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Fluorescence microscopy is a key driver of discoveries in the life-sciences, with observable

phenomena being limited by the optics of the microscope, the chemistry of the fluorophores,

and the maximum photon exposure tolerated by the sample. These limits necessitate trade-

offs between imaging speed, spatial resolution, light exposure, and imaging depth. In this

work we show how image restoration based on deep learning extends the range of biological

phenomena observable by microscopy. On seven concrete examples we demonstrate how

microscopy images can be restored even if 60-fold fewer photons are used during acquisition,

how near isotropic resolution can be achieved with up to 10-fold under-sampling along the

axial direction, and how tubular and granular structures smaller than the diffraction limit

can be resolved at 20-times higher frame-rates compared to state-of-the-art methods. All

developed image restoration methods are freely available as open source software in Python,

FIJI, and KNIME.

1 Introduction

Fluorescence microscopy is an indispensable tool in the life sciences for investigating the spatio-

temporal dynamics of cells, tissues, and developing organisms. Recent advances, such as light-

sheet microscopy [1–3], structured illumination microscopy [4, 5], and super-resolution micros-

copy [6–8] enable time resolved volumetric imaging of biological processes within cells at high
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resolution. The quality at which these processes can be faithfully recorded, however, is not only

determined by the spatial resolution of the used optical device, but also by the desired temporal

resolution, the total duration of an experiment, the required imaging depth, the achievable fluo-

rophore density, bleaching, and photo-toxicity [9, 10]. These aspects cannot all be optimized at the

same time – one must make trade-offs, for example, sacrificing signal-to-noise ratio by reducing

exposure time in order to gain imaging speed. Such trade-offs are often depicted by a design-space

that has resolution, speed, light-exposure, and imaging depth as its dimensions (Figure 1a) with the

volume being limited by the maximal photon budget compatible with sample health [11, 12].

These trade-offs can be addressed by optimizing the microscopy hardware, yet there are phys-

ical limits that cannot easily be overcome. Therefore, computational procedures to improve the

quality of acquired microscopy images are becoming increasingly important. For instance, in the

above-mentioned trade-off between exposure and speed, one could apply computational image

restoration to maintain an image quality that is still sufficient for downstream data quantification

at high acquisition speed. Super resolution microscopy [4, 13–16], deconvolution [17–19], sur-

face projection algorithms [20, 21], and denoising methods [22–24] are examples of sophisticated

image restoration algorithms that can push the limit of the design-space, and thus allow one to

recover important biological information that would be inaccessible by imaging alone. Most com-

mon image restoration problems, however, have multiple possible solutions, and require additional

assumptions in order to select one solution as the final restoration. These assumptions are typically

general, e.g. requiring certain level of smoothness of the restored image, and therefore are not de-

pendent on the specific content of the images to be restored. Intuitively, a method that leverages

available knowledge about the data at hand ought to reach superior restoration results.

Deep Learning (DL) is such a method, since it can learn to perform complex tasks on spe-

cific data [25, 26]. It employs large multi-layered neural networks that compute results after be-

ing trained on annotated example data (i.e. gold-standard, ground-truth data). Spectacular results

reaching human-level performance have for example been achieved on the classification of natural

images [27]. In biology, DL methods have for instance been applied to the automatic extraction

of connectomes from large electron microscopy data [28], for classification of image-based high-

content screens [29], fluorescence signal prediction from label-free images [30, 31], resolution

enhancement in histopathology [32], or for single molecule localization in super resolution mi-

croscopy [33, 34]. However, the direct application of DL methods to image restoration tasks in

fluorescence microscopy is complicated by the absence of training data sets and the impossibility

of generating them manually.

In this paper, we present a solution to the problem of missing training data for DL in flu-

orescence microscopy by developing strategies to generate such data. This enables us to apply

neural networks to image restoration tasks, such as image denoising, surface projection, recov-

ery of isotropic resolution, and the restoration of sub-diffraction structures. We show, in a variety

of imaging scenarios, that trained content-aware restoration (CARE) networks produce results that

were previously unobtainable. This means that the application of CARE to biological images allows

to transcend the limitations of the design-space (Figure 1a), pushing the limits of the possible in

fluorescence microscopy through machine learned image computation.
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2 Results

In fluorescence microscopy one is often forced to image samples at low signal intensities, resulting

in difficult to analyze, low signal-to-noise ratio (SNR) images. One way to improve SNR is to

increase laser power or exposure times which, unfortunately, is usually detrimental to the sample,

limiting the possible duration of the recording and introducing artifacts due to photo-damage. An

alternative solution is to image at low SNR, and later computationally restore acquired images.

Classical approaches, such as Non-local-means denoising [22], can in principle achieve this, but

without leveraging available knowledge about the data at hand.

To address this problem with machine learning, we developed content-aware image

restoration (CARE) networks, adapted to a specific experimental setup, hypothesizing that they

produce results superior to classical, content-agnostic methods. In the case of image denoising, we

acquired pairs of images at low and high signal-to-noise ratios, used them as input and ground-truth

to train CARE networks, and applied the trained networks to remove noise in previously unseen data.

Image Restoration with Physically Acquired Training Data. To demonstrate the power of this

approach in biology, we applied it to the imaging of the flatworm Schmidtea mediterranea, a model

organism for studying tissue regeneration. This organism is exceptionally sensitive to even moder-

ate amounts of laser light [35], suffering muscle flinching at desirable illumination levels even when

anesthetized (Supp. Video 1). Using a laser power that reduces flinching to an acceptable level re-

sults in images with such low SNR that they are impossible to interpret directly. Consequently, live

imaging of S. mediterranea has thus far been intractable.

To address this problem with CARE, we imaged fixed worm samples at several laser inten-

sities. We acquired well-registered pairs of images, a low-SNR image at laser power compatible

with live imaging, and a high-SNR image, serving as ground-truth. We then trained a convolu-

tional neural network1 and applied the trained network to previously unseen live imaging data of

S. mediterranea. We consistently obtained high quality restorations, even if the SNR of the images

was very low, e.g. being acquired with a 60-fold reduced light-dosage (Figure 1c, Supp. Video 2,

Supp. Figure 1-3). To quantify this observation, we measured the restoration error between pre-

diction and ground-truth images for three different exposure and laser-power conditions. Both,

the NRMSE2 and the SSIM3 measures of error improved considerably when compared to results

obtained by several potent classical denoising methods (Figure 1d, Supp. Figure 2 & 4, Supp. Ta-

ble 1). We further observed that already a small number of training images (e.g. 200 patches of

size 64 × 64 × 16) leads to an acceptable image restoration quality (Supp. Figure 5). Moreover,

while training a CARE network can take several hours, the restoration time for a volume of size

1024 × 1024 × 100 was less than 20 seconds on a single graphics processing unit4. In this case,

CARE networks are able to take input data that are unusable for biological investigations and turn

them into high-quality time-lapse data, providing the first practical framework for live-cell imaging

1We use networks of moderate size (≈ 106 parameters) based on the U-net architecture [36, 37], together with a

per-pixel similarity loss (e.g. absolute error) (cf. Supp. Figure 8, Supp. Chapter 2 and Supp. Table 3)
2Normalized root-mean-square error.
3Structural similarity index, measuring the perceived similarity between two images [38].
4We used a Nvidia Titan X GPU for all presented experiments.
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Figure 1: Content-aware image restoration in fluorescence microscopy. (a) The design-space of fluorescence

microscopes. Trade-offs between imaging speed, spatial resolution, and light exposure need to be found to best capture

a given sample within the constraints of a maximal photon budget (we omit imaging depth as the fourth dimension

for illustrative purposes). Content-aware restoration (CARE) networks enlarge the design-space by restoring image

aspects that suffered due to the trade-off used during imaging. (b) Restoration of noisy (low SNR) volumes. Pairs of

high SNR and low SNR volumes are acquired at the microscope. Each pair (xi, yi) consists of two registered low and

high SNR images of the same biological sample. A deep convolutional neural network is then trained to restore yi

from xi. The trained CARE network is then applied to previously unseen, potentially very low SNR images x̃, yielding

restored images ỹ. (c) Input data and restorations for nucleus-stained (RedDot1) flatworm (Schmidtea mediterranea).

Shown are a single image-plane of a raw input stack (top row), the network prediction (middle row), and the high SNR

gold-standard/ground-truth (bottom row). Due to the photo-sensitivity of the flatworm, ground-truth data can only be

obtained from fixed samples. Once trained, CARE networks enable live-cell imaging of Schmidtea mediterranea for the

first time. For a comparison to a total of eight denoising methods, please see Supp. Figure 4. Details on training data

and network parameters are given in Supp. Table 3. (d) Quantification of prediction error for Schmidtea mediterranea

for different laser intensities and exposure times (C1 to C3). Bar plots show normalized root-mean-squared error

(NRMSE) and structural similarity (SSIM, higher is better) for the input, for a denoising baseline (NLM [22]), and

for our content-aware restorations. (e) Input data and restorations for a nucleus-labeled (EFA::nGFP) red flour beetle

(Tribolium castaneum) embryo, again showing a single image-plane of the raw input data (top row), the network

prediction (middle row), and the high SNR ground-truth data (bottom row). Please see Supp. Table 3 for training and

network details.
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of S. mediterranea.

We next asked whether CARE improves common downstream analysis tasks in live-cell imag-

ing, such as nuclei segmentation. We used light-sheet recordings of developing Tribolium cas-

taneum (red flour beetle) embryos, and as before trained a network on image pairs of samples

acquired at high and low laser powers (Figure 1e). The resulting CARE network performs well

even on extremely noisy, previously unseen live-imaging data, acquired with up to 70-fold re-

duced light-dosage compared to typical imaging protocols [39] (Supp. Chapter 4, Supp. Video 3,

Supp. Figure 6). In order to test the benefits of CARE for segmentation, we applied a simple nu-

clei segmentation pipeline to raw and restored image stacks of T. castaneum. The results show

that compared to manual expert segmentation, the segmentation accuracy (as measured with the

standard SEG score [40]) improved from SEG = 0.47 on the classically denoised raw stacks to

SEG = 0.65 on the CARE restored volumes (Supp. Figure 7). Since this segmentation performance

is achieved at significantly reduced laser power, the gained photon budget can now be spent on

the imaging speed and light-exposure dimensions of the design-space. This means that Tribolium

embryos, when restored with CARE, can be imaged longer and at higher frame rates, enabling

improved tracking of cell lineages.

Encouraged by the performance of CARE on two independent denoising tasks, we asked

whether such networks can also solve more complex, composite tasks. In biology it is often useful

to image a 3D volume and project it to a 2D surface for analysis, for example when studying cell

behavior in developing epithelia of the fruit fly Drosophila melanogaster [41–43]. Also in this

context, it is beneficial to optimize the trade-off between laser-power and imaging speed, usually

resulting in rather low-SNR images. Thus, this restoration problem is composed of projection and

denoising, presenting the opportunity to test if CARE networks can deal with such composite tasks.

For training, we again acquired pairs of low and high SNR 3D image stacks, and further generated

2D projection images from the high SNR stacks [20] that serve as ground-truth (Figure 2a). We

developed a task-specific network architecture that consists of two jointly trained parts: a network

for surface projection, followed by a network for image denoising (Figure 2b, Supp. Figure 12

and Supp. Chapter 2). The results show that with CARE, reducing light dosage up to 10-fold has

virtually no adverse effect on the quality of segmentation and tracking results obtained on the

projected 2D images with an established analysis pipeline [44] (Figure. 2 c & d, Supp. Video 4,

and Supp. Figure 9, 10 & 11). Even for this complex task, the gained photon-budget can be used to

move beyond the design-space, for example by increasing temporal resolution, and consequently

improving the precision of tracking of cell behaviors during wing morphogenesis [44].

Image Restoration with Semi-synthetic Training Data. Thus far, the application of CARE has

relied on the availability of matching pairs of high and low quality images, both physically acquired

at a microscope. However, this kind of data is not always available. Therefore, we investigated

whether image pairs useful for training can be obtained also by computationally modifying existing

microscopy images.

A common problem in fluorescence microscopy is that the axial resolution of volumetric
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Figure 2: A CARE network jointly solving the composite task of surface projection and denoising. (a) Schematic

of the composite task. A developing Drosophila wing is a single layer of cells, embedded in a 3D volume. Imaging

of long time-lapses requires to image at low SNR to avoid photo-toxicity and bleaching. With CARE, the cell layer

of interest can be projected onto a 2D image, while also being denoised by the same, composite network. (b) The

architecture of the proposed CARE network consists of two consecutive sub-networks: the first one performing the

projection of voxel intensities (top half), and the second one denoising this projection. (c) Results obtained by the

proposed CARE network on E-cadherin labeled fly wing data. Shown is a max-projection of the raw input data (top row),

result obtained by applying the state-of-the-art projection method Premosa [20] (second row), the solution computed by

our trained network (third row), and the desired (ground-truth) projection obtained by applying Premosa on a very high

laser-power (high SNR) acquisition of the same sample. Details on training data and network parameters can be found

in Supp. Table 3. The ground-truth data was obtained at a laser intensity that cannot be used for live-cell imaging

without causing damage to the sample (see main text for details). (d) Quantification of restoration errors for data

acquired at different laser intensities and exposure times (conditions C1–C3). We show normalized root-mean-square

error (NRMSE) and structural similarity (SSIM, higher is better) between ground-truth images and results obtained

using Premosa (blue), Premosa with additional denoising (NLM [22], green), and our trained CARE network (orange).

For a comparison to additional baseline methods, please see Supp. Figure 10.

acquisitions is significantly lower than the lateral resolution5. This anisotropy compromises the

ability to accurately measure properties such as the shapes or volumes of cells. Anisotropy is caused

by the inherent axial elongation of the optical point spread function (PSF), and the often low axial

sampling rate of volumetric acquisitions required for fast imaging. For the restoration of anisotropic

image resolution, adequate pairs of training data cannot directly be acquired at the microscope.

Rather, we took well-resolved lateral slices as ground truth, and computationally modified them

(i.e. applied a realistic imaging model, Supp. Chapter 2) to resemble anisotropic axial slices of the

5Some complex modalities allow for (close to) isotropic acquisitions, e.g. multi-view light-sheet microscopy [19, 45].
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same image stack. In this way, we generated matching pairs of images showing the same content at

axial and lateral resolutions. These semi-synthetically generated pairs are suitable to train a CARE

network that then restores previously unseen axial slices to nearly isotropic resolution (Figure 3a,

Supp. Figure 19, Supp. Chapter 2, and [46, 47]). In order to restore entire anisotropic volumes, we

applied the trained network to all lateral image slices, taken in two orthogonal directions, averaged

to a single isotropic restoration (Supp. Chapter 2).

We applied this strategy to increase axial resolution of acquired volumes of fruit fly em-

bryos [48], zebrafish retina [49], and mouse liver, imaged with different fluorescence imaging

techniques. The results show that CARE improved the axial resolution in all three cases consid-

erably (Figure 3b-d, Supp. Video 5 & 6, and Supp. Figure 13 & 17). In order to quantify this,

we performed Fourier-spectrum analysis of Drosophila volumes before and after restoration, and

showed that the frequencies along the axial dimension are fully restored, while frequencies along

the lateral dimensions remain unchanged (Supp. Figure 14). Since the purpose of the fruit fly data

is to segment and track nuclei, we applied a common segmentation pipeline [50] to the raw and

restored images, and observed that the fraction of incorrectly identified nuclei was lowered from

1.7% to 0.2% (Supp. Chapter 2, Supp. Figure 15 & 16). Thus, restoring anisotropic volumetric em-

bryo images to effectively isotropic stacks, leads to improved segmentation, and will enable more

reliable extraction of developmental lineages.

The zebrafish and mouse liver data are examples of live and fixed two-channel imaging of

large organs, both requiring high imaging speed and isotropic resolution for downstream analy-

sis. While isotropy facilitates segmentation and subsequent quantification of shapes and volumes

of cells, vessels, or other biological objects of interest, higher imaging speed enables imaging of

larger volumes and their tracking over time. Indeed, respective CARE networks deliver the desired

axial resolution with up to 10-fold fewer axial slices (Figure 3 c & d, see Supp. Figure 18 for com-

parison with classical deconvolution), allowing one to reach comparable results ten times faster.

Moreover, we observed that for these two-channel data sets, the network learned to exploit correla-

tions between channels, leading to a better overall restoration quality compared to results based on

individual channels (Supp. Figure 17).

Taken together, increasing isotropic resolution through CARE networks, trained on semi-

synthetic pairs of images, benefits both imaging speed and accuracy of downstream analysis in

many biological applications. Moreover, since training data can computationally be derived from

the data to be restored, this method can be applied to any already acquired data set.

Image Restoration with Synthetic Training Data. Having seen the potential of using semi-

synthetic training data for CARE, we next investigated whether reasonable restorations can be

achieved from synthetic image data alone, i.e. without involving real microscopy data during train-

ing.

In most of the previous applications, one of the main benefits of CARE networks was im-

proved imaging speed. Many biological applications additionally require resolving sub-diffraction

structures in the context of live-cell imaging. Super-resolution imaging modalities achieve the nec-

essary resolution, but suffer from low acquisition rates. On the other hand, widefield imaging offers

7
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Figure 3: Isotropic restoration of 3D volumes with CARE. (a) Schematic of the semi-synthetic generation of train-

ing data. Lateral slices of the raw data (mint green) are used as ground-truth data. Corresponding anisotropic axial

slices can be generated synthetically by down-sampling and convolution with the axial component of the PSF of

the mimicked microscope (black inset). Raw axial slices (orange inset) cannot be used to train CARE networks be-

cause the isotropic image content is unknown. (b) Application of CARE on raw time-lapse acquisitions of Drosophila

melanogaster [48]. Shown are three areas of raw axial input data (top row), and the respective isotropic restorations

(bottom row). The rightmost column shows the Fourier-spectrum of raw and restored images and shows how missing

parts of the spectrum are recovered by CARE. (c) An axial slice through a zebrafish retina in the anisotropic raw data

(top row) and the isotropic restoration with CARE. Nuclei are DRAQ5 labeled in magenta and the nuclear envelope is

labeled by GFP+LAB2B in green. For a comparison to deconvolution using Huygens (Scientific Volume Imaging,

http://svi.nl), please see Supp. Figure 10. (d) An axial slice through mouse liver tissue, again showing the

anisotropic raw data in the top row and the isotropic restoration below. Nuclei are labeled with DAPI and displayed in

magenta, while sinusoids are labeled with FLK-1 and shown in green. Details on training data and network parameters

for all cases can be found in Supp. Table 3.
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Figure 4: Resolving sub-diffraction structures in fluorescence microscopy images at very high frame rates with

CARE. (a) Schematic of the fully-synthetic generation of training data pairs. Synthetic images of tubular and point-

like structures where computationally generated as ground-truth data, and have further been processed to resemble

actual microscopy data. CARE networks trained on such data can then be applied on real microscopy images of

diffraction-limited tubular and point-like structures. (b) Raw widefield images of rat secretory granules (pEG-hIns-

SNAP, magenta) and microtubules (SiR-tubulin, green) in insulin-secreting INS-1 cells (top row), the corresponding

network restorations (second row), and a deconvolution result of the raw image as a baseline (bottom row). Below the

images we show line-plots along the diagonal of both insets. (c) GFP-tagged microtubules in HeLa cells. Raw input

image (top row), network restorations (second row), super-resolution images created by the state-of-the-art method

SRRF [14] (third row), and a superposition of our results with restorations by SRRF (bottom row). Below the images

we show line-plots along the diagonal of both insets.

the necessary speed, but lacks the required resolution. We therefore tested whether CARE can com-

putationally resolve sub-diffraction structures using only widefield images as input. Note that this

is a fundamentally different approach compared to recently proposed methods for single molecule

localization microscopy that reconstruct a single super-resolved image from multiple diffraction

limited input frames using deep-learning [33, 34]. To this end, we developed synthetic generative

models of tubular and point-like structures that are commonly studied in biology. In order to obtain

synthetic image pairs, suitable for training CARE networks, we used these generated structures as

ground-truth, and computationally modified them to resemble actual microscopy data (Supp. Chap-

ter 2, Supp. Figure 21). Specifically, we created synthetic ground-truth images of tubular meshes

resembling microtubules, and point-like structures of various sizes mimicking secretory granules.

Then we computed synthetic input images by simulating the image degradation process by ap-

plying a PSF, camera noise, and background auto-fluorescence (Figure 4a, Supp. Chapter 2, and

Supp. Figure 21). Finally, we trained a CARE network on these generated image pairs, and applied
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it to 2-channel widefield time-lapse images of rat INS-1 cells where the secretory granules and the

microtubules were labeled (Figure 4b). We observed that the restoration of both microtubules and

secretory granules exhibit a dramatically improved resolution, revealing structures imperceptible

in the widefield images (Supp. Video 7, and Supp. Figure 20). To substantiate this observation,

we compared the CARE restoration to the results obtained by deconvolution6, which is commonly

used to enhance widefield images (Figure 4b). Line profiles through the data show the improved

performance of CARE network over deconvolution (Figure 4b). We additionally compared results

obtained by CARE with super-resolution radial fluctuations (SRRF [14]) results, a state-of-the-art

method for reconstructing super-resolution images from widefield time-lapse data. We applied both

methods on time-lapse widefield images of GFP-tagged microtubules in HeLa cells. The results

show that both CARE and SRRF are able to resolve qualitatively similar microtubular structures

(Figures 4c, Supp. Video 8). However, CARE reconstructions are at least 20 times faster, since they

are computed from a single average of up to 10 consecutive raw images while SRRF required about

200 consecutive widefield frames.

Taken together, these results suggest that for structures that are straight-forward to model,

such as microtubules, CARE networks can enhance widefield images to a resolution usually only

obtainable with super-resolution microscopy, yet at considerably higher frame rates.

Reliability of Image Restoration. We have shown that with the right training data, CARE networks

perform remarkably well on a wide range of image restoration tasks, opening new avenues for

biological observations. However, as for any image processing method, the issue of reliability of

results needs to be addressed.

CARE networks are trained for a specific biological organism, fluorescent marker and micro-

scope setting. When applying a network to data it was not trained for, results are likely to suffer

in quality7. Nevertheless, we observed only minimal “hallucination” effects, where structures seen

in the training data erroneously appear in restored images (see Supp. Figure 25). It was most pro-

nounced when training and test data considerably differ in resolution while containing very specific

structures that exhibit little variability (see Supp. Figure 26c). Otherwise, we observe similar ef-

fects only in very rare cases where structures are either so dim that they are not longer manifesting

themselves in the input images, or in even rarer cases where the background noise can be inter-

preted as very low-SNR structure (see Supp. Figure 26a, showing the two strongest errors across

the entire body of available image data). Naturally, it would be desirable to identify cases where

the above-mentioned problems occur.

Therefore, to facilitate the evaluation of reliability of CARE network predictions, we changed

the last network layer so that it predicts a probability distribution8 for each pixel (Figure 5a and

Supp. Chapter 3. This distinguishes CARE from conventional image restoration approaches such as

deconvolution [17, 51], where only a single restored intensity value is computed per pixel. For prob-

abilistic CARE networks, the mean of the distribution is used as the restored pixel value, while the

6We used the on-board DeltaVision OMX deconvolution procedure.
7As is the case for any (supervised) method based on machine learning.
8We chose a Laplace distribution for simplicity and robustness, see Supp. Chapter 3.
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Figure 5: Quantifying the reliability of image restoration with CARE. (a) For every pixel of the restored image, CARE

networks predict a (Laplace) distribution parameterized by its mean µ and variance or scale σ (top). These distri-

butions provide pixel-wise confidence intervals (bottom), here shown for a surface projection and denoising network

(cf. Figure 2). The line-plot shows predicted mean (blue) with 90% confidence interval (light-blue) and corresponding

ground-truth (dashed red). (b) Multiple independently-trained CARE networks are combined to form an ensemble,

resulting in an ensemble distribution and an ensemble disagreement measure D ∈ [0, 1]. (c) Ensemble predictions can

vary, especially on challenging image regions. Shown are two examples for a surface projection and denoising CARE

ensemble of 4 networks; from left to right: maximum projection of the input, the four individual network predictions,

the ensemble mean, and the ensemble disagreement. The first example (top row) shows an image region with low

disagreement, whereas the second example (bottom row) depicts a region where individual network predictions are

substantially different, resulting in a high disagreement score in the affected image areas. For a detailed description of

the theoretical foundation of above ideas, please refer to Supp. Chapter 3.

width (variance) of each pixel distribution encodes the uncertainty of pixel predictions. Intuitively,

narrow distributions signify high confidence, whereas broad distributions indicate low confidence

pixel predictions. This allows us to provide per-pixel confidence intervals of the restored image

(Figure 5a, and Supp. Figure 22 & 23). These confidence intervals carry information about the

reliability of CARE network predictions. We observed that variances tend to increase with restored

pixel intensities. This makes it hard to intuitively understand which areas of an restored image are

reliable or unreliable from a static image of per-pixel variances. Therefore, we visualize the uncer-

tainty in short video sequences, where pixel intensities are randomly sampled from their respective

distributions (Supp. Video 9). To a human observer, strong flicker in such videos highlights the

areas where the uncertainty of image restorations is high. In the context of machine learning the

accuracy can often be increased by aggregating several trained predictors [52]. In addition, we
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reasoned that by analyzing the consistency of network predictions we can assess their reliability.

To that end, we train ensembles (Figure 5b) of about 5 CARE networks on randomized sequences

of the same training data. We introduced a measure D that quantifies the probabilistic ensemble

disagreement per pixel (Supp. Chapter 3). D takes values between 0 and 1, with higher values sig-

nifying larger disagreement, i.e. smaller overlap among the distributions predicted by the networks

in the ensemble. Using fly wing denoising as an example, we observed that in areas where different

networks in an ensemble predicted very similar structures, the disagreement measure D was low

(Figure 5c, top row), whereas in areas where the same networks predicted obviously dissimilar

solutions, the corresponding values of D were large (Figure 5c, bottom row). Therefore, training

ensembles of CARE networks is useful to detect problematic image areas that cannot reliably be

restored9.

Availability of Proposed Methods. Code for network training and prediction (written in Python

using Keras [53] and TensorFlow [54]) is publicly available10. Furthermore, to make our restora-

tion models readily available, we developed user-friendly FIJI plugins and KNIME workflows

(Supp. Figure 27 & 28).

3 Discussion

We have introduced content-aware image restoration (CARE) networks designed to restore fluo-

rescence microscopy data. A key feature of our approach is that generating training data does

not require laborious manual training data generation. Application of CARE to raw images sig-

nificantly expands the realm of observable biological phenomena. With CARE, flatworms can be

imaged without unwanted muscle contractions, beetle embryos can be imaged much gentler and

therefore longer and faster, large tiled scans of entire Drosophila wings can be imaged and simulta-

neously projected at dramatically increased temporal resolution, isotropic restorations of embryos

and large organs can be computed from existing anisotropic data, and sub-diffraction structures can

be restored from widefield systems at high frame rate. In all these examples, CARE allows one to

invest the photon budget saved during imaging into improvement of acquisition parameters relevant

for a given biological problem, such as speed of imaging, photo-toxicity, isotropy, or resolution.

Whether an experimentalist is willing to make the above mentioned investment, depends on

her trust that a CARE network is accurately restoring the image. This is a valid concern, that applies

to any image restoration approach. What sets CARE apart is the availability of additional readouts,

i.e. per-pixel confidence intervals and ensemble disagreement scores. While strong disagreement

indicates untrustworthy predictions, the converse is not necessarily true since all networks could

simply make the same or similar mistakes. Still, the proposed disagreement score allows users to

identify image regions where restorations might not be accurate.

We have shown multiple examples where image restoration with CARE networks positively

impacts downstream image analysis, such as segmentation and tracking needed for extracting de-

velopmental lineages. Interestingly, in the case of Tribolium, CARE improved segmentation by

9Another example for the utility of ensemble disagreement can be found in Supp. Figure 24.
10https://github.com/CSBDeep/CSBDeep
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efficient denoising, whereas in the case of Drosophila, the segmentation was improved by increas-

ing the isotropy of volumetric acquisitions. These two benefits are not mutually exclusive and could

very well be combined. In fact, we have shown on data from developing Drosophila wings, that

composite tasks can jointly be trained. Future explorations of jointly training composite networks

will further broaden the applicability of CARE to complex biological imaging problems.

Yet, CARE networks cannot be applied to all existing image restoration problems. For in-

stance, the proposed isotropic restoration relies on the implicit assumption that structures of inter-

est do appear in arbitrary orientations and that the PSF is constant throughout the image volume11.

Additionally, CARE cannot be used if ground-truth can neither be physically acquired nor synthet-

ically generated. The synthetic generation of training data could, in general, benefit from recent

advances in computer vision, such as generative adversarial networks (GANs) [55]. For single

molecule localization in super resolution microscopy, GANs are already successfully used [34].

Since our aim is to enable even novice users to train CARE networks on their own data, we decided

to use the robust and easy to train U-net architecture [36]. Furthermore, the disagreement score we

introduced could be used to identify instances where training and test data are incompatible, i.e.

when a CARE network is applied on data that contains biological structures absent from the training

set.

Overall, our results show that fluorescence microscopes can, in combination with content-

aware restorations, operate at higher frame-rates, shorter exposures, and lower light intensities,

while reaching higher resolution, and thereby improving downstream analysis. The technology

described here is readily accessible to the scientific community through the open source tools we

provide. We predict that the current explosion of image data diversity and the ability of CARE

networks to automatically adapt to various image contents, will make such learning approaches

prevalent for biological image restoration and will open new windows into the inner workings of

biological systems across scales.
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