking: a simple behavior (a policy) with a
finite state machine is defined in order to give some form of continuity when the currently
tracked target is changed. Authors in [19] propose the use of Partially Observable Markov
Decision Processes (POMDP) to estimate the state of the target at any time and select a
camera configuration so that estimation error in detecting the state of the target is minimized.
Scheduling interval is used to observe targets for a duration of time. However they do not
take into account target interactions with the environment and no formulation is provided
for multiple targets.

3 Problem formulation

Let a set of N cameras C = {C1, . . . ,CN}, with camera Ci at time t observe a set of Ji(t)
targets Oi(t) = {Oi1(t), . . . ,OiJi

(t)}. The problem of view selection consists in deciding the
best view C̃(t) at any time t such that features of interest are visible [27] and/or maxi-
mized [3]. Such a view is likely to contain information about the scene which is of most
interest, given the site contextual information and camera network information. Let us de-
fine the set of features observed by each camera Ci as ψi(t). Based on these features, a
score ρi(t) = f (ϑi,ψi(t)) is assigned to it, where ϑi is a set of parameters for camera Ci

that encode the contextual information regarding the site. This score helps selecting camera
C̃(t) ∈C at each time instant t. In order to avoid frequent switches and generate a pleasant
view, let us consider the cameras as a set of states of the system. Then the problem is to find
the most likely state based on a observations vector ρ̄(t) = (ρ1(t), . . . ,ρN(t)), where ρi(t) is
the score for camera Ci at time t.

The problem of camera selection can thus be regarded as a three-tier system (Fig. 1). In
the first stage, the extraction of a feature set ψi(t) at time t for each object in each camera
Ci, ∀ i = 1, . . . ,N is performed. In the second stage, the features are used to generate a
camera score ρ̄(t). In the final stage, a selection mechanism is constructed as a function of
time t and the rank ρ̄(t) to select C̃(t).
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(a) (b) (c)

Fig. 3 Example of background learning result. Starting from he foreground objects are progressively re-
moved: (a) frame 0; (b) frame 100; (c) frame 250.

(a) (b) (c) (d)

Fig. 4 Activity detection results for two cameras. (a,c): input images. (b,d): binary activity masks.

We use object as well as scene-centric features to represent the information being ob-
served by each camera within the site. Initially, the amount of motion or activity di(t) for
Ci at time t is computed. Then objects of interest are detected and associated across frames.
The size and the location of the object are considered as features of interest. The size fea-
ture si j(t) used in this work is a linear function of width and height of object (see Sec. 4.3).
The site is divided into regions based on their importance. Each object is assigned a loca-
tion score λi j(t). In addition, events of interest within the field of view of each camera are
detected. Event detection is done using both low and high level features.

In the following sections we provide a detailed description of the methodology involved
in the extraction of these features.

4 Feature extraction

4.1 Amount of activity

The scalar value used to express the amount of activity is the number of foreground pixels
normalized by the image size and is represented as di(t) =

∣

∣Id
i (t)

∣

∣ for camera Ci at time t.
The segmentation of an image into background and foreground is performed using a color

change detector [25]. A reference image I
re f
i is first generated for each camera Ci using

adaptive background learning (see Fig. 3). Let Ii(t) be an input image from camera Ci at time

t, then the difference image Id
i (t) at time t is calculated as Id

i (t) =
∣

∣

∣
I

re f
i (t)− Ii(t)

∣

∣

∣
. Id

i (x,y, t),

a pixel at location (x,y) at time t in Id
i (t), is classified as foreground or background based

on dynamic thresholding. Sample results for the activity detection are shown in Fig. 4.
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Fig. 5 Sample image for object detection. Objects not meeting the criterion for size and orientation are
classified as noise or spurious detections.
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Fig. 6 Example of digraph G for 3 frames motion correspondence: (a) the full graph; (b) a possible maximum
path cover.

4.2 Object detection and tracking

Contextual information about the site is exploited after the activity detection to classify
foreground objects as real targets or spurious objects. This contextual information includes
the expected width, height and orientation of the target given its location. When observing
humans, in most cases a person is upright and therefore we only consider detections with an
upright major axis (see Fig. 5). However this detection module can be replaced with other
approaches that incorporate target modeling [11].

Next, data association links different instances of the same object over time (target track-
ing). Target tracking is done using a graph based approach that uses multiple object fea-
tures to establish correspondence. Let us assume that we detect Mi(t) candidate targets in
camera Ci at time t, where Mi(t) �= Ji(t). Let this set of Mi(t) detections be represented as
Xi(t) = {Xi j(t)} j=1...Mi(t) at time t and v(xa(t)) ∈ V (t) be the set of vertices representing
the detected targets at time t. Each v(xa(t)) belongs to G = (V,E), a bi-partitioned digraph
(i.e. a directional graph), such as the one reported in Fig. 6 (a). The candidate correspon-
dences at different observation times are described by the gain g associated to the edges
e(v(xa(t)),v(xb(t̄))) ∈ E that link the vertices such that t �= t̄ .

The gain g between two vertices is computed using the information in Xi(t), where
the elements of the set Xi(t) are the vectors xa(t) defining x, the 4D state of the object
x = (x,y, ẋ, ẏ,w,h). Here (x,y) is the center of mass of the object, (ẋ, ẏ) are the vertical and
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Fig. 7 Object sizes (s) for multiple objects and multiple classes. Using the size measure compared to an area
measure reduces the inter- and intra-class size gap across objects.

horizontal velocity components in the image plane and (w,h) are the width and height of
the bounding box. The velocity is computed based on the backward correspondences of the
nodes. If a node has no backward correspondence, then (ẋ, ẏ) are set to 0. The best set of
tracks is computed by finding the maximum weighted path cover of G (see [25] for more
details).

4.3 Object size

To consider the visibility of the object Oi j(t) at time t we take into account the size of
the target. However conventional measures for size (e.g., the blob area, or the area of the
bounding box itself) give higher values to objects closer to camera and thus these objects
are regarded as interesting, which may not always be the case. Authors in [31, 21] normalize
the blob area by the distance between the object and the camera. However this requires 3D
information about site and the camera, which may not always be available. Moreover when
we consider a scenario with multiple object-classes (Fig. 7), bigger objects (car) will always
be ranked higher than pedestrians. To overcome this shortcoming we rescale the object area
with half of its perimeter thus converting the square area measure to a linear measure, i.e.,

si j(t) =
1

Ai

.
wi j(t)×hi j(t)

wi j(t)+hi j(t)
, (1)

where Ai is the imaging area of the camera Ci, wi j and hi j refer to the width and height of
the jth object respectively when viewed from Ci. As an example, consider multiple object-
classes as shown in Fig. 7; the pixel area of the car (Ac = 12684) compared to pedestri-
ans (Ap1 = 2754, Ap2 = 4005) is considerably larger (Ac/Ap1 = 4.6051, Ac/Ap2 = 3.167,
Ap1/Ap2 = 0.6876). As a result frames containing the car will always have a higher score
than those containing pedestrians alone. In contrast to this, using the size feature introduced
in Equation 1 this difference is reduced (sc/sp1 = 2.25, sc/sp2 = 1.804, sp1/sp2 = 0.8003).

4.4 Object location

An observed site can be divided into regions of varying importance based on the task at
hand. In a sports scenario these could be the regions near the goal or basket. In surveillance
scenarios these can be the entry and exit zones of the site. Objects in these regions would
be of higher significance than objects elsewhere. To this end, the monitored site is divided
into K non-overlapping regions on a common reference plane. We take the ground plane (π)
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Fig. 8 Sample motion vector magnitudes in foreground regions. The magnitudes below the threshold line are
due to noise whereas the highlighted patch indicates the interval occupied by the event.

as the reference plane. The motivation for using a common plane for assignment of score
is to assign scores to region based on their significance in the site rather then in the image
alone. Each region is assigned a region score γk ∈ [0,1] where γk → 1 represents the region
of higher significance. The detections from the image plane are transferred to the ground
plane. The image-plane to ground-plane (π) projection can be estimated by applying the
homography matrix Hiπ .

Oπ
i j(t) = Hiπ Oi j(t), (2)

where Oπ
i j(t) is the ground-plane projection of the jth object when observed from ith camera.

Each object is assigned a region score γi j(t) based on its location in the scene at time t.

5 Event detection

We use a combination of low- and high-level features for event detection. The low-level
features include motion vectors and activity detection (Section 4.1), whereas the high-level
feature are based on the output of an object detector. These features include the size and the
location of the target. In case of the airport dataset [22] this was a pedestrian detector [30],
and for basketball and simulated pedestrian scenarios (Fig. 2(a) and 2(c), respectively) we
use the output of the object detector and tracker described in Section 4.2.

The motion vectors are computed by applying block matching using different window
sizes based on the camera perspective. We use rectangular blocks instead of square block
as the target objects, i.e. pedestrians, form upright rectangular bounding boxes. The three
different block size used were 2× 4, 4× 8 and 8× 16 with a shift of 1 pixel and a search
window of 14×14 pixels. Figure 8 shows the magnitudes of motion vectors. The peaks in
the signal indicate activity intervals where there are some objects in the scene. Due to per-
spective, the object sizes vary across the scene and does the the magnitude of the associated
motion vectors. This magnitude is normalized by dividing with the average magnitude, over
non-event intervals of a square block of the scene (Fig. 9). The normalizing factor is further
smoothed by applying a mean filter (see [26] for further details).

List of events specific to each dataset is generated and an event score, based on their
significance is assigned to each event. In this work, we apply thresholds on object- and
frame-level features to identify these events. However model-based approaches can be ap-
plied depending upon the event of interest [24]. To this end, for the basketball dataset, we
consider the event of attempt on basket as a global event. For this we consider the region in
the vicinity of the basket and if the overall magnitude of vectors is higher than a threshold,
this is considered to be an attempt on basket (see Fig. 10). The second class of events for this
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Fig. 9 Sample normalization factor to compensate for changes in perspective due to object size, computed
for each 16×16 region of the image.

Fig. 10 An example frame for attempt on basket event.

data set is the high activity event. This event is directly related to the amount of motion vec-
tors in the scene and the amount of activity di(t) associated to the frame. The event consid-
ered for the pedestrian dataset was the event of an object being on the road (marked by green
lines for visualization in Fig. 13) for a duration longer then β time instances (pedestrian-

on-road event). For this we consider the location score γi j(t) associated to each object Oi j

being observed from camera Ci at time t. In these set of experiments we use a value of β ≥ 15
frames. In the airport surveillance dataset we performed the detection of three events namely
person runs (total magnitude of motion vectors normalized with average magnitude of mo-
tion vectors within a region), elevator no entry (when an object does not enter the elevator
with elevator door open) and opposing flow (a person walking in a direction opposite to the
allowed direction).

Assume that there are Ls possible events which can happen for a multi-camera setup
and this set is represented as Γ = {λ1, . . . ,λLs}. Based on the importance of each event, it
is assigned a score θ l |l=1,...,Ls

. If a set λ l
i (t)l=1,...,Li

∈ Γ of Li events are detected in camera

Ci at time t, the total event score Θi(t) for each camera at time t is given as Θi(t) = ∑
Li

l
θ l

i ,
where θ l

i for l = 1, . . . ,Li is the list of event scores seen by camera Ci at time t.
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(a) (b) (c)

Fig. 12 Object score example: (a) object score in a region of lower interest. Increase in score due to (b)
change in size (b) entered in the region of high interest.

(a) (b) (c) (d)

Fig. 13 Example scores for an object as it (a) approaches region of high interest, (b) is in the region of
interest, (c) moves away from the camera, (d) just before it leaves the region of interest.

6 Content Scoring

The content of the scene is ranked in two steps: In the first step all objects are ranked inde-
pendently in each camera view. In the next step a combination of frame-level features and
object score is used to find the frame-level score for each camera.

6.1 Object Score

The object score εi j(t) for each object Oi j is calculated by scaling the size feature associated
with its location score

εi j(t) = si j(t)γi j(t). (3)

The pipeline used for the extraction of object level features and assigning score to each
object is highlighted in Fig. 11. This score is indicative of the importance of an object within
the scene. Fig. 12(a-c) shows the development of the score of a single object as it moves from
a region of low interest to a region of high interest (Fig. 17). The score takes values of 0.24
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Fig. 14 Sample output of maximum-score-based view selection for the basketball scenario with 5 cameras
as shown in Fig. 2.

(Fig. 12(a)), 0.26 (Fig. 12(b)) and 0.73 (Fig. 12(c)). The slight increase in object rank in
Fig. 12(b) is due to the increase in the size of the detected player. A significant increase
in the object score is observed (see Fig. 12(c)) when the object enters the region of higher
significance. Similarly, Fig. 13 ((a)-(d)) shows the increase in the score of a target from
0.092 (Fig. 13(a)) to 0.799 (Fig. 13(b)) as the pedestrian steps on the road. This rise in the
score of the object is due to the pedestrian stepping on the region of high interest. However
as the target moves farther away from the camera (Fig. 13 (c),(d)) the object score further
decreases to 0.304 and 0.273.

Information about objects within a camera view is provided by its local features. To
evaluate the importance of the camera view itself, these local features need to be combined
with the global features. This generates a frame level scoring at each time t which is dis-
cussed in the next section. The cumulative object score Ei(t) at time t, for all Ji(t) objects in

the view of camera Ci, is calculated as Ei(t) = ∑
Ji(t)
j=1 εi j(t).

6.2 Frame scoring

The frame rank is computed at each time t using the amount of activity, number of objects,
scene-centric events and the accumulated object score in the frame. The change di(t) =
∣

∣Id
i (t)

∣

∣ observed in the frame at time t is used as a cue for the amount of activity. The
activity level of the object in the near field of the camera is more as compared to the ones in
the far field due to the perspective view. To cater for this we take into account the number of
objects Ji(t) in the view of a camera Ci. To this end a feature vector ψi(t) is constructed as

ψi(t) = (Ji(t),di(t),Ei(t),Θi(t)). (4)

We model the score ρi(t) for each camera Ci at each time t as a continuous multivariate
distribution N (µi,Σi,ψi(t)) with mean µi and covariance Σi. Figure 14 shows an exam-
ple output for the basketball scenario for the best-view selected using the maximum frame
score based selection criteria: C̃(t) = argmaxi [ρi(t)|i = 1 . . .5]. It can be seen that there are
frequent switches, some of which are of very short intervals. Adding constraints such as
minimum viewing/scheduling period [2, 10] may cause loss of information. This problem
can be solved by considering the knowledge of the previously selected view and the prior
knowledge about the scene as discussed in the next section.
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Fig. 15 Sample Bayes network (a) defining the adjacency between cameras where Ci is the ith state and ζ (.)
are the parent nodes for Ci; (b) DBN unrolled for T = 3.

7 View selection

Frequent switches (Fig. 14) between cameras are undesirable as they make the content of the
video difficult to understand. These switches can be avoided by considering the past states
and prior knowledge about the sensor network. This knowledge (the state priors P(Ci) and
the state transitions P(C̃(t) = Ci|C̃(t −1) = C j)) is computed based on the activity in each
camera and their placements. This state modeling can be done using Dynamic Bayesian
Networks (DBNs), a generalized form of Hidden Markov Model (HMM), where both the
hidden states and the observations can be defined as a set of (discrete or continuous) ran-
dom variables. Furthermore, DBN are dynamic acyclic graphs (DAGs) where each node is
connected to another node using a directed arc/edge. This feature of DBN makes it more
suitable for use in view selection where switching between cameras is dependent on their
placement in the network instead of in an arbitrary order. This constraint can be easily rep-
resented as a DAG which allows to convert the heuristics about the network structure into a
probabilistic algorithm. A sample DAG is shown in Fig. 15(a) where each edge represents
the probability of going from one stage to another. In DBN, the joint state is computed as

P(Ci(t)) =
t

∏
l=t−T

N
ζ
i

∏
j=1

P(C j(l)|ζ (C j(l))), (5)

where ζ (.) are the parent nodes of Ci(t) and T is the number of time slices (number of past

observations to take into account) and N
ζ
i is the number of parent nodes for camera Ci. For

example, Fig. 15(b) shows an unrolled version of DBN for a sequence of time slices T = 3,
the joint probability distribution is given as

P(Ci(1 : T),ρi(1 : T )) = P(Ci(1))P(ρ(1)|Ci(1))
T

∏
t=2

P(Ci(t)|Ci(t −1))P(ρi(t)|Ci(t)). (6)

Note that in Fig. 15(b) the observations are also nodes of the graph. Furthermore, each
node only depends upon information up to current time and there is no dependency on
future information, thus preserving the acyclic condition of the DBN. The effect of camera-
camera transition probability P(Ci(t)|Ci(t − 1)) is also evident from Fig. 15(b) and Eq. 6.
The network structure consisting of N + 1 nodes (an additional node for the absorption
stage) using the adjacency matrix (Eq.(9)), where N is the number of cameras in the sensor
network. This matrix is created using the camera configuration thus defining the possible
state transitions (e.g Fig. 15(a)). Each element of the adjacency matrix provides the transition
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probability of selecting a view given the current view. Formally, the probability of observing
state Ci given the current state is C j can be computed as

P(Ci(t)|C j(t −1)) = P(Ci(t)|C j(t −1))P(Ci(t)|ζ (C j(t −1))). (7)

In this computation we assume the model to be first order Markov and the transition and
observation functions are time-invariant i.e. P(Ci(t)|C j(1 : t −1)) = P(Ci(t)|C j(t −1)). To
facilitate transitions after the system is in the absorbing state, a auxiliary node is introduced
which allows transition to the parent nodes. The scores ρi for each camera Ci are used as
observation for the Bayesian network. The observation is an N-dimensional feature vector
defined as ρ̄(t) = {ρ1(t), · · · ,ρN(t)}. The states are modeled using binomial distribution.
The choice of binomial distribution is because in this distribution each trial results in exactly
one of some fixed finite number k of possible outcomes, with probabilities (p1, · · · , pk) such
that ∑k

i=1 pi = 1, and there are ntr independent trials. The parameter learning for each node is
based on Expectation Maximization [14] algorithm. The training is performed for each state
up to n iterations or until the change in log likelihood is less then a threshold η = 10−100.
The likelihood for each state is calculated by applying marginalization. The final camera
selection C̃(t) is then computed as

C̃(t) = argmax
i

[ϒ (ρi(t −T : t)|P(Ci(t)))P(Ci(t))] , (8)

where ϒ (.) is assumed to be Gaussian and P(Ci) is the prior on the state.

8 Results

To evaluate the performance of the proposed approach we show two different types of ex-
periments. The first set of experiments regards the content scoring and camera selection.
The second experiment focuses on the evaluation of the system in terms of selection of
the best-view while minimizing the number of view switches. In both sets of experiments
we demonstrate the effectiveness of the proposed approach by comparing it with manually
generated ground-truth. The ground-truth was done manually by 11 non-professional users.
Each user was asked to select a camera view at each time instant. Then the view selected by
majority of the users was chosen as the best-view at that time instant.

8.1 Experimental setup

We demonstrate the performance of the proposed approach on three scenarios, namely a
basketball game, an indoor airport surveillance and an outdoor scene. The basketball game
(Fig. 2(a)) is monitored by 5 cameras with partially overlapping fields of view. The data con-
sists of a total of 17960 frames, out of which 500 were used for training the DBN and the
remaining were used for testing. Contextual information is composed of the expected size
and orientation of the players in each camera view. The regions of the video outside the field
are not considered, and any features of interest observed in these regions are ignored. The
camera network configuration is encoded in the form of Bayes net as shown in Fig. 15(a).
The indoor airport surveillance dataset was also acquired using 5 partially overlapping cam-
eras (Fig. 2(b)). The section of data on which we demonstrate the proposed approach con-
tains 180006 frames for each camera, out of which 1000 were used for training the DBN
and remaining for testing the algorithm. Contextual information in this case is composed of
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the normalized magnitude of the motion vectors after applying temporal smoothing for each
camera view and information about the site. The outdoor scene is composed of synthetic data
generated using [28] and consisting of a 4-view set-up with semi-overlapping cameras (see
Fig. 2(c)). These video streams consist of 1816 frames per camera, out of which 100 × 4
were used for training the DBN and the remaining for testing. Contextual information in
this case included the location of the road which was used to generate a pedestrian-on-road

event. The adjacency matrices define the transition probabilities of going from one state to
another (selecting a camera, given the selected camera at previous instant). The adjacency
matrices for these datasets, AB for basketball, AA for airport surveillance, and AH for the
outdoor dataset, are defined in Eq. 9

AB =

⎡

⎢

⎢

⎢

⎢

⎣

1 1 0 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 0 1
0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

,AA =

⎡

⎢

⎢

⎢

⎢

⎣

1 1 1 1 1
0 1 1 0 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

,AH =

⎡

⎢

⎢

⎣

1 1 0 0
0 1 0 1
0 0 1 1
0 0 0 1

⎤

⎥

⎥

⎦

. (9)

In AA (adjacency matrix for airport dataset) we do not enforce any camera transition order
as we always want to select the view with the highest score. For each of these setups the
location importance is assigned manually from the contextual information about the site.
The normalization of motion vectors is performed over a 16×16 block of the scene.

8.2 Content Scoring and View Selection

Figure. 16 shows the score, the DBN output, the ground truth and the selected state by the
proposed approach on all 5 cameras of the first 1250 frames for each camera of the basketball
dataset. It can be seen that in many cases (Fig. 16(c), frames 775 to 800 and Fig. 16(d),
frames 0 to 400), contrary to score, the probability of the state computed by DBN is close to
1 (i.e. has higher confidence). This results in a reduced number of switches between views
compared to the maximum score based view selection. The large number of peaks in the
result of camera 2 (Fig. 16(b)) is caused by this camera’s field of view that covers most of
the scene and hence often observes some activity. The activities in the far field generate the
peaks in this graph, whereas consistent higher probability is observed for this camera when
most players are in the near field of the camera. The probabilities generated by DBN for the
remaining four cameras (Fig. 16(a,c-d)) are higher in certain intervals only.

Figure 17 shows sample results of the proposed approach on the same dataset. Camera
1, 3 and 5 have fewer number of object in the region of interest (row 2). Camera 2 and
camera 4 have almost an equal number of objects. However, camera 4 has a much higher
activity level. This results in a much higher probability for camera 4 to be selected compared
to the other cameras, as shown in Fig. 16. In Fig. 17, row 3, camera 1 has objects in the far
field, whereas camera 4 has no objects. Camera 2, 3 and 5 all seem good candidate for
selection and therefore none of them has a significantly high score (dashed line in Fig. 16).
In this case, camera 3 is selected due to the accumulated temporal information (smoothness
added by DBN). In row 4, all cameras except camera 4 can be selected as best view as at
frame 940 the players are dispersing after an attack. Here the selected camera is camera 1
again due to the previous state in the state estimation of the DBN. To better visualize the
performance of the proposed approach the input videos along with the results can be found
at http://www.elec.qmul.ac.uk/staffinfo/andrea/view-selection.html
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Fig. 16 Camera scores, DBN output, associated ground truth and generated output for the first 1205 frames of
the Basketball data set (Ground truth key: red: camera 1, green: camera 2, blue: camera 3, magenta: camera
4, brown: camera 5) (Graph key: solid line: DBN output, dashed line: scores (R), GT: ground truth, AD:
automated) ompared to R the DBN scores are closer to 1 and are consistent over several intervals which
increase the reliability of selected view and reduce frequent short switches. The several high peaks in camera
2 are due to the fact that it observes the entire scene and hence there is always some activity.

Similarly, for the airport surveillance dataset (see Fig. 18), in row 2 camera 4 has no
object, whereas there is activity in all the remaining cameras. Although the amount of change
in camera 1 is high owing to a fast moving vehicle, however camera 2 is selected due to
higher number of targets. However in row 3 camera 5 is selected, which is due to larger
target size as compared to camera 2 which has more number of targets. In row 4 camera 5
is empty and camera 4 only contains 2 targets, however due to the target location (inside or
close to the elevator), camera 4 is selected.

For the outdoor dataset (Fig. 19), camera 2 is selected due to a larger number of objects
in its view (row 2) compared to the other views. In row 3, camera 3 and 4 have almost no
objects and camera 1 and 2 observe the same two objects. However, camera 1 is selected
due to its higher object scores (on the basis of the size of the objects). In row 4, camera 4 is
selected, while ignoring other views. This is a result of the target being on the road, which
is an area of higher interest.
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(a) (b) (c) (d) (e)

Fig. 17 Example frames from each camera and view selected by the proposed approach: (a) camera 1; (b)
camera 2; (c) camera 3; (d) camera 4; and (e) camera 5. (Row 1) Layout of the scene showing camera field
of view (blue) and regions of high interest (green). (Row 2) Frame 255 where camera 4 is selected; (Row 3)
Frame 540 where camera 3 is selected and (Row 4) Frame 940 where camera 1 is selected.

8.3 Complexity

To compute the computational cost of the entire algorithm, we consider the three stages
outlined in Fig. 1. Each stage further contains sub-processes as highlighted in Fig. 20. The
stated percentage average times were calculated on an Intel 3.2 GHz Pentium dual core using
non-optimized implementation. The detection and tracking was done using visual C++ and
remaining modules were implemented using Matlab. It can be seen in Fig. 20 that the detec-
tion and tracking module contributes to 61.53% of the total computational cost. The frame
ranking (5.95%) and the view selection (11.22%) on the other hand, takes only 17.15% of
the total time. This shows that the bulk of the time (82.85%) is consumed in object detec-
tion and tracking and feature extraction (stage one of Fig. 1). This indicates that given an
efficient implementation for detection, tracking and feature extraction the proposed view
selection can be easily performed in short time duration.

8.4 Evaluation

To evaluate the effectiveness of the smoothing introduced by the proposed approach (DBN-
BV) we compare it with a maximum score (MR) based approach. In this approach we in-
troduce the selection interval τ and the decision is taken at the beginning of each selection
interval. This results in reducing the number of switches as the change of view is only al-
lowed after τ frames. Figure 21 shows the result where the number of switches reduces
from 53 to 26 as τ increases from 1 to 20 when using MR. In case of DBN, the number of
switches decreases from 24 to 20 only. This shows that by using DBN we can reduce the
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(a) (b) (c) (d) (e)

Fig. 18 Example frames from each camera and view selected by the proposed approach: (a) camera 1; (b)
camera 2; (c) camera 3; (d) camera 4; and (e) camera 5. (Row 1) Layout of the scene showing camera field
of view (blue). (Row 2) Frame 1740 where camera 2 is selected; (Row 3) Frame 2010 where camera 5 is
selected and (Row 4) Frame 60680 where camera 4 is selected.

number of switches without introducing the additional parameter τ which may need to be
adjusted based on the dynamics of the scene.

We also perform a subjective evaluation with a Turing Test on the sports dataset using
7 videos and 22 subjects (Fig. 22). Out of these 7 videos, 5 were generated using manual
selection by different users (U1−U5), one video (MR) was generated by applying maximum
score criteria on the overall frame score (shown in Fig. 14) and the last video was generated
using the proposed approach (DBN-BV). Each subject was asked to decide, for each video,
whether it is generated by manual selection or automatically. It was observed that 73%
of the subjects misidentified the video generated by the proposed approach as manually
generated. Only 18% of the subject misidentified the MR video as manual, whereas 75% of
the subjects were able to correctly identify the manually generated video.

9 Conclusions

We presented a best-view selection algorithm for multi-camera settings. The scoring of each
camera view is based on the analysis of object and scene features. A multivariate Gaussian
distribution model uses these features to assign scores to each view. To prevent frequent
camera switching, camera selection is performed using a DBN with binomial distributions.
We showed that using the DBN results in fewer short-term switches between cameras and
demonstrated via subjective testing that this increases the likability of the generated video.

A further extension to this work is to use a multinomial distribution to model the contin-
uous state space of an active camera. Also we would like to investigate the use of additional
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(a) (b) (c) (d)

Fig. 19 Example frames from each camera and view selected by the proposed approach: (a) camera 1; (b)
camera 2; (c) camera 3 and (e) camera 4. (Row 1) Layout of the scene showing camera field of view (blue).
(Row 2) Frame 184 where camera 2 is selected; (Row 3) Frame 476 where camera 1 is selected and (Row 4)
Frame 1627 where camera 4 is selected.
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Fig. 20 Percentage average time for each module of the proposed approach.

features such as object tracking and motion models to enable the system to predict the next
best view.
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