
Content-Based Audio Classi�cation and Retrieval

Using the Nearest Feature Line Method
Stan Z. Li

Abstract

A method is presented for content-based audio classi�cation and retrieval. It is based on a new pattern classi�cation
method called the nearest Feature Line (NFL). In the NFL, information provided by multiple prototypes per class is
explored. This contrasts to the nearest neighbor (NN) classi�cation in which the query is compared to each prototype
individually. Regarding audio representation, perceptual and cepstral features and their combinations are considered.
Extensive experiments are performed to compare various classi�cation methods and feature sets. The results show that
the NFL-based method produces consistently better results than the NN-based and other methods. A system resulting
from this work has achieved the error rate of 9.78%, as compared to that of 18.34% of a compelling existing system, as
tested on a common audio database.
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I. Introduction

Audio data is an integral part of many modern computer and multimedia applications. Numerous audio

recordings are dealt with in audio and multimedia applications. The e�ectiveness of their deployment is

greatly dependent on the ability to classify and retrieve the audio �les in terms of their sound properties or

content. However, a raw audio signal data is a featureless collection of bytes with most rudimentary �elds

attached such as name, �le format, sampling rate. This does not readily allow content-based classi�cation and

retrieval. While audio content may be described by using keywords and text, such information has so far been

created manually. Rapid increase in the amount of audio data demands for a computerized method which

allows eÆcient and automated content-based classi�cation and retrieval of audio database [1], [2], [3], [4]. For

these reasons, commercial companies developing audio retrieval products are emerging; see, for example, [1]

(http://www.musclefish.com) and [5] (http://www.comparisonics.com).

Content-based classi�cation and retrieval of audio sound is essentially a pattern recognition problem in which

there are two basic issues: feature selection, and classi�cation based on the selected features [6]. Concerning

the former issue, an e�ective representation should be able to capture the most signi�cant properties of audio

sounds for the task, robust under various circumstances and general enough to describe various sound classes.

For the latter issue, the formulation of a distance measure and the rule of classi�cation are crucial.

While research in speech recognition, a closely related area, has a long history, research on content-based

classi�cation and retrieval of audio sounds is relatively new. Foster et al. [7] aim to allow queries such as

\�nd the �rst occurrence of the note G-sharp". Feiten and Ungvary [8] use a neural net to map sounds to

text descriptions. Feiten and G�unzel [9] use a self-organizing map (SOM) to group similar sounds based on

perceptually-derived spectral features.

An important recent work is done by Wold et al. [1], represented by their system called \Muscle Fish". The

work distinguishes itself from the previous audio retrieval work [7], [8], [9] in its content-based capability. In the

Muscle Fish system, various perceptual features, such as loudness, pitch, brightness, bandwidth and harmonic-

ity, are used to represent a sound. A normalized Euclidean (Mahalanobis) distance and the nearest neighbor

(NN) rule are used to classify the query sound into one of the sound classes in the database. The technology,

module and license of the Muscle Fish audio content-based retrieval have been adopted by Virage, Bulldog
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Group, BBC, Kodak, Mixman, Intraware, Opcode; see http://www.musclefish.com/frameset.html for

more details.

In another work by Liu et al. [2], similar features plus sub-band energy ratios are used; the separability

of di�erent classes is evaluated in terms of the intra- and inter-class scatters to identify highly correlated

features; and a classi�cation is performed by using a neural network.

Foote [3] choose to use 12 mel-frequency cepstral coeÆcients (MFCCs) plus energy as the audio features. A

tree-structured vector quantizer is used to partition the feature vector space into a discrete number of regions

or \bins". Euclidean or Cosine distances between histograms of sounds are compared and the classi�cation

is done by using the NN rule. The best result is obtained with a supervised quantization tree with 500 bins,

and a cosine distance measure.

In a work by Pfei�er et al. [10], a �lter bank consisting of 256 phase-compensated gammaphone �lters

proposed by Cook [11] is used to extract audio features. The audio signal is transformed into response

probabilities. Such probability coeÆcients are used as audio features to classify audio content for applications

such as audio segmentation, music analysis and violent sound detection.

In this paper, we present a new method for content-based audio classi�cation and retrieval. The two

aforementioned issues are addressed in the following way: Regarding feature selection, perceptual features,

mel-cepstral features and their combinations are considered for the task (Section II). While perceptual features

like brightness, bandwidth and sub-band energies capture the spectral characteristics of the sounds, some of

characteristic features of sounds are lost. The cepstral coeÆcients capture the shape of the frequency spectrum

of a sound, from which most of the original sound signal can be reconstructed, and hence provide a complement

to the perceptual features.

Regarding the second issue, classi�cation, a new pattern classi�cation method, called the Nearest Feature

Line (NFL) [12], [13], is used to explore information contained in the audio database (Section III). A basic

assumption for the NFL is that a prototype (training) set of sounds are available and there exist more than

one prototype (feature point) for each sound class, which is generally a valid assumption. The NFL makes

use of information provided by multiple prototypes per class, in contrast to the commonly used NN in which

classi�cation is performed by comparing the query to each prototype individually.

The NFL works in the following way: Each pair of prototypes belonging to the same class are interpolated

or extrapolated by a linear model. They are generalized by the feature line which is the line passing through

the two points. The feature line provides information about variants of the two sounds, i.e. possible sounds

derived from the two prototypes, and virtually provides an in�nite number of prototype feature points of the

class that the two prototypes belong to. The capacity of the prototype set is thus expanded. The classi�cation

is done by using the minimum distance between the feature point of the query and the feature lines.

Extensive experiments are performed to compare NFL, NN, and two others classi�cation methods that

make use of class information, and to compare various feature sets and their combinations (Section IV).

The comparisons are based on two performance measures: classi�cation error rate and retrieval score. The

results show (i) that regardless of the feature set used, the NFL yields consistently better results than the

other compared methods; (ii) that for the NFL, a combined feature set concatenating perceptual and cepstral

features yields better performance than a perceptual or cepstral feature set alone. A system incorporating

the NFL with a combined perceptual and cepstral feature set achieves the error rate of 9.78%, as opposed

to that of 18.34% of the Muscle Fish system, as tested on a common database of 409 sounds. Demonstra-

tions of the NFL and the NN classi�cation and retrieval with the various feature sets can be accessed at

http://www.research.microsoft.com/users/szli/Demos.

II. Audio Feature Selection

Before feature extraction, an audio signal (8-bit ISDN �-law encoding) is preemphasized with parameter

0.96 and then divided into frames. Given the sampling frequency of 8000 Hz, the frames are of 256 samples

(32ms) each, with 25% (64 samples or 8ms) overlap in each of the two adjacent frames. A frame is hamming-

windowed by wi = 0:54 � 0:46 � cos(2�i=256). It is marked as a silent frame if
P256

i=1(wisi)
2
< 4002 where

si is the preemphasized signal magnitude at i and 4002 is an empirical threshold. Then audio features are

extracted from each non-silent frame. The means and standard deviations of the feature trajectories over all



the non-silent frames are computed, and these statistics are considered as feature sets for the audio sound.

A. De�nition of Audio Features

Two types of features are computed from each frame: (i) perceptual features, composed of total power, sub-

band powers, brightness, bandwidth and pitch; and (ii) mel-frequency cepstral coeÆcients (MFCCs). Their

de�nitions are given in the following, where the FFT coeÆcients F (!)'s are computed from the frame.

Total Spectrum Power. Its logarithm is used:

P = log

�Z !0

0
jF (!)j2d!

�
(1)

where jF (!)j2 is the power at the frequency ! and !0 = 4000Hz is the half sampling frequency.

Sub-Band Powers. The frequency spectrum is divided into 4 sub-bands with intervals [0; !0
8 ], [

!0
8 ;

!0
4 ], [

!0
4 ;

!0
2 ],

and [!0
2
; !0]. The logarithmic sub-band power is used

Pj = log

 Z Hj

Lj

jF (!)j2d!

!
(2)

where Lj and Hj are lower and upper bound of sub-band j.

Brightness. The brightness is the frequency centroid

!C =

R !0
0 !jF (!)j2d!R !0
0 jF (!)j2d!

(3)

Bandwidth. Bandwidth B is the square root of the power-weighted average of the squared di�erence between

the spectral components and the frequency centroid

B =

sR !0
0 (! � !C)2jF (!)j2d!R !0

0 jF (!)j2d!
(4)

Pitch Frequency. A simple pitch detection algorithm, based on detecting the peak of the normalized autocor-

relation function, is used. The pitch frequency is returned if the peak value is above a threshold (T = 0:65,

chosen empirically), or the frame is labeled as non-pitched otherwise.

Mel-Frequency Cepstral CoeÆcients. These are computed from the FFT power coeÆcients ([14], p.189). The

power coeÆcients are �ltered by a triangular bandpass �lter bank. The �lter bank consists of K = 19

triangular �lters. They have a constant mel-frequency interval, and covers the frequency range of 0Hz {

4000Hz. Denoting the output of the �lter bank by Sk (k = 1; 2; : : : ;K), the MFCCs are calculated as

cn =

r
2

K

KX
k=1

(log Sk) cos [n(k � 0:5)�=K] n = 1; 2; : : : ; L (5)

where L is the order of the cepstrum. The MFCCs yield better results than the LPC cepstral coeÆcients.

B. Formation of Feature Sets

The means and standard deviations of the above 8 original perceptual features are computed over the

non-silent frames, giving two feature vectors of 8-dimension each. The two vectors are concatenated to

form a 16-dimensional vector. Adding the silence ratio (number of silent frames/total number of frames)

and the pitched ratio (number of pitched frames/total number of frames) to this vector gives an augmented

18-dimensional perceptual feature vector, named \perc". Each xi of the 18 components in the perc set is

normalized according to x
0
i = (xi � �i)=�i (correlations between di�erent features are ignored) where the

mean �i and standard deviation �i are calculated over all the training set. This gives the �nal perceptual

feature set, named \Perc".



Note the following di�erences between the perceptual features used in this work and in Muscle Fish: First,

the two sets of perceptual features are di�erent. Second, in Muscle Fish, there is no concatenation of the

original features and their standard deviations into an augmented vector. Third, in Muscle Fish, the nor-

malization is carried out in the calculation of the Mahalanobis distance by using the means and covariance

matrix.

The means and standard deviations of the L MFCCs are also calculated over the non-silent frames, giving

a 2L-dimensional cepstral feature vector, named \CepsL". In the experiments, CepsL with L values in the

range between 5 and 120, with the corresponding feature sets named Ceps5, � � �, Ceps120, are evaluated.

Note that the cepstral coeÆcients are not normalized. Empirically, the normalization of the perc set into

Perc set by the mean and standard deviation gives better results whereas a similar normalization of the

cepstral vectors leads to worse results.

The Perc and CepsL feature sets are weighted and then concatenated into still another feature set, named

\PercCepsL", of dimension 18 + 2L. The weighting is done as follows: There are 18 perceptual components

in the Perc and 2L cepstral components in the CepsL. Each of the 18 components has the unit standard

deviation (std) after the normalization, and the total std of the 18 components is s1 = 18 � 1. The 2L

components of the CepsL set are not normalized and have the total std of s2 =
P2L

i=1 �i where �i is the std

of the i-th component. To account for the relative reliability of the two sets, the two sets are weighted by 1
s1

and 1
s2
, are concatenated into PercCepsL=Perc

s1
�

CepsL
s2

where � stands for the concatenation operation. This

gives PercCeps5, � � �, PercCeps120.

III. The Nearest Feature Line (NFL) Method

The rationale of the NFL is based on the following considerations: A sound corresponds to a point (vector) in

the feature space. When one sound changes continuously to another in some way, it draws a trajectory linking

the corresponding feature points in the features space. The trajectories due to changes between prototype

sounds of the same class constitute a subspace representing that class. An audio sound of this class should

be close to the subspace though may not necessarily be so to the original prototypes.

A. The Feature Line Space

Consider a variation in the sound space from point z1 to z2 and the incurred variation in the feature space

from point x1 to x2. The degree of the change may be measured by Æz = kz2 � z1k or Æx = kx2�x1k. When

Æz ! 0 and thus Æx ! 0, the locus of x due to the change can be approximated well enough by a straight

line segment between x1 and x2. Thus any variant between the two can be interpolated by a point on the

line. A further small change beyond x1 or x2 can be extrapolated using the linear model.

In the NFL method, a feature subspace is constructed for each class, consisting of the straight lines (feature

lines) passing through each pair of the prototypes (feature points) belonging to that class. The straight line

passing through x1 and x2 of the same class, denoted by x1x2, is called a feature line (FL) of that class (see

Fig.1). The FL provides information about linear variants of the two prototypes, i.e. possible sounds derived

from the two.

p

x

1

2

x

x

Fig. 1. Generalizing two feature points x1 and x2 by the feature line x1x2. The feature point x of a query is projected
onto the line as point p.

Let xc = fx
c
i j 1 � i � Ncg be the set of the Nc prototypical feature points belonging to class c. A

number of Kc = Nc(Nc�1)
2

lines can be constructed to represent the class. For example, Nc = 5 feature



points are expanded by their Kc = 10 feature lines. The FL space for class c is composed of the Kc feature

lines: Sc = fx
c
ix

c
j j 1 � i; j � Nc; i 6= jg, which is a subset of the entire feature space. When there are

M classes in the database, M such FL spaces can be constructed, with a total number of Ntotal FL's where

Ntotal =
PM

c=1Kc.

A feature line generalizes the original two feature points into an in�nite many more points and so the FL

space of a class is a much generalized representation than the individual prototypes, the generalization being

done under the constraint of the original prototypes. The capacity of the prototypical set is thus expanded.

The feature vector as a function of variations in sound properties are highly nonconvex and complex. It

constitutes a manifold, in general. The manifold can hardly be precisely described by a straight line in the

feature space. To obtain a more accurate description of the variations, one may suggest that a higher order

curve, such as splines, should be used [15]. This requires (i) that there should be at least three prototypical

points for every class, and (ii) that these points should be ordered to account for relative variations described

by only one parameter. For audio sound, requirement (ii) is diÆcult to meet; this is because the diversity

among the prototypes is too complex and there are so many parameters that the prototypes cannot be sorted

in a meaningful order for the construction of a spline manifold.

The NFL method generalizes the prototypes by constructing a simpli�ed manifold, that is, the FL space.

Although the FL space is a crude approximation for representing variations within an audio class, it turns out

to be quite useful for the classi�cation/retrieval purpose when used with the NFL criterion described below,

and can achieve signi�cant improvements over other conventional methods such as the NN.

B. Audio Classi�cation and Retrieval Using NFL

The FL distance is de�ned below for audio classi�cation and retrieval. Letting p be the projection point of

the query x onto x1x2 (see Fig.1), the FL distance from x to x1x2 is de�ned as d(x;x1x2) = kx � pk where

k � k is some norm. The projection point can be computed as p = x1 + �(x2 � x1) where � is a scalar, called

the position parameter, can be calculated from x;x1 and x2 as follows: Because px is perpendicular to x2x1,

we have (p� x) � (x2 �x1) = [x1 + �(x2 � x1)� x] � (x2 � x1) = 0 where \�" stands for dot product, and thus

� = (x�x1)�(x2�x1)
(x2�x1)�(x2�x1)

. The parameter � describes the position of p relative to x1 and x2. When � = 0, p = x1.

When � = 1, p = x2. When 0 < � < 1, p is an interpolating point between x1 and x2. When � > 1, p is a

\forward" extrapolating point on the x2 side. When � < 0, p is a \backward" extrapolating point on the x1
side.

For NFL classi�cation, a query feature point x is classi�ed to class c if it is nearest to the FL space Sc of

that class where the distance from x to Sc is the shortest distance from x to the FL's belonging to Sc. For

NFL retrieval, two patterns represented by xci and x
c
j are retrieved as the top two if x is closest to xcix

c
j; other

pairs can be retrieved and ranked according to the FL distance.

The NFL procedure consists of the follow steps: Calculate the FL distance between the query x and

the feature line xcix
c
j for each class c and each pair (i; j) where i 6= j. This yields a number of Ntotal

distances. The distances are sorted in ascending order, each being associated with a class label c, two

prototypes xci and x
c
j, and the corresponding � value. The NFL distance is the �rst rank FL distance:

d(x;xc
�

i�x
c�

j�) = min1�c�M min1�i<j�Nc d(x;x
c
ix

c
j): The �rst rank gives the information about the best matched

class c� for the NFL classi�cation. The sorted list gives the retrieved sounds for the NFL retrieval.

IV. Experimental Results

The following experiments are aimed to evaluate (i) several classi�cation and retrieval methods, that is,

NFL, NN, k-NN and NC (nearest center), and (ii) three types of feature sets, namely Perc, Ceps, Perc-

Ceps. The results will also be compared with that of Muscle Fish [1] obtained from the search interface at

http://www.musclefish.com/cbrdemo.html. An online demonstration of the present work can be accessed

at http://www.research.microsoft.com/users/szli/Demos.

The k-NN is a decision rule for classi�cation [6] while the NC can be used for both classi�cation and retrieval.

In NC, a class is represented by the center of the prototypes belonging to that class, and the distance between

the query and a class is that between the query and the class center. The k-NN and NC are included in the



comparison because they also make use of information about multiple prototypes per class as the NFL does

but in di�erent ways.

An audio database of 409 sounds from Muscle Fish is used for the experiments. The audio sounds are mono,

8 bit �-law encoded and sampled at 8kHz, of a few seconds each, saved in the Next/Sun AU audio format.

They are classi�ed into 16 classes by Muscle Fish as shown in Table I.

TABLE I

409 sounds of 16 classes in the audio database

Sound Class c # Sounds Nc Sound Class c # Sounds Nc

altotrombone 13 male 17

animals 9 oboe 32

bells 7 percussion 99

cellobowed 47 telephone 17

crowds 4 tubularbells 19

female 35 violinbowed 45

laughter 7 violinpizz 40

machines 11 water 7

Given a query sound and a set of prototype sounds, a classi�cation/retrieval program returns a list of

prototype sounds matched and sorted in the descending order of a distance. The following two measures will

be used in performance evaluation:

1. Error rate. This is a performance measure for classi�cation, de�ned as the ratio between the number of

incorrect �rst rank matches and the total number of queries.

2. Weighted score. This is a performance measure for retrieval. First, de�ne the weighted score for a query

q as

�(q;m) =
mX
k=1

wkMatch(q; rk) (6)

where r1; : : : ; rm are them top ranked matches for the query q; Match(q; rk) = 1 if rk and q belong to the same

class, or 0 otherwise; and wk =W �
1
k
is a decreasing sequence of weights (k = 1; 2; : : :) where W = 1=

PNq

k=1
1
k

in which Nq is the number of available prototypes for the class that q belongs to. Because the weights wk are

decreasing with the rank position k, a higher ranked correct match contributes more to �(q;m). The weights

are normalized by the factor W in the following sense: When the top Nq matches are all correct, �(q;Nq)

reaches the highest possible value of 1. For a query set Q, the average weighted score over all q 2 Q

�(m) =
1

#Q

X
q2Q

�(q;m) (7)

is used as a performance measure where #Q is the number of elements in Q. This is a function of the number

(m) of the considered top matches.

In the following, two sets of results are presented. In the �rst, each of the 409 sounds in the database is

used as the query. In the second, the 409 sounds are partitioned into a prototype (training) set and a test

set, and each of the sounds in the test set is used as the query.

A. Evaluation by Leave-One-Out Tests

In this set of experiments, each of the 409 sounds in the database is used as the query in turn. When a

sound is used as the query, it is not used as a prototype, so the prototype set consists of the entire database

minus the query. This is so called the \leave-one-out" test. If the query q belongs to class c, then there are

Nq = Nc� 1 prototypes for that class and Nc0 for other classes c
0
6= c. The output for a query is a list of best

matches from the prototype set, sorted in the (NFL, NN, or NC) distance values.



TABLE II

Error rates (and number of errors) obtained by using leave-one-out test

Feature Set NFL NN 5-NN NC

Perc 11.98% (49) 13.94% (57) 24.45% (100) 34.96% (143)

Ceps5 30.07% (123) 28.61% (117) 31.78% (130) 55.01% (225)

Ceps8 21.03% (86) 23.96% (98) 31.05% (127) 55.26% (226)

Ceps10 18.58% (76) 24.94% (102) 33.25% (136) 54.77% (224)

Ceps15 21.03% (86) 23.96% (98) 37.16% (152) 53.06% (217)

Ceps20 22.49% (92) 26.41% (108) 37.16% (152) 53.06% (217)

Ceps40 16.87% (69) 22.98% (94) 28.36% (116) 42.05% (172)

Ceps60 18.09% (74) 23.96% (98) 30.07% (123) 41.56% (170)

Ceps80 16.38% (67) 22.98% (94) 28.61% (117) 42.05% (172)

Ceps100 16.87% (69) 24.45% (100) 29.10% (119) 42.54% (174)

Ceps120 16.87% (69) 23.47% (96) 28.36% (116) 42.30% (173)

PercCeps5 12.47% (51) 15.16% (62) 19.80% (81) 41.81% (171)

PercCeps8 9.78% (40) 13.94% (57) 20.78% (85) 37.65% (154)

PercCeps10 11.74% (48) 17.60% (72) 22.49% (92) 36.92% (151)

PercCeps15 11.98% (49) 20.05% (82) 23.96% (98) 33.50% (137)

PercCeps20 13.45% (55) 21.03% (86) 24.94% (102) 32.03% (131)

PercCeps40 11.25% (46) 15.16% (62) 21.03% (86) 34.23% (140)

PercCeps60 12.47% (51) 14.91% (61) 22.74% (93) 33.99% (139)

PercCeps80 11.74% (48) 14.91% (61) 22.98% (94) 33.50% (137)

PercCeps100 12.96% (53) 14.91% (61) 22.00% (90) 33.99% (139)

PercCeps120 12.47% (51) 14.43% (59) 21.52% (88) 33.99% (139)

Table II shows the error rates (and the numbers of errors in brackets) of the four classi�cation methods and

the three types of feature sets. The NFL yields consistently lower error rates than the other three methods

for all the feature sets (except for Ceps5). Also, we see that the k-NN and NC methods are no better than

the NN even though they use the class information.

Among all the Ceps feature sets, Ceps40 or Ceps80 is preferred over the others in terms of the error rate.

For the NFL, the concatenation of the Perc and CepsL into PercCepsL leads to improvements for most L

values. The PercCeps8 feature set yields lower error rates than any perceptual or cepstral feature set alone.

Overall, NFL+PercCeps8 yields the lowest error rate of 9.78%, of all combinations of methods and feature

sets.

Fig.2 shows the retrieval performance of NFL, NN and NC measured in the weighted score as a function of

the number of top retrieved sounds (k-NN has the same curve as NN), for the Perc, Ceps40 and PercCeps8

feature sets (ticked in the table). We can see from these curves that the NFL has consistently higher scores

than the other methods.

B. Evaluation with Separate Training and Test Sets

In this set of experiments, the 409 sounds are partitioned into a prototype (training) set of 211 sounds and

a test set of 198 sounds. During the test, each of the sounds in the test set is used as the query in turn. The

output for a query is a list of best matched sounds from the prototype set, sorted in the (NFL, NN, or NC)

distance values.

The partition is done in the following way: (i) Sort the sounds in each class in the alphabetical order of the

�le names, and then (ii) construct the two sets by including sounds 1, 3, � � � in the prototype set and sounds
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Fig. 2. Retrieval score functions �(m) of NFL, NN and NC for the Perc (left), Ceps40 (middle) and PercCeps8 (right)
feature sets, obtained by using leave-one-out test on a single database.

2, 4, � � � in the test set. The 16 sound classes remain unchanged after the partition.

Recall that the \perc" feature vectors are normalized into \Perc" by the means and standard deviations.

Here, the \perc" vectors of both training and test sets are normalized by the same means and standard

deviations, that is, those computed from the \perc" of the training set.
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Fig. 3. Retrieval score functions �(m) of NFL, NN and NC for the Perc (left), Ceps40 (middle) and PercCeps8 (right)
feature sets, obtained by using separate training and test sets.

Table III shows the error rates (and the numbers of errors in brackets) of the four classi�cation methods and

the three types of feature sets. Fig.2 shows the retrieval performance of NFL, NN and NC measured in the

weighted score as a function of the number of top retrieved sounds (k-NN has the same curve as NN), for the

Perc, Ceps40 and PercCeps8 feature sets (ticked in the table). These results are consistent with those obtained

from the leave-one-out tests. Therefore similar conclusions can be drawn: (i) The NFL yields consistently

lower error rates and higher weighted scores than the other methods for all the feature sets. (ii) For the

NFL, the concatenation of the two types of feature sets into PercCepsL leads to improvements for most L

values. (iii) The PercCeps8 feature set gives the best results of all the feature sets. (iv) The combination of

NFL+PercCeps8 gives the overall best results of all methods and feature sets.

C. Comparison with Existing Systems

The Muscle Fish method [1] uses the NN rule and a perceptual feature set. Its classi�cation error rate

is 19.07% (78 errors out of 409 queries, see Table IV), as obtained from the Muscle Fish web interface

http://www.musclefish.com/cbrdemo.html (the result �les can also be obtained at

http://www.research.microsoft.com/users/szli/Demos/Audio/MuscleFish) which is roughly equivalent

to the leave-one-out test with a modi�ed version of NN. In comparison, the error rates of the leave-one-out

test 13.94% (57 errors, see Table V) for the NN+Perc method and 9.78% (40 errors, see Table VI) for the

NFL+PercCeps8 method, respectively. The lowest error rate of 9.78% (40 errors, see Table VI), obtained

with NFL+PercCeps8, is signi�cantly lower than that of Muscle Fish. Fig.4 compares the retrieval score

curve of the three methods, which shows that NN+Perc has a performance similar to that of MuscleFish, and

NFL+PercCeps8 is signi�cantly better than MuscleFish, in terms of the score curve.



TABLE III

Error rates (and number of errors) obtained by using separate training and test sets

Feature Set NFL NN 5-NN NC

Perc 14.65% (29) 16.67% (33) 23.23% (46) 35.35% (70)

Ceps5 28.28% (56) 29.29% (58) 33.84% (67) 53.54% (106)

Ceps8 21.72% (43) 26.77% (53) 30.81% (61) 54.04% (107)

Ceps10 18.69% (37) 21.21% (42) 30.30% (60) 55.05% (109)

Ceps15 19.19% (38) 23.23% (46) 30.30% (60) 53.54% (106)

Ceps20 20.71% (41) 24.24% (48) 32.32% (64) 52.53% (104)

Ceps40 11.62% (23) 19.70% (39) 24.24% (48) 42.42% (84)

Ceps60 13.13% (26) 21.21% (42) 25.25% (50) 41.41% (82)

Ceps80 12.63% (25) 20.71% (41) 25.25% (50) 40.40% (80)

Ceps100 13.13% (26) 21.72% (43) 25.76% (51) 41.41% (82)

Ceps120 12.63% (25) 21.21% (42) 26.26% (52) 40.40% (80)

PercCeps5 12.12% (24) 17.68% (35) 21.21% (42) 43.43% (86)

PercCeps8 9.60% (19) 13.13% (26) 22.22% (44) 38.89% (77)

PercCeps10 10.10% (20) 16.67% (33) 23.23% (46) 38.38% (76)

PercCeps15 13.64% (27) 17.17% (34) 22.22% (44) 34.34% (68)

PercCeps20 13.13% (26) 17.68% (35) 21.21% (42) 33.84% (67)

PercCeps40 11.62% (23) 15.15% (30) 21.72% (43) 32.83% (65)

PercCeps60 13.13% (26) 16.16% (32) 21.72% (43) 32.32% (64)

PercCeps80 12.12% (24) 15.66% (31) 20.71% (41) 32.83% (65)

PercCeps100 12.63% (25) 16.16% (32) 20.71% (41) 33.33% (66)

PercCeps120 12.63% (25) 17.17% (34) 20.71% (41) 33.33% (66)
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Fig. 4. Retrieval score functions �(m) of the three methods, calculated by using the leave-one-out tests.

In [3], a comparison is done between the Muscle Fish system and the Foote's system [3]. It is performed

using 6 of the 16 Muscle Fish classes. The vector quantization is done by using all the sounds of the 6 classes

including the test sounds themselves. The results show that those two systems have comparable performance,

in terms of a measure called the \average precision" (AP). This indirectly suggests that the NN+Perc method

should be better than Foote's method, and that the NFL+PercCeps8 method signi�cantly better, considering

that the present work has been shown to yield signi�cant better results than the Muscle Fish system in error

rate.



TABLE IV

78 classification errors made by Muscle Fish

Sound Class # Errors Sound Class # Errors

altotrombone 2 male 8

animals 4 oboe 5

bells 2 percussion 18

cellobowed 9 telephone 2

crowds 1 tubularbells 3

female 2 violinbowed 8

laughter 0 violinpizz 3

machines 5 water 6

TABLE V

57 Classification errors made by NN+Perc

Sound Class # Errors Sound Class # Errors

altotrombone 1 male 7

animals 5 oboe 6

bells 1 percussion 12

cellobowed 3 telephone 1

crowds 0 tubularbells 1

female 4 violinbowed 3

laughter 0 violinpizz 1

machines 8 water 4

V. Conclusion

The NFL makes use of available information of multiple prototypes within a class by constructing a subspace,

for each class, that describe variations of features within a class. The experimental results show that given

the same set of features, the NFL achieves consistently lower error rates and higher retrieval scores than the

NN-type search methods. For the NFL, the concatenation of the perceptual and cepstral feature sets into

PercCepsL leads to improvements for most L values. Overall, the present method achieves the error rate of

9.78%, much lower than that of 18.34% of the Muscle Fish system, as tested on the the 409 sound database

from the Muscle Fish.

The cost of the NFL spent on each class is proportional to the square of the number of prototypes for that

class. A scheme has to be devised to reduce the cost when the number is large. One may propose to use a

subset of the training data by sub-sampling. Questions are: what is a good strategy for the sampling and

what is the incurred drop in the performance.

The experimental results here are obtained with small or moderate sizes of prototype (training) prototypes

per class. A question is: how does the di�erence between NN and NFL change as the number of prototypes per

class increases? It may be conjectured that NN performance should converge to that of NFL as the numbers

approach to in�nity. I would suggest that the topological shapes of the distributions are more crucial than

these numbers; for example, an in�nite number of co-linear prototypes gives the same NFL performance as

two of them.

The NFL is a general pattern recognition method applicable when there are at least two prototypes per

class. Recent research shows that the NFL yields better classi�cation and retrieval performance than the NN

also in other applications such as face recognition [12], [13], and image and texture classi�cation and retrieval

(unpublished). The NFL is empirically more powerful than the NN for the distributions in these applications.



TABLE VI

40 Classification errors made by NFL+PercCeps8

Sound Class # Errors Sound Class # Errors

altotrombone 1 male 7

animals 2 oboe 5

bells 0 percussion 2

cellobowed 3 telephone 1

crowds 0 tubularbells 0

female 4 violinbowed 3

laughter 0 violinpizz 1

machines 7 water 4

An investigation is being made to justify the NFL concept, and especially to �nd out classes of distributions

for which the NFL performs better.
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