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Abstract

3D objects are an important multimedia data type with many applications
in domains such as Computer Aided Design, Simulation, Visualization, and
Entertainment. Advancements in production, acquisition, and dissemination
technology contribute to growing repositories of 3D objects. Consequently,
there is a demand for advanced searching and indexing techniques to make
effective and efficient use of such large repositories. Methods for automati-
cally extracting descriptors from 3D objects are a key approach to this end.
In this paper, we survey techniques for searching for similar content in data-
bases of 3D objects. We address the basic concepts for extraction of 3D
object descriptors which in turn can be used for searching and indexing. We
sketch the wealth of different descriptors by two recently proposed schemes,
and discuss methods for benchmarking the qualitative performance of 3D
retrieval systems.

Keywords: 3D objects, database retrieval, similarity search, feature
extraction, benchmarking, indexing.

1 Introduction

3D objects are an important multimedia data type with many application pos-
sibilities. 3D models can represent complex information, and the problem of
content-based searching in large 3D object repositories arises in a number of prac-
tical fields. Example application domains include computer aided design/computer
aided manufacturing (CAD/CAM), virtual reality (VR), medicine, molecular biol-
ogy, military applications, entertainment, and so on.

In content-based searching and organization, the problem is to define appro-
priate similarity measures to automatically assess the similarity between any pair
of 3D objects based on a suitable notion of similarity. The existence of such sim-
ilarity measures is an important precondition for implementing effective search
algorithms, which allow to query a repository of 3D objects for specific content a
user is interested in, facilitating the re-usage of existing 3D content. Also, simi-
larity metrics allow the organization of 3D repositories by means of representing
large object collections by a limited number of cluster prototypes, or to visualize
the content of large databases by appropriate 2D mappings.

Advanced automatic applications such as the classification of shapes in indus-
trial screening and object recognition applications are supported by a similarity
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notion. For example, in medicine the detection of similar organ deformations can
be used for diagnostic purposes. 3D object databases are also used to support CAD
tools which have many applications in industrial design and manufacturing, and
the re-usage of standard parts can lead to a reduction of production costs.

Over the last years, a range of methods for implementing similarity notions for
3D objects have been proposed. In Section 2 of this paper, we introduce important
basic concepts of retrieval-oriented 3D database systems. In Section 3, we present
a systematic overview over methods for characterizing 3D objects with descriptors
suited for content-based 3D retrieval. Two interesting, exemplary 3D descriptors
from recent research are recalled, and methods for the benchmarking of competing
retrieval methods are discussed. Finally, in Section 4 we conclude the paper by a
summary and an outline of open problems.

2 Basic Concepts for 3D Database Retrieval

A common characteristic of all applications in multimedia databases (and in partic-
ular for 3D object databases) is that a query searches forsimilar objectsinstead of
performing an exact search, as in traditional relational databases. Multimedia ob-
jects cannot be meaningfully queried in the classical sense (exact search) because
the probability that two multimedia objects are identical is very low, unless they
are digital copies from the same source. Instead, a query in a multimedia database
system usually requests a number of objects most similar to a given query object
or to a manually entered query specification. Therefore, one of the most impor-
tant tasks in a multimedia retrieval system is to implement effective and efficient
similarity search algorithms.

Typically, the multimedia data are modeled as objects in ametric or vector
space, where adistance functionmust be defined to compute the similarity between
two objects. Thus, the similarity search problem is reduced to a search for close
objects in the metric or vector space. Two common similarity queries are therange
query(which returns all the objects within some given distanceε to the query) and
thek nearest neighbors query(which returns thek closest objects to the query).

The primary goal in 3D similarity search is to design algorithms with the ability
to effectively and efficiently execute similarity queries in 3D databases. Effective-
ness is related with the ability to retrieve similar 3D objects while holding back
non-similar ones, and efficiency is related with the cost of the search, measured
e.g., in CPU or I/O time. But, first of all one needs to define how the similarity
between 3D objects is computed. For this purpose, up to now the most widely used
approach is to compare theglobal geometric similaritybetween two 3D objects.

One way to compute global geometric similarity is by direct geometric match-
ing, measuring how “costly” it is to transform a given 3D object into another one.
The cost associated with the transformation process serves as the metric for sim-
ilarity. However, directly comparing all 3D objects from a database with a query
object may be a prohibitively time consuming process, because 3D objects can be
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represented in many different formats and may exhibit widely varying complexity.
The descriptor-basedapproach is another way to compute the similarity be-

tween 3D objects. In this approach, numerical descriptors (also known asfeature
vectors) are extracted from the 3D objects and are used for indexing and retrieval
purposes. A 3D feature vector usually characterizes the global geometry of a 3D
object, and can be efficiently compared to other feature vectors to identify similar
shapes and to discard dissimilar ones. For additional information on this aproach,
see Figure 1.

The feature vector approach

A metric spaceis a pair(X,δ) whereX represents the universe
of valid objects andδ : X×X→ R+ is a function between pairs
of objects, that returns a positive real value (thedistancebetween
objects in the space) and hold the properties of a metric (strict
positiveness, symmetry, and the triangle inequality). Avector
spaceRd is a particular type of metric space, composed byd-
tuples of real numbers calledvectors. That is, if x ∈ Rd then
x = (x1, . . . , xd), xi ∈ R,1≤ i ≤ d.
A widely used family of distance functions for vector spaces is
theMinkowski distance(Lp), which is defined as

Lp(x,y) =

(
d

∑
i=1

|xi−yi |p
)1/p

, p≥ 1.

To model multimedia data as a vector space, atransformation
function, which is highly dependent on the multimedia data type,
must be used. This function extracts important features from the
multimedia objects and maps these values intod-dimensionalfea-
ture vectors. Usually, the dimensionalityd of the resulting feature
vector is a parameter of the transformation function: By using
higher values ofd it is possible to obtain a better (finer) represen-
tation of the multimedia object. However, in practical applica-
tions there is usually asaturation point, i.e., adding more dimen-
sions after reaching the saturation point does not improve consid-
erably the quality of the representation of the object. For most
applications, the transformation isirreversible, i.e., it is not pos-
sible to reconstruct the original multimedia object from its feature
vector.

Figure 1: Side-Box on feature vectors.

Apart from global geometric similarity, the notion oflocal or partial similarity
may be important for some specific application domains. In this case, the problem
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is to find similarities in parts or sections of the 3D objects, or even to find comple-
mentary parts between solid object segments (e.g., in protein docking). Although
this is an important research field in 3D databases, it is still not clear how to design
fast segmentation methods that lead to suited 3D object partitions, which could
be compared pairwise. Another approach to define the similarity of 3D objects is
based on comparing the topology of the 3D objects, which can be done for example
by comparing the skeletons derived from solid objects.

3 Content-based Retrieval With Descriptors

3.1 Feature Extraction Model

Candidate features for 3D description depend on the specific format in which the
models in a considered database are given. A property explicitly coded in most
representations is geometry, and consequentially, 3D descriptors usually rely on
geometry information only. The extraction of shape descriptors generally can be
regarded as a multistage process like illustrated in Figure 2 [BKS+05]. In this
process, a given 3D object is first preprocessed to achieve required invariance and
robustness properties. Then, the object is transformed so that its character is either
of surface type, or volumetric, or captured by one or several 2D images. Then, a
numerical analysis of the shape takes place, from the result of which finally the
descriptor is formed.
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Figure 2: 3D FV extraction process model.

In thepreprocessingstage, approximate rotation, translation, and scale invari-
ance is aimed at, as well as improving the robustness of the description extraction
with respect to noise. Ideally, an arbitrary combination of translation, rotation,
scaling operations applied to one object should not affect its similarity measure
with respect to another object, even in the presence of (moderate, noisy) pertur-
bations of the models. Invariance with respect to anisotropic scaling may also be
desirable. In some applications, even certain allowable shape deformations as, e.g.,
in articulated bodies, should be taken into account as an invariance requirement for
a shape descriptor. Besides relying on preprocessing to provide these invariances,
designing descriptors providing certain invariances by definition (i.e., in the nu-
merical transform stage of the descriptor generation) is an option.

The next stageabstractsthe model to one out of different key characteristics
which can be seen in 3D shape. It may be regarded as an infinitely thinsurface
with precisely defined properties of differentiability. Alternatively, it may be seen
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as a thickened surface that occupies some portion of volume in 3D space, or as
the boundary of a solid. The transformation of a mesh into one of the latter forms
is typical for volumetricabstractions. A third way to capture the character of a
mesh would be to project it onto one or several image planes producing renderings,
corresponding depth maps, silhouettes, and so on, from which descriptors can be
derived. In thenumerical transformationstage, certain main features of the models
in one of the three abstraction types are captured numerically using one of various
methods. Voxel grids and image arrays can be Fourier or Wavelet transformed, and
surfaces can be adaptively sampled. This yields a numerical representation of the
underlying object, not necessarily allowing reconstruction of the object.

In the final stage, adescriptor is generated. The descriptor type itself can
be classified intofeature vectors(FVs), orstatistical, or graph-baseddescriptors.
The first two methods capture object features either in a vector of reals or statis-
tical summarizations, and defining distance functions for them is straightforward.
Graph-based descriptions are more complex in nature, and are especially useful
for representing structural properties when object features can be segmented in a
meaningful and robust way. On the other hand, for graph-based representations,
often custom distance functions have to be developed.

Other classifications for shape description and analysis methods are possible,
see for example the surveys of Tangelder and Veltcamp [TV04] or Ramani et al
[IJL+05]. The methods in the feature vector class are efficient, robust, easy to im-
plement, and provide some of the most common and best approaches. This does not
imply, however, that statistical or graph-based methods cannot be recommended -
most of these methods have their particular strengths and may well be the ideal
candidate for a specific application.

3.2 Desired Properties of the Retrieval

Several desirable properties can be identified for an efficient and effective 3D
search system. Efficiency refers to the consumption of resources needed for stor-
age and retrieval of the multimedia objects and is typically measured by system
response times or storage utilization. Effectiveness typically relates to the qual-
ity of the answer objects returned by the search system, and is often assessed by
metrics known from Information Retrieval. Quality of the answers measures the
degree of relevance of answers with respect to the query object. An effective re-
trieval system is supposed to return the most relevant objects from the database on
the first positions of thek-NN query, and to hold back irrelevant objects from this
ranking.

Effectiveness and efficiency in a FV-based search system are determined pri-
marily by the implemented FVs. Regarding efficiency, we demand the FV descrip-
tors to be efficiently extracted from the objects and efficiently encoded, possibly
by a representation providing the embedded multi-resolution property. Fast ex-
traction makes it possible to perform database inserts on the fly, where FVs are
calculated for any new object to be inserted in real time. Efficiency of representa-
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tions requires the vectors to consume minimal space in terms of number of vector
components and number of bits used to encode the component values. Short FVs
reduce the amount of disk/memory space required to store the FVs, and speed up
distance calculations and access to the vectors. Specifically, the performance of
vector space index structures deteriorates quickly if the dimensionality of the in-
dexed data grows [BBK01]. Often, there is a typical tradeoff between resolution
(size) of the FVs, and the provided discrimination power, in that higher dimension-
ality leads to better retrieval precision. Therefore, the embedded multi-resolution
property is desirable. FVs with this property encode progressively more object in-
formation inside a given FV, meaning that by considering subsets of dimensions
in embedded multi resolution FVs allows to chose the level of detail of the object
description. For additional information on efficiency aspects, c.f. Figure 3.

Regarding system effectiveness, it is desirable to have descriptors which pro-
vide sufficient discrimination power as well as certain invariance properties as re-
quired by the application. Discrimination power requires that an appropriate dis-
tance function defined in FV space effectively captures the similarity relationships
present in object space by distances in FV space. Also, the descriptors should be ro-
bust with respect to small changes in the input 3D objects. Depending on the appli-
cation, certain invariances of the search may be desired, meaning that distances in
FV space should be invariant with respect to certain object transformations which
are considered leaving the similarity relationships unchanged. Robustness is an-
other effectiveness criterion often demanded, implying that small variations in the
multimedia objects, e.g., caused by noise, should not dramatically alter the result-
ing distance between the objects in FV space.

3.3 An Image- and a Graph-Based Descriptor

As recent surveys indicate [TV04, IJL+05, BKS+05], there is a wealth of differ-
ent approaches to describe 3D shape for usage in a retrieval system. The situation
is comparable to content-based image retrieval (CBIR), where also, many different
descriptors have been proposed over the recent years. We can mention that many of
the 3D descriptors currently in existence are heuristically introduced, motivated by
techniques and practices from Computer Graphics (e.g., projection-based descrip-
tors), Geometry (e.g., descriptors based on surface curvature statistics), or Signal
Processing (e.g., descriptors representing object samples in the frequency domain).
Usually, it is a priori unclear which of the potentially many different features should
be preferred for addressing the general 3D retrieval problem. Each of the descrip-
tors captures specific model information, and their suitability for effective retrieval
needs to be experimentally evaluated. We here review two exemplary 3D descrip-
tors which have been recently proposed [SSGD03, CTSO03], a selection intended
to give the reader a feeling of the types of approaches used for shape matching.

Skeletons derived from solid objects can be regarded as intuitive object descrip-
tions, possibly capturing important structural object information. For 3D object
retrieval, suitable skeletonization algorithms and similarity functions defined on
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Index structures for efficient retrieval

A näıve method to answer range andk nearest neighbors queries
is to perform a sequential scan of the database, comparing each
multimedia object directly against the query. However, this
method may be too slow for real-world applications. Anindex
structurecan be used to filter out irrelevant objects during the
similarity search without comparing them against the query, thus
avoiding the sequential scan.
Several index structures have been proposed for metric and vector
spaces.Metric access methods[CNBYM01] are index structures
that use the metric properties of the distance function (especially
the triangle inequality) to filter out zones of the space.Spatial ac-
cess methods[BBK01] are index structures especially designed
for vector spaces which, together with the metric properties of
the distance function, use geometric information to discard points
from the space. Usually, these indices are hierarchical data struc-
tures that use a balanced tree to index the database.

Figure 3: Side-Box on index structures.

(a) Skeleten-based 3D retrieval (b) Image-based 3D retrieval

Figure 4: (a) A pair of mutually best-matching objects from a 3D database, using
graph-based shape description (Figure taken from [SSGD03]) (b) The LightField
descriptor determines similarity between 3D objects by the maximum similarity
when aligning sets of 2D projections obtained from an array of cameras surround-
ing the object (Figure taken from [CTSO03]).
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skeletons have to be devised. In [SSGD03], the authors proposed to use skeletons
obtained by connecting clusters of object voxels left after an appropriate thinning
of the model voxels has taken place. The thinning method is based on the Euclid-
ean distance transform of the voxel grid, expected to identify salient object voxels.
Clusters of salient voxels are connected to form a skeleton graph, where the graph
nodes are enriched by information on the underlying voxel clusters, as well as local
topological properties of the skeleton. Together with an intelligent graph-matching
scheme, it is then possible to calculate the (dis)similarity between any two 3D mod-
els for which skeletons have been determined (c.f. Figure 4 (a)). The authors note
the method’s suitability for matching articulated objects as well as the potential for
finding partial matches between objects.

How intelligent retrieval of 3D models can successfully leverage 2D shape
description approaches is demonstrated in [CTSO03]. The authors calculate the
similarity between a pair of 3D models by comparing sets of 2D projections ren-
dered from the model. To this end, a system of cameras distributed regularly on
an imaginary sphere enclosing a 3D model is constructed. Each camera renders a
2D image of the model by means of parallel projection (c.f. Figure 4 (b)). Each
projection is then described by image features extracted from the corresponding
2D silhouettes. The similarity between two objects is defined as the minimum of
the sum of distances between all corresponding image pairs over the rotation of
one camera system relative to the other. Together with an efficient multistage fil-
tering approach considering increasingly more detail information from the silhou-
ette descriptors, the system supports retrieval in large 3D databases, and provides
implicit rotational invariance not requiring object orientation preprocessing. In
benchmark-based precision-recall experiments, the system was shown to provide
excellent retrieval performance [CTSO03].

3.4 Evaluating Retrieval Quality Using Benchmarks

To evaluate the retrieval quality of a search engine, several measures have been
defined and proposed by the Information Retrieval community. Two well known
effectiveness measures areprecisionandrecall. Precision is the fraction of the re-
trieved objects which is relevant to a given query, and recall is the fraction of the
relevant objects which has been retrieved from the database. Precision values at
several recall levels may be used to produceprecision versus recall figures, which
are used for comparing the effectiveness of similarity search algorithms. In addi-
tion, another widely used effectiveness measure is theR-precision(also called first-
tier precision), which is defined as the precision for retrievingN objects, whereN
is equal to the number of relevant objects to the query stored in the database. The
R-precision gives a single number to rate the performance of a retrieval algorithm.
This effectiveness measure is similar to thebull eye percentage(also called second-
tier precision), defined as the recall for retrieving 2N objects from the database.

To compare different retrieval algorithms against each other using such eval-
uation measures, benchmark databases with reference queries and associated rel-
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evance information are needed. Among several 3D benchmarks proposed earlier,
the well-known Princeton Shape Benchmark (PSB) [PSF04] is one of the most
popular such benchmarks to date. It consists of a carefully compiled collection
of about 1800 3D models harvested from the Internet. The models represent real-
world objects such as e.g., vehicles, buildings, animals, or plants, and are classified
according to function and shape on multiple levels of abstraction. Based on such
benchmarks, experimental evaluation of 3D retrieval methods can take place. E.g.,
a thorough experimental effectiveness evaluation of several different 3D descrip-
tors can be found in [BKS+06]. This work showed that many of the proposed
descriptors for 3D objects have good average effectiveness, and are well suited for
‘general-purpose’ 3D content represented by the benchmarks. Also, an interna-
tional shape retrieval contest launched in 2006, SHREC, was initially built around
the PSB benchmark. Please refer to Figure 5 for details on this contest.

The SHREC 3D retrieval contest

Following examples in other retrieval disciplines, also in the 3D
field there is an initiative to establish an international shape re-
trieval contest. In 2006, chaired by Remco Veltkamp of the EC-
funded Network of Excellence Aim@Shape, the3D Shape Re-
trieval Contest(SHREC) debuted at the IEEE International Con-
ference on Shape Modeling and Applications. The initial contest
was designed around the Princeton Shape Benchmark [PSF04],
and in 2007 specialized toward problems involving e.g., water-
tight models, CAD content, and partial similarity retrieval tasks.
SHREC is expected to become an objective forum for evaluating
and comparing 3D retrieval algorithms, and to stimulate research
on new, challenging aspects of 3D shape retrieval.

Figure 5: Side-Box on the SHREC contest.

4 Conclusions

In this paper, we gave an overview of practical approaches to similarity search in
3D object databases. In particular, feature-based techniques are widely used and
offer several advantages. The extraction of features from 3D data is usually fast
and easily parameterizable, and the metrics for vector spaces, as the Minkowski
distances, can also be efficiently computed. Spatial access methods [BBK01] or
metric access methods [CNBYM01] can be used to index the obtained feature vec-
tors. All these advantages make the feature-based approach a good candidate for
implementing a 3D object similarity search engine.

There are still many important open problems in the research area of content-
based description and retrieval of 3D objects. For example, domain-specific model
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databases (e.g., CAD parts or models from visualization) may show specific re-
quirements and restrictions that need to be taken into account to perform the sim-
ilarity query (e.g., invariance with respect to local deformations in geometry and
topology, or invariance with respect to anisotropic scaling). Thus, the similarity
model used to perform the search must reflect these additional constraints or re-
quirements.

Most of the retrieval methods developed to date restrict themselves on geo-
metric aspects of 3D models. Conceptually, additional important object attributes
such as color, material properties, and texture can be associated with 3D mod-
els. Depending on how the model was created, also structural object information
or machining process information can be thought of. While these attributes offer
additional information which could be exploited for content-based retrieval, the ab-
sence of a widely accepted, versatile and powerful 3D representation format makes
research into multi-aspect 3D retrieval difficult in practice. For a discussion of the
format problem, along other pressing challenges in managing growing amounts of
3D object data, please refer to the article by Sven Havemann and Dieter Fellner in
the March 2007 issue of Computer Graphics & Applications [HF07].

The definition and effective implementation of partial similarity search notions
among multimedia objects remains a big challenge. This problem is far more com-
plex than the global geometry similarity search problem, because in partial similar-
ity only a fraction of the 3D object is considered for the match. Even the concept of
“match” in this context must be properly defined: We may want to look for similar
parts, or for complementary parts.
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