CONTENT-AWARE P2P VIDEO STREAMING WITH LOW LATENCY

Pierpaolo Baccichet*, Jeonghun Noh', Eric Setton* and Bernd Girod'

* Max Planck Center for Visual Computing & Communication, Stanford, CA 94305
I Information Systems Laboratory, Stanford University, Stanford, CA 94305
i Streaming Media Systems Group - Hewlett-Packard Labs, Palo Alto, CA 94306
{bacci,jhnoh,bgirod } @stanford.edu, eric.setton @hp.com

ABSTRACT

This paper describes the Stanford P2P Multicast (SPPM) streaming
system that employs an overlay architecture specifically designed
for low delay video applications. In order to provide interactivity to
the user, this system has to keep the end-to-end delay as small as
possible while guaranteeing a high video quality. A set of compli-
mentary multicast trees is maintained to efficiently relay video traf-
fic and a Congestion-Distortion Optimized (CoDiO) scheduler pri-
oritizes more important video packets. Local retransmission is em-
ployed to mitigate packet loss. Real-time experiments performed on
the Planet-Lab show the effectiveness of the system and the benefits
of a content-aware scheduler in case of congestion or node failures.

1. INTRODUCTION

In recent years, video streaming over the Internet has become more
and more popular due to the increasing availability of bandwidth and
recent advances in video coding technologies. In several application
scenarios, such as IP-TV, the same video content has to be transmit-
ted to a large population of users. Content Delivery Networks (such
as Akamai [1]) are often used to support large numbers of users but
they require the deployment of special infrastructure. As an alterna-
tive, Peer-to-Peer (P2P) overlay networks have been considered for
delivery of multimedia. The idea is that users who are interested in
a video stream can act as relay points and forward the data to other
users, thus allowing the system to scale with the number of nodes
involved in the communication. P2P systems are widely used for
video file sharing. For live multicasting, however, the problem is
much more challenging, as the overlay network must guarantee high
reliability of the connections and a constant flow of data, as well as
low startup latencies.

Several different architectures have been proposed in the liter-
ature that can be grouped in two different categories. Mesh-based
approaches (such as GridMedia [2]) aim to construct an overlay
mesh whose connections are maintained through “gossiping”. Even
though these solutions provide good error resilience and network uti-
lization performance, they are usually characterized by high startup
delays. This is mostly due to the Push-Pull approach followed in
the dissemination of the video data that requires the receivers to co-
ordinate the download of different portions of information. On the
other hand, Tree-based approaches simply Push video packets along
routes that are determined by constructing one [3] or many [4, 5]
multicast trees rooted at the media source. These solutions may
lead to low latencies but they often assume the source signal to be
encoded using Multiple Description Coding (MDC). With this ap-
proach independent descriptions can be sent over different network
paths. The quality of the reconstruction at the decoder increases

with the number of descriptions received. Alas, MDC introduces
substantial redundancy relative to single-description coding. This
redundancy unnecessarily degrades the rate-distortion performance,
if no packet losses or node failures occur.

In this paper, we present a tree-based solution that does not re-
quire MDC but exploits local retransmission to mitigate packet loss.
By maintaining multiple distribution trees, it is possible to direct a
retransmission request for a missing packet from a particular tree to
a parent in another distribution tree. Our approach integrates recent
work done on Congestion-Distortion Optimized packet scheduling
[6] to prioritize the delivery of video data according to the percep-
tual importance. An overview of the protocol is provided in Sec.
2 while the details of system architecture and implementation are
reported in Sec. 3. Simulation results obtained on Planet-Lab are
reported in Sec. 4.

2. OVERLAY MULTICAST PROTOCOL

The Stanford P2P Multicast (SPPM) protocol organizes peer nodes
in an overlay that consists of a set of multicast trees. The source of
the stream is the root of each distribution path and multiplexes video
packets on different trees to ensure load balancing. Fig. 1 shows a
simple topology with eight peers and two distribution trees as an ex-
ample of the overlay created by SPPM. In the following, we describe
how our solution maintains the overlay network and guarantees error
resilience.

Fig. 1. An example overlay that consists of two multicast trees.

JOIN PROBE ATTACH

Source Candidate Parents

/ /@
S O O

Fig. 2. SPPM implements a six-way handshake process to join peers
to the session. Each new peer 1) contacts the source, 2) probes a set
of candidate parents and 3) attaches to a selected parent.

2.1. Topology construction and management

A new node joining a multicast first contacts the source to obtain a
set of nodes that are already connected to the system. These nodes
are inquired for available resources to determine whether they can
act as parents in the distribution trees. Since the source of the stream
is continuously online, it can easily manage a database of these con-
nected peers. The join process consists of a “six-way”” handshake as
described in the following and shown in Fig. 2.

e JOIN. The new peer contacts the source of the video stream
that replies with some setup information, such as the number
of multicast trees and the video bit rate. Also, it sends a set
of currently connected peers that can be polled as candidate
parents.

e PROBE. For each tree, the new peer probes each candidate
parent to obtain their current state and determine the best par-
ent to which to connect. Each candidate parent replies provid-
ing the available bandwidth and its height in the distribution
tree.

e ATTACH. For each tree, one out of the set of candidate par-
ents is selected and an actual connection is established. The
parent is selected by minimizing the height of the distribution
tree. Also, different parents are chosen as often as possible to
exploit path diversity.

2.1.1. Monitoring the connection

Once the connection is established, each peer periodically sends
HELLO_REQ messages to the parents in the distribution trees which
in turn reply with a HELLO_REP message. Whenever a host leaves, it
stops forwarding video packets and it is unresponsive to HELLO_REQ
messages. Thus, peers can detect a parent disconnection and trigger
the rejoin procedure for the affected tree. Similarly, parent peers
record the arrival times of the HELLO_REQ messages received by
each child, in order to detect children disconnections and release re-
sources.

2.1.2. Local retransmission

Quality degradation due to packet loss and temporary disconnec-
tion can be mitigated using retransmission. Note that path diversity
allows retransmission requests to be limited to local parents, thus
avoiding feedback implosion at the source of the stream. See [7] for
further details.

2.1.3. Loop prevention

During the reconnection process, a node may attach to one of its
descendants. This loop would eventually starve the whole subtree.
To prevent this problem, each peer keeps the list of its ancestors. In
our implementation, a specific ANCESTOR_UPDATE packet allows
updating of this list whenever a change in the topology occurs. Peers
can easily reject attachment requests issued by an ancestor. This
loop avoidance mechanism does not require global knowledge of the
topology but only of a small subset of its nodes. Additional memory
and processing power requirements are negligible.

2.2. Content-aware scheduling

Relaying traffic over the uplink of the peers may lead to conges-
tion on the multi-hop path separating the source from any particular
peer. Because the rate of a video stream often varies, a peer may
sometimes lack the resources to forward all the data expected by its
descendants. When a peer has to drop some packets to ensure timely
delivery of the more significant portion of the streams, prioritized
scheduling can help maintain video quality. In related work [7], we
presented a Congestion-Distortion optimized CoDiO packet sched-
uler. This prioritization algorithm bases its decisions on the “im-
portance” D(n) of each enqueued packet. The metric reflects how
decoding of a particular packet reduces distortion and it captures the
dependencies among different packets as shown in Fig 3. Hence, the
scheduler adapts its decisions to the video content by relaying more
important packets first.

, B, B, P, B B; P, B; B, P, B;; B, P;; By, Bys ljg ==~
Dn)1s 1 1 14 1 1 11 1 1 8 1 1 5 1 1 17

Fig. 3. Content-aware packet scheduling can be implemented by
looking at the interdependencies among video packets.

3. SYSTEM ARCHITECTURE

We have implemented a real-time prototype of the SPPM protocol
that uses the state-of-the-art H.264/AVC [§] to efficiently encode the
source signal. Video frames are fragmented at the source to a maxi-
mum of 1300 bytes to reflect the MTU of a typical ethernet network
thus avoiding packet fragmentation in lower layers of the protocol
stack. We use UDP as a transport protocol to avoid the overhead in-
volved in the usage of TCP. Two different UDP ports are used for the
control and video traffic respectively. A list of the different packet
types is reported in Table 1.

The software architecture of a SPPM peer is shown in Fig. 4.
Several threads provide the services needed and the “queue man-
ager” and the “routing table” monitors are used for synchronization.
The basic modules are reported in the following.

e Control Agent is responsible for maintaining the connection
to the system. It accepts connection requests from the chil-
dren and updates the routing tables accordingly. It periodi-
cally monitors the status of parents by sending HELLO_REQ
messages and, in case of a disconnection, it triggers the re-
connection process.

e Video Agent receives the incoming video packets, retrieves
from the routing table the list of children to which the packet
has to be relayed and then stores it into the video queue.

Incoming Video Queue Manager Decoder
Video traffic| Agent Playout
Y r’ Buffer
Video Queue —at
Routing Table
H Rel Outgoi
H elay utgoing
: Control Queue Agent — fraffic
Control Control
packets Agent

Fig. 4. The SPPM software architecture. Video and control packets received from the network are stored into a common buffer within a
Queue Manager that performs prioritization and garbage collection. Packets are then relayed to children or displayed at regular intervals by

appropriate playout and relay agents.

e Routing table stores the list of children for each tree.

e Queue Manager implements a common buffer to store pack-
ets that are to be relayed or displayed. A garbage collector
periodically discards packets that are expired, i.e. that have
passed their playout deadline.

e Relay Agent periodically extracts from the queue the next
packet to be sent and forwards it to the appropriate child.

e Playout Buffer retrieves packets that are to be displayed from
the video queue and passes them to the video decoder.

The source of the video stream implements two additional mod-
ules that are described in the following.

e Video Packetizer reads the H.264/AVC input video, either
from a file or from a socket, and performs packet fragmenta-
tion whenever it is necessary. In our implementation, we set
the maximum size of a video packet equal to 1300 bytes to
reflect the MTU of an Ethernet.

e Connected peers’database maintains an approximate list of
connected peers. Each entry in the list is refreshed with peri-
odical information received from the peers via PEER_UPDATE
packets. If the source fails to receive such packets from a reg-
istered peer for a certain amount of time, it considers the peer
as disconnected from the system and frees the entry in the
table.

3.1. NAT Support

A vast majority of residential users access the Internet via some kind
of Network Address Translator (NAT) device that usually filters un-
solicited incoming traffic directed to nodes of the local network. A
NAT will forward incoming traffic from a specific IP address only
if a packet has been sent to that IP address before. In order to sup-
port devices behind NATSs, our “six-way” handshake procedure has
to be slightly modified because the PROBE_REQ messages would be
normally filtered as unsolicited traffic. We assume the source of the
stream to be running on a computer with a static IP address. When
the source receives a join request, it can detect the public address of
the new peer and send this information to the set of potential can-
didate parents. The parents then transmit a dummy packet to the
control port of the new peer. This creates a binding on the NAT
device that will enable the forwarding of subsequent PROBE_REQ
messages.

4. EXPERIMENTAL RESULTS

We tested our real-time SPPM prototype on Planet-Lab [9] and per-
formed experiments using 100 nodes. As a test video, we concate-
nate several well-known sequences at CIF resolution at 30 frames
per second. We encoded the video using H.264/AVC at 400kbps ob-
taining an average video quality of 34.5 dB of PSNR. In order to
allow users to join at different times, we sent one intra coded frame
every half second. The group of pictures (GOP) was similar to the
one shown in Fig. 3. The playout deadline was set to 5 seconds and
we used 8 different multicast trees.

Each session consisted of 30 minutes of video streaming. The
peers were scheduled to randomly connect within the first minute
and to stay connected to the system for the whole session. Note
that each node on Planet-Lab shares both link and processing power
with several other users. In this environment, conditions may vary
quickly possibly causing temporary congestion to occur on the links.

4.1. Video performance

We show the results of three different experiments to demonstrate the
effectiveness of the retransmission and prioritization scheme of our
solution. We observed that several nodes fail to provide good video
quality to the user when retransmission and prioritization are not
used. In this case, the PSNR across all the peer is equal to 30.1 dB. A
significant improvement is observed after introducing retransmission
with an average quality of 31.8 dB while the best performance of
33.2 dB was obtained by combining retransmission with the content-
aware packet scheduler described in Sec. 2.2. Fig. 5 shows the
average video quality observed at selected peers.

Whenever a peer fails to receive data for a certain amount of
time, the video decoder performs error concealment by displaying
previously received frames in lieu of the lost ones. Long frame
freezes can be considered an indication of a failure in the connec-
tion to the system and must be limited. We observed a significant
decrease in the number of frame freezes by using retransmission and
prioritization, as reported in Table 2.

4.2. Startup delay

The main design goal of our solution is to provide high video quality
with very low latency. To validate the effectiveness of the implemen-
tation, we recorded the minimum startup delay necessary to receive
the first decodable picture at each peer. We observed an average

|| Type | Size | Description ||
JOIN_REQ 40 Join request is sent by the new peer to the source.
JOIN_REP 200+ | Join reply contains setup information and list of candidate parents.
PROBE_REQ 32 Probe request is sent to every candidate parent to collect information about the current status.
PROBE_REP 40 Probe reply contains information regarding the current status of the candidate parent.
ATTACH_REQ 40 Attach request is used to establish the actual connection with the selected parent.
ATTACH_REP 40 Attach reply confirms the established connection.
HELLO-REQ 36 Hello request sent to periodically monitor the state of the parent.
HELLO_REP 40 Hello reply is used to disseminate information about the end-to-end delay from the source.
PEER_UPDATE 60 Status information periodically sent to the source to update the list of connected peers.
ANCESTOR_UPDATE | 60+ | Propagates the list of ancestors on each tree to avoid creation of loops.

Table 1. Summary of the packet types used by SPPM. Sizes are expressed in bytes and include the overhead due to UDP/IP.

35
O No retr.
34 @ Retr.
MW Retr. + Prio.
— 331
[}
=
g 32
»
o
31
30 A
29
> O & N @ N @ SR
»S QO\Q S P EP PP § D
& KA SN DR M QU O o .
& N K@ & Q N S ¢ > &
N S >) O & © N N Q 3
S F VO &S ES @
&£ & @ S S © N
SRS & >
N <

Fig. 5. Average PSNR measured over 30 minutes of video on Planet-
Lab for 13 sample nodes.

Scheme 0.5to 1to More than
1sec. | 2sec. 2 sec.
No retransmission 4262 1784 457
Retransmission 742 283 127
Retrans. & Prioritization 364 143 43

Table 2. Number and duration of the observed frame freezes for the
three considered scenarios over 100 different peers.

startup delay of one second. All the peers connected to the system
within two seconds from the join request.

4.3. Protocol overhead

The SPPM protocol introduces a very small control overhead to
manage the overlay. We recorded the size and number of packets ex-
changed, including the overhead due to UDP/IP encapsulation. We
observed control packets are no more than 4% of the total traffic. If
we consider the additional header information introduced for each
video packet, i.e., sequence numbers and timestamps, the overhead
of the protocol is smaller than 8% of the total traffic.

5. CONCLUSIONS

In this paper, we reported the design and implementation of the Stan-

ford Peer-to-Peer Multicast - SPPM protocol that allows the delivery

of a video stream from a source to a population of users with very
low delay. Experimental results obtained on the Planet-Lab confirm
the effectiveness of the protocol. Startup delay was measured on the
order of one second (on average). Video quality was improved by
2dB on average by introducing a Congestion-Distortion Optimized
packet scheduler and local retransmission.

6. REFERENCES

[1] “Akamai,” http://www.akamai.com.

[2] M. Zhang, J. Luo, L. Zhao, and S. Yang, “A peer-to-peer
network for live media streaming using a push-pull approach,”
Proc. of the 13th annual ACM international conference on Mul-
timedia, pp. 287-290, 2005.

[3] Y. Chu, S. Gao, and H. Zhang, “A case for end system multi-
cast,” Proc. ACM Sigmetrics, Santa Clara USA, June 2000.

[4] M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Row-
stron, and A. Singh, “SplitStream: High-bandwidth content dis-
tribution in a cooperative environment,” Proc. IPTPS’03, Berke-
ley, CA, Feb. 2003.

[5] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanid-
kulchai, “Distributing Streaming Media Content Using Coop-
erative Networking,” Proc. ACM NOSSDAV, Miami Beach, FL,
May 2002.

[6] E. Setton, “Congestion-Aware Video Streaming over Peer-to-
Peer Networks,” Ph.D. Thesis, Stanford University.

[7] E. Setton, J. Noh, and B. Girod, “Rate-Distortion Optimized
Video Peer-to-Peer Multicast Streaming,” Workshop on Ad-
vances in Peer-to-Peer Multimedia Streaming at ACM Multime-
dia, Singapore, pp. 39-48, Nov. 2005.

[8] ITU-T and ISO/IECJTC 1, Advanced Video Coding for Generic
Audiovisual services, ITU-T Recommendation H.264 - ISO/IEC
14496-10(AVC), 2003.

[9] “Planet-Lab,” http://www.planet-lab.org.

