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Content-Based Audio Classification and Retrieval by Support Vector Machines
Guodong Guo and Stan Z. Li

Abstract—Support vector machines (SVMs) have been recently
proposed as a new learning algorithm for pattern recognition. In
this paper, the SVMs with a binary tree recognition strategy are
used to tackle the audio classification problem. We illustrate the
potential of SVMs on a common audio database, which consists of
409 sounds of 16 classes. We compare the SVMs based classification
with other popular approaches. For audio retrieval, we propose a
new metric, called distance-from-boundary (DFB). When a query
audio is given, the system first finds a boundary inside which the
query pattern is located. Then, all the audio patterns in the data-
base are sorted by their distances to this boundary. All boundaries
are learned by the SVMs and stored together with the audio data-
base. Experimental comparisons for audio retrieval are presented
to show the superiority of this novel metric to other similarity mea-
sures.

Index Terms—Audio classification, binary tree, content-based
retrieval, distance-from-boundary (DFB), pattern recognition,
support vector machines (SVMs).

I. INTRODUCTION

A UDIO DATA is an integral part of many modern computer
and multimedia applications. Numerous audio recordings

are dealt with in audio and multimedia applications. The effec-
tiveness of their deployment is greatly dependent on the ability
to classify and retrieve the audio files in terms of their sound
properties or content. Rapid increase in the amount of audio data
demands for a computerized method which allows efficient and
automated content-based classification and retrieval of audio
database [4], [5], [11], [23]. For these reasons, commercial prod-
ucts of audio retrieval are emerging, e.g., [23] (http://www.mus-
clefish.com) and [17] (http://www.comparisonics.com).

While research in speech recognition, a closely related area,
has a long history, research on content-based classification and
retrieval of audio sounds is relatively new. An important recent
work is done by Woldet al. [23], represented by their system
called “Muscle Fish.” The work distinguishes itself from the
previous audio retrieval work [6]–[8] in its content-based ca-
pability. In the Muscle Fish system, various perceptual features,
such as loudness, brightness, pitch, timbre are used to represent
a sound. A normalized Euclidean (Mahalanobis) distance and
the nearest neighbor (NN) rule are used to classify the query
sound into one of the sound classes in the database. In another
work by Liu et al. [11], similar features plus subband energy
ratios are used; the separability of different classes is evaluated
in terms of the intra- and interclass scatters to identify highly
correlated features; and a classification is performed by using a

Manuscript received March 23, 2000; revised January 2, 2001 and January
30, 2002.

G. Guo is with the Computer Sciences Department, University of Wisconsin,
Madison, WI 53706 USA (e-mail: gdguo@cs.wisc.edu).

S. Z. Li is with Microsoft Research China, Beijing 100080, P.R. China.
Digital Object Identifier 10.1109/TNN.2002.806626

neural network. Foote [4] choose to use 12 mel-frequency cep-
stral coefficients (MFCCs) plus energy as the audio features. A
tree-structured vector quantizer is used to partition the feature
vector space into a discrete number of regions or “bins.” Eu-
clidean or cosine distances between histograms of sounds are
compared and the classification is done by using the NN rule. In
[14], a filter bank consisting of 256 phase-compensated gamma
phone filters proposed by Cook [2] is used to extract audio fea-
tures.

In this paper, we present new techniques for content-based
audio classification and retrieval. In feature selection, percep-
tual features, mel-cepstral features and their combinations are
considered for the task. While perceptual features like bright-
ness, bandwidth and subband energies capture the spectral
characteristics of the sounds, some of characteristic features
of sounds are lost. The cepstral coefficients capture the shape
of the frequency spectrum of a sound, from which most of the
original sound signal can be reconstructed, and hence, provide
a complement to the perceptual features.

For classification, a statistical learning algorithm called sup-
port vector machine (SVM) is used. The SVMs are proposed
recently by Vapnik [3], [22], and have been used to solve some
practical problems, such as face detection [13], three-dimen-
sional (3-D) objects recognition [15], and so on [22]. Here,
we focus on the use of SVMs to solve the audio classification
problem, and propose to construct a binary tree structure for the
SVMs in a multiclass recognition scenario.

In audio retrieval, conventional similarity measure based on
Euclidean distance of the audio patterns to the query, suffers
from three problems:

1) The retrieval results corresponding to different query pat-
terns within the same class may be much different, which
can be illustrated in Fig. 1(a). When point “a” (or “b,”
both belong to class 1) is used as a query, more samples
from class 3 (or 2) can be retrieved in the top match (e.g.,
top 10 or 20 ), because these examples are closer to the
query “a” (or “b”) than other samples within class 1, when
it is measured by the Euclidean or even Mahalanobis dis-
tance. But, most similar patterns can be retrieved in the
top matches if point “c” is used as a query, because it is
located close to the distribution center of the samples in
class 1. However, the user may hope to get the same re-
trieval results no matter what queries are given.

2) The retrieval performance is sensitive to the sample
topology: a compact distribution of the samples be-
longing to the same class like those in class 5 can make
easy the retrieval task. However, the more scatter or ar-
bitrary the distribution, the more deteriorate the retrieval
performance, which is the case mostly in practice. The
traditional Euclidean distance measure can not solve this
problem.
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Fig. 1. (a) Examples of 2-D features belonging to five different classes.
The three points a, b, and c are from class 1, however, the retrieval results in
terms of these three queries may be much different using NN based similarity
measure, and lots of patterns without any perceptual similarity to the queries
can be retrieved on the top list. (b) A nonlinear boundary separates the samples
of class 1 from that of classes 2–5. The same retrieval result can be obtained
for these three query patterns.

3) The average retrieval accuracy is low.
In this paper, we take a new approach that provides a so-

lution to above problems. A new metric called distance-from-
boundary (DFB) is proposed to measure audio pattern similari-
ties. The basic idea is that a (nonlinear) boundary separates the
samples belonging to one class with the remaining. This non-
linear boundary encloses the similar patterns inside no matter
what the distribution is. In Fig. 1(b), a nonlinear boundary sepa-
rates all samples in class 1 with others belonging to classes 2–5.
The signed distances to this nonlinear boundary can be used to
rank these samples. Note that the boundary is not sensitive to
the sample distributions.

The boundaries can be learned from training examples. We
choose to use the SVMs to learn the boundaries because of
their good generalization property. In addition, the boundaries
learned by SVMs can be represented easily—several support
vectors and their combination coefficients. Furthermore, the dis-
tance of the patterns in the database to this boundary can be
simply calculated, just through computing the weighted sum of
several dot products.

Our DFB-based similarity measure has three advantages: 1)
the retrieval performance is relatively insensitive to the sample
distribution; 2) the same retrieval results can be obtained with
respect to different query patterns within the same class; 3) the
boundary distance metric can give better retrieval performance
than the traditional Euclidean distance based approach.

The paper is organized as follows. In Section II, we intro-
duce the basic theory of the SVM for two-class classification
problem, and our binary tree strategy to solve the multiclass
problem. In Section III, we present our DFB metric for retrieval.
Section IV describes the methods for feature extraction and
combination. Then, Section V shows the extensive experiments
for audio classification and retrieval. Finally, Section VI gives
the conclusions and discussions.

II. SVMs

A. Basic Theory of SVMs

Given a set of training vectors belonging to two sep-
arate classes, , where and

, one wants to find a hyperplane
to separate the data. In Fig. 2(a), there are many possible

Fig. 2. Classification between two classes using hyperplanes. (a) Arbitrary
hyperplanes l, m and n. (b) The optimal separating hyperplane with the largest
margin identified by the dashed lines, passing the support vectors.

Fig. 3. Feature space is related to input space via a nonlinear map�, causing
the decision surface to be nonlinear in the input space. By using a nonlinear
kernel function, there is no need to do the mapping explicitly.

hyperplanes, but there is only one [shown in Fig. 2(b)] that
maximizes the margin (the distance between the hyperplane
and the nearest data point of each class). This linear classifier
is termed the optimal separating hyperplane (OSH).

The solution to the optimization problem of SVM is given by
the saddle point of the Lagrange functional

(1)

where are the Lagrange multipliers. Classical Lagrangian du-
ality enables theprimalproblem (1) to be transformed to itsdual
problem, which is easier to solve. The solution is given by

(2)

where and are any two support vectors with
.

To solve the nonseparable problem, Cortes and Vapnik [3] in-
troduced slack variables and a penalty function,

, where the are a measure of the misclassification
error. The solution is identical to the separable case except for
a modification of the Lagrange multipliers as

. The choice of is not strict in practice, and we set
in all our experiments. We refer to [22] for more de-

tails on the nonseparable case.
The SVM can realize nonlinear discrimination by kernel

mapping [22]. In Fig. 3, the samples in the input space can
not be separated by any linear hyperplane, but can be linearly
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Fig. 4. Binary tree structure for eight classes audio classification. For a coming
test audio, it is compared with each pair, and the winner will be tested in an upper
level until the top of the tree. The numbers 1–8 encode the classes. By bottom-up
comparison of each pair, a unique class number will finally appear on the top of
the tree.

separated in the nonlinear mapped feature space. Note that
here the feature space of the SVMs is different from the audio
feature space.

There are three typical kernel functions for the nonlinear
mapping [10], [22]: 1) Polynomial ,
where parameter is the degree of the polynomial; 2) Gaussian
radial basis function ,
where parameter is the width of the Gaussian function; 3)
Multilayer perception ,
where scale and offset are two given parameters. However,
another kernel function, called exponential radial basis function
(ERBF) [10]

(3)

performs better than above three in our experimental compar-
isons. So we only evaluate the SVMs with ERBF kernel func-
tion in all our experiments.

For a given kernel function, the classifier is given by

(4)

B. Multiple-Classes Classification

Previous sections describe the basic theory of SVM for
two-class classification. A multiclass pattern recognition
system can be obtained from two-class SVMs. Usually, there
are two schemes for this purpose. One is the one-against-all
strategy to classify between each class and all the remaining;
the other is the one-against-one strategy to classify between
each pair. For the latter, the problem is how to combine the
binary classification results to obtain the final decision. A
classical method is to use the voting strategy, however, the
comparison will be times, which results in heavy
computation when the number of classesis large.

We propose to construct a bottom-up binary tree for the mul-
ticlass classification. Suppose there are eight classes in the data
set, the decision tree is shown in Fig. 4, where the numbers
1–8 encode the class labels. Note that the numbers encoding

the classes are arbitrary without the meaning of ordering. By
comparison between each pair, one class number is chosen rep-
resenting the “winner” of the current two classes. The selected
classes (from the lowest level of the binary tree) will come to
the upper level for another round of tests. Finally, a unique class
label will appear on the top of the tree. The underlying mecha-
nism is similar to a sports game, in which each pair of persons
or teams (class labels) does a competition, and only the winner
can go to next round. The champion appears finally.

The advantage of the binary tree structure is to reduce the
number of comparisons in the test stage. It just does compar-
isons for times, instead of the times of com-
parisons in the traditional voting mechanism. This benefit is es-
pecially useful when the number of classes is very large. If a test
pattern can be classified correctly, the final output of the binary
tree is the same no matter how it is arranged. When a test pat-
tern is classified incorrectly, the final output of the tree may be
different, which depends on the arrangement of the classes in
the leaves.

Denote the number of classes as, the SVMs learn
discrimination functions in the training stage, and carry

out comparisons of times under the binary tree structure.
Note that although we just do comparisons in testing, we
still need to train classifiers. Because the nodes in
the middle levels are not determined in advance, instead, they
depend on the test example. Ifis not the power of 2, we can
decompose as: , where

. Because any natural number (even or odd) can be
decomposed into finite positive integers which are the power of
. If is an odd number, ; otherwise, . Note that

the decomposition is not unique, but the number of comparisons
in the test stage is always .

III. D ISTANCE FROM BOUNDARY AND RANKING

Recall that the pair defines aseparating hyperplane
or boundary of equation . The signed distance

from point to the boundary is defined by
. In nonlinear mapping with a

kernel function, the boundary equation is

(5)

where are support vectors, are
the combination coefficients or weights, is a constant, and

is the kernel function to perform the nonlinear mapping.
Then, the signed distance from point to
the boundary with kernel function is de-
fined as

(6)

In the case of classes, we have boundaries. The th
boundary separates the examples of classfrom others.
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Definition 1 (signed distance to theth boundary): If the
boundary separating classfrom others is , the
signed distance of patternto the th boundary is computed by

(7)

where are the support vectors to construct
the th boundary, and are the optimal coefficients, and
are some constants, .

In our boundary distance measure, the patterns within the
same class have positive distances to their enclosing boundary,
while other patterns have negative distances to this boundary.

In retrieval, when a query patternis given, a boundary index
related to the query pattern is first found by

(8)

Then, (7) is used to calculate the signed distances of all patterns
in the audio database to theth boundary

.
Definition 2 (distance-from-boundary for ranking):The

signed distance to theth boundary are
calculated and sorted in descending order, thus to rank the
patterns in the database.

In DFB similarity measure, the audio patterns located inside a
boundary are considered similar. The ranking of the patterns are
based on their distances to the boundary. Sometimes, we need
to take into consideration the degree of similarity. That is, how
similar these patterns to the query. In other words, there are still
differences among the patterns located inside a boundary. To
solve this problem we further rank the patterns located inside a
boundary (returned in Definition 2), and call it boundary con-
strained similarity measure (BCSM).

Definition 3 (boundary constrained similarity mea-
sure): The patterns with positive distances to theth boundary

are sorted again based on their Euclidean
distances to the query (point to point), the smaller the dis-
tances, the similar the patterns to the query. Thus, to rank
the patterns located inside the boundary

. While the ranking of patterns outside the
boundary remains the same as that in Definition 2.

We assume that the closer the patterns to the query in the Eu-
clidean space, the more similar they are to the query in BCSM.
Note that the metrics of DFB and BCSM have no difference in
the calculation of the retrieval accuracy. The difference is only
the positions of the similar patterns in the top matches. Hence,
we just show the experimental results based on DFB. Further re-
search is to consider the positions of the similar patterns in the
evaluation methodology.

IV. A UDIO FEATURE SELECTION

Before classification and retrieval, the audio features are
extracted first. An audio signal (8-bit ISDN-law encoding)
is pre-emphasized with parameter 0.96 and then divided into
frames. Given the sampling frequency of 8000 Hz, the frames

are of 256 samples (32 ms) each, with 25% (64 samples or
8 ms) overlap in each of the two adjacent frames. A frame is
Hamming-windowed by .
It is marked as a silent frame if where

is the pre-emphasized signal magnitude atand is an
empirical threshold. Then audio features are extracted from
each nonsilent frame.

A. Definition of Audio Features

Two types of features are computed from each frame: 1)
perceptual features, composed of total power, subband powers,
brightness, bandwidth, and pitch and 2) MFCCs. Their defi-
nitions are given in the following, where the FFT coefficients

are computed from the frame.

— Total Spectrum Power. Its logarithm is used:
, where is the power at

the frequency and Hz is the half sam-
pling frequency.

— Subband Powers. The frequency spectrum
is divided into four subbands with intervals

, and
. The logarithmic subband power is used,

, where and are
lower and upper bound of subband.

— Brightness.The brightness is the frequency centroid
.

— Bandwidth. Bandwidth is the square
root of the power-weighted average of the
squared difference between the spectral
components and the frequency centroid,

.
— Pitch Frequency. A simple pitch detection algorithm,

based on detecting the peak of the normalized auto-
correlation function, is used. The pitch frequency is re-
turned if the peak value is above a threshold ( ,
chosen empirically), or the frame is labeled as non-
pitched otherwise.

— Mel-Frequency Cepstral Coefficients. These are
computed from the FFT power coefficients ([16, p.
189]). The power coefficients are filtered by a trian-
gular bandpass filter bank. The filter bank consists
of triangular filters. They have a constant
mel-frequency interval, and covers the frequency range
of 0 Hz–4000 Hz. Denoting the output of the filter
bank by , the MFCCs are cal-
culated as,

, where is the order of the
cepstrum.

B. Formation of Feature Sets

The means and standard deviations of the above eight orig-
inal perceptual features are computed over the nonsilent frames,
thus to form a 16-dimensional feature vector. Adding the silence
ratio (number of silent frames/total number of frames) and the
pitched ratio (number of pitched frames/total number of frames)
to this vector gives an augmented 18-dimensional perceptual
feature vector, named “perc.” Each of the 18 components in
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the perc set is normalized according to (corre-
lations between different features are ignored) where the mean

and standard deviation are calculated over all the training
set. This gives the final perceptual feature set, named “Perc.”

The means and standard deviations of theMFCCs are also
calculated over the nonsilent frames, giving a-dimensional
cepstral feature vector, named “Ceps.” The Perc and Ceps
feature sets are weighted and then concatenated into still an-
other feature set, named “PercCeps,” of dimension .
The weighting is done as follows: There are 18 perceptual com-
ponents in the Perc and cepstral components in the Ceps.
Each of the 18 components has the unit standard deviation (std)
after the normalization, and the total std of the 18 components is

. The components of the Cepsset are not nor-
malized and have the total std of where is the
std of the th component. To account for the relative reliability
of the two sets, the two sets are weighted by and ,
are concatenated into PercCeps
where stands for the concatenation operation.

V. EXPERIMENTS ONAUDIO CLASSIFICATION AND RETRIEVAL

The following experiments are aimed to evaluate 1) several
classification and retrieval methods, that is, the SVM based ap-
proach with respect to NN (nearest neighbor),-NN and NC
(nearest center) and 2) three types of feature sets, namely Perc,
Ceps, PercCeps. The results will also be compared with that of
Muscle Fish [23] obtained from its web site.

The -NN is a decision rule for classification [9] while the
NC can be used for both classification and retrieval. In NC, a
class is represented by the center of the prototypes belonging to
that class, and the distance between the query and a class is that
between the query and the class center.

An audio database of 409 sounds from Muscle Fish is used for
the experiments, which is classified into 16 classes by Muscle
Fish. The database can be obtained from http://www.muscle-
fish.com/cbrdemo.html, and has been used in [19] and [23]. The
names of the audio classes are altotrombone (13), animals (9),
bells (7), cellobowed (47), crowds (4), female (35), laughter (7),
machines (11), male (17), oboe (32), percussion (99), telephone
(17), tubularbells (19), violinbowed (45), violinpizz (40), water
(7). The numbers indicate how many samples in each class.
The samples are of different length, ranging from one second
to about ten seconds. To evaluate the classification performance,
we calculate theerror rate, which is defined as the ratio between
the number of misclassified examples and the total number of
testing examples. For retrieval performance evaluation, we com-
pute theaverage retrieval accuracy, which has been used as a
performance measure for texture image retrieval [12]. It is de-
fined as the average percentage number of patterns belonging to
the same class as the query in the topmatches.

A. Evaluation With Disjoint Training and Test Sets

In the first evaluation, the 409 sounds are partitioned into a
training set of 211 sounds and a test set of 198 sounds. The
partition is done in the following way: 1) sort the sounds in

TABLE I
ERROR RATES (AND NUMBER OF ERRORS)

OBTAINED BY USING DISJOINTTRAINING AND TESTSETS. THE TICKED ITEMS

(ALONG COLUMNS) INDICATE THE BEST RESULT OFEACH ALGORITHM

WITH RESPECT TO THEFEATURE SET OF CepsLAND PercCepsLFOR

L = 5; 8; 10; 15;20;40;60;80;100; and120

TABLE II
ERROR RATES (AND NUMBER OF ERRORS) OBTAINED BY USING

LEAVE-ONE-OUT TEST. THE TICKED ITEMS (ALONG COLUMNS)
INDICATE THE BEST RESULT OBTAINED BY EACH ALGORITHM WITH

RESPECT TO THEFEATURE SET OF CepsL and PercCepsLFOR

L = 5; 8; 10;15;20;40;60;80;100; and120

each class in the alphabetical order of the file names, and then
2) construct the two sets by including sounds 1, 3,in the
prototype set and sounds 2, 4, in the test set.

Table I shows the error rates (and the numbers of errors in
brackets) of the four classification methods and the three types
of feature sets. Because of the space limits, we only show partial
results for the CepsL and PercCepsL, although we have tried for

and . In addition, other
results not shown here are not better than those in the table.
Fig. 7 shows the retrieval performance of SVM, NN and NC
measured in the average retrieval accuracy as a function of the
number of top retrieved sounds, for the Perc, Ceps10, and Per-
cCeps8 feature sets.

B. Evaluation by Leave-One-Out Tests

Secondly, each of the 409 sounds in the database is used as
the query in turn. When a sound is used as the query, it isnot
used as a prototype, so the prototype set consists of the entire
database minus the query. This is so called the “leave-one-out”
test. All samples excluding the queryare used for training the
SVMs, and a binary tree strategy is used to classify.

Table II shows the error rates (and the numbers of errors) of
the four classification methods and the three types of feature
sets. Fig. 8 shows the retrieval performance of SVM, NN, and
NC measured in the average retrieval accuracy as a function of
the number of top retrieved sounds, for the Perc, Ceps10, and
PercCeps8 feature sets.
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Fig. 5. Lowest error rates of four algorithms: SVM, NN, 5-NN, and NC, with
respect to the three feature sets: Perc, Ceps, and PercCeps. The best results of
each algorithm correspond to different feature dimensions as shown in Table I.
The tests are on the disjoint training and test data.

C. Summary

For the SVMs, the kernel parametercan be set between
and by trial and error. The values beyond this range can make
worse the performance of the SVMs. We also find that is
a little better for the Perc and Ceps feature sets, while is a
little better for the PercCeps feature sets. This kind of parameter
setting is used in both evaluations.

Among all the Ceps feature sets for the SVMs, Ceps10
is preferred over the others in terms of the error rate. The
concatenation of the Perc and Cepsinto PercCeps leads to
improvements for most values. The PercCeps8 feature set
yields lower error rates than any perceptual or cepstral feature
set alone. Overall, SVM PercCeps8 yields the lowest error
rate of 11.00% when evaluated by the leave-one-out test, while
8.08% by the disjoint training and test, of all combinations
of methods and feature sets. The best performance of each
classification algorithm with respect to the three feature sets
are shown in Fig. 5 for the disjoint training and test data, and in
Fig. 6 for the leave-one-out test.

For audio retrieval, the DFB based similarity measure (with
the boundaries learned by the SVMs) has consistently higher
accuracy than the other methods, which can be seen in the av-
erage retrieval accuracy curves in Figs 7 and 8, respectively. The
results are consistent for both evaluations. Therefore, some con-
clusions can be drawn. 1) The SVM based approaches yield con-
sistently lower error rates and higher retrieval accuracy than the
other methods for all the feature sets. 2) The concatenation of the
two types of feature sets into PercCepsleads to improvements
for most values. 3) The combination of SVM PercCeps8
gives the overall best results among all methods and feature sets.

D. Comparison With Existing Systems

The Muscle Fish [23] is a famous content-based audio
classification and retrieval system. Various perceptual features
such as loudness, brightness, pitch, timbre are used to represent
a sound, and the NN rule are used for classification and
retrieval. Its classification error rate is 19.07% (78 errors out of

Fig. 6. Lowest error rates of these four algorithms with respect to the three
feature sets: Perc, Ceps, and PercCeps. Note that the best results of each
algorithm correspond to different feature dimensions as shown in Table II,
evaluated by the leave-one-out test strategy.

409 queries), as obtained from the Muscle Fish web interface
http://www.musclefish.com/cbrdemo.html, which is roughly
equivalent to the leave-one-out test with a modified version of
NN. In comparison, the error rates of the leave-one-out test
13.94% (57 errors) for the NN+Perc method and 11.00% (45
errors) for the SVM PercCeps8 method, respectively. The
lowest error rate of 11.00%, obtained with SVM+PercCeps8, is
significantly lower than that of Muscle Fish.

VI. DISCUSSION ANDCONCLUSION

We have developed a multiclass classification strategy for the
use of SVMs to solve the audio classification problem. The new
recognition strategy extends the capability of a traditional bi-
partite framework to the solving of multiclass problems. We
have presented the audio classification ERBF SVMs with the
new strategy. Experimental results show that SVMs can be ef-
fectively trained for audio classification and can achieve lower
error rate.

We have also presented a new metric called DFB for content-
based audio retrieval. The boundaries can be learned effectively
by the SVMs, and the signed distances are computed simply and
efficiently by the weighted sum of dot products. The retrieval
performance is significantly better than the traditional Euclidean
distance based approach.

For the similarity measure based on DFB, we choose to use
the SVMs to learn the boundaries. In case the number of support
vectors is large, the computation cost will be heavy. To solve
this problem, the reduced set method [1], [20] can be used to
get a small number of vectors to represent the boundaries. An-
other way is to use the relevance vector machine [21] to learn
each boundary, which can deliver just a small number of vectors
to represent a boundary. Our focus is to propose a new metric
called DFB or BCSM for similarity measure in audio retrieval,
and select the SVMs to learn the boundaries. Simpler and more
efficient method to learn the boundary can be expected in the
near future.
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Fig. 7. Retrieval performance comparison among different similarity measures: NN, NC, and the distance-from-boundary (DFB) metric respectively,for the Perc
(left), Ceps10 (middle), and PercCeps8 (right) feature sets, using disjoint training and test audio data. The DFB similarity measure gives the best average retrieval
accuracy consistently.

Fig. 8. Retrieval performance comparison among different similarity measures: NN, NC, and the distance-from-boundary (DFB) metric respectively,for the Perc
(left), Ceps10 (middle), and PercCeps8 (right) feature sets, by the leave-one-out test strategy. The DFB similarity measure gives the best average retrieval accuracy
consistently.
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