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ABSTRACT This paper presents an automatic content-based image retrieval (CBIR) system for brain tumors

on T1-weighted contrast-enhanced magnetic resonance images (CE-MRI). The key challenge in CBIR

systems for MR images is the semantic gap between the low-level visual information captured by the MRI

machine and the high-level information perceived by the human evaluator. The traditional feature extraction

methods focus only on low-level or high-level features and use some handcrafted features to reduce this

gap. It is necessary to design a feature extraction framework to reduce this gap without using handcrafted

features by encoding/combining low-level and high-level features. Deep learning is very powerful for feature

representation that can depict low-level and high-level information completely and embed the phase of

feature extraction in self-learning. Therefore, we propose a deep convolutional neural network VGG19-based

novel feature extraction framework and apply closed-form metric learning to measure the similarity between

the query image and database images. Furthermore, we adopt transfer learning and propose a block-wise

fine-tuning strategy to enhance the retrieval performance. The extensive experiments are performed on a

publicly available CE-MRI dataset that consists of three types of brain tumors (i.e., glioma, meningioma,

and pituitary tumor) collected from 233 patients with a total of 3064 images across the axial, coronal, and

sagittal views. Our method is more generic, as we do not use any handcrafted features; it requires minimal

preprocessing, tested as robust on fivefold cross-validation, can achieve a fivefold mean average precision

of 96.13%, and outperforms the state-of-the-art CBIR systems on the CE-MRI dataset.

INDEX TERMS Brain tumor retrieval, block-wise fine-tuning, closed-form metric learning, convolutional

neural networks, feature extraction, transfer learning.

I. INTRODUCTION

Rapid advancements in medical imaging technology are

useful for clinical diagnosis, treatment planning, decision-

making, and patient health care. In hospitals, a large amount

of medical imaging data is produced every day, which is help-

ful for clinical decision support and can be used for research

and training in the field of medical science. Recent research

has shown great interest in CBIR in medical imaging, such as

MRI [1]–[5], X-ray [6]–[8], CT [9], and mammogram[10].

Manual MRI retrieval from a large archive of imaging data

with similar structures or appearances is a difficult and chal-

lenging task for radiologists. It depends on the availability

and expertise of the radiologist, who examines MR images

and retrieves the relevant images from the archived data. This

manual retrieval method is impractical, non-reproducible and

time-intensive for a large amount of archived data. To address

this problem, automatic CBIR is a possible solution for index-

ing archived images with minimum intervention by radiolo-

gists. In this research, we focus on CBIR for brain tumors.

Specifically, when the radiologist presents a query image,

the CBIR system retrieves the same pathological type of

brain tumor images from the database; then, the radiologist

selects the most closely related retrieved images and accesses

the related diagnosis and treatment history to support the

diagnosis and treatment of the current case. The CE-MRI

dataset [11] utilized in this study consists of three types of

brain tumorswith the highest percentage among brain tumors.

In clinical practice, the incident rates of glioma, meningioma,
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and pituitary tumor are approximately 45%, 15%, and 15%,

respectively, among all brain tumors.

A highly accurate CBIR system depends on the feature

extraction method and distance metric learning (DML). Fea-

ture extraction is a core step in traditional machine-learning

methods, which can be categorized into two types. The first

type is local feature [2], [12]–[16], which is based on intensity

and texture features such as first-order statistics (e.g., mean,

standard deviation and skewness) and second-order statis-

tics derived from gray level co-occurrence matrix (GLMC),

shape, wavelet transform, and Gabor. These features are low

level, and their representation power is limited because dif-

ferent types of brain tumors have a similar appearance, and

the same type varies in appearance aspects such as boundary,

texture, size, and shape, as shown in Fig. 1. The second type

is global feature extraction, such as bag-of-words (BoW) [1],

[3], [6], Fisher vector (FV) [4], [17], [18] and scale-invariant

feature transformation (SIFT) [10]. The statistical features

extracted fromBoW, FV, and SIFT are high-level features that

certainly ignore spatial information.

FIGURE 1. (a) and (b) are meningiomas with differing appearance, and
(c) is a pituitary tumor with an appearance similar to that of (a).

Several methods have been proposed for content-based

brain tumor retrieval on the T1-weighted CE-MRI dataset.

Yang et al. [2] proposed a CBIR system using a margin infor-

mation descriptor (MID) as a feature extractor. Themaximum

mean average precision projection (MPP) algorithm was

designed to measure the similarity between the query tumor

region and the database MR images. The authors achieved a

mAP of 87.3%, which was comparatively better than that of

the SIFT descriptor. Huang et al. [1] used a region-specific

BoW model and closed-form metric learning (CFML). The

BoW model was applied on the tumor boundary and tumor

region separately and achieved better retrieval performance

with a mAP of 91.0%. Huang et al. [3] improved the mAP to

91.8% by using brain tumors as a region of interest (ROI) in

the region partition learning algorithm. They extracted local

features from raw image patches of subregions, constructed

a BoW histogram by pooling per region, and applied a DML

called rank error-basedmetric learning (REML) for similarity

measurement. Cheng et al. [4] used FV with adaptive spatial

pooling and CFML and boosted the mAP to 94.68%. They

used tumor region augmentation and division and extracted

raw patches from subregions. PCA was applied to the subre-

gion for dimension reduction, and the FV per subregion was

then computed. The FVs of the subregions were combined to

form the final single FV representation.

CBIR approaches [1]–[4], [6], [9], [10], [12]–[14] consist

of several steps, including preprocessing, feature extraction

(tumor region, tumor outline, feature selection, and dimen-

sion reduction) and DML. There are two problems in the fea-

ture extraction phase. First, it focuses only on either low-level

or high-level features. In the CE-MRI dataset, the content of

a specific category is distributed with intrinsic irregularity.

There is a strong correlation between the layout of the tumor,

edema, and surrounding normal tissues. Meningioma and

pituitary tumor are similar in shape, as shown in Fig. 2 (a), (b),

and these two tumor types are generally not related to edema.

Meningioma is generally adjacent to the skull, gray mat-

ter, and cerebrospinal fluid. A pituitary tumor is near the

sphenoidal sinus, internal carotid arteries, and optic chiasma.

In appearance, glioma is dissimilar in shape and generally

surrounded by edema, as shown in Fig. 2 (c) and (d). Second,

the most important information and the discriminative fea-

tures of brain tumors are related to the location/position of the

tumor region in theMR image together with its boundary, tex-

ture, size, and shape. The CBIR system based on traditional

machine learning uses handcrafted features (i.e., segmented

the tumor region and outline), which require strong prior

information (i.e., the position or location of the tumor in

an image); thus, it is not a simple task and might cause

inter- and intraoperator deviations [16]. Accordingly, there

is a need to design such a feature extraction framework to

encode/combine both low-level and high-level features.

FIGURE 2. Four images of brain tumors in T1-weighted CE-MRI. The region
inside the red rectangle contains a tumor. (a) Meningioma located near
the skull, (b) pituitary tumor located near the sphenoidal sinus, (c) glioma
containing edema and necrosis, and (c) glioma surrounded by edema.
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Recent studies [19]–[23] have verified that deep learning

approaches do not need manually extracted (handcrafted)

features and prior domain information. Deep learning embeds

the phase of feature extraction in self-learning. It needs a

dataset with onlyminimal preprocessing, if required, and then

determines significant features in a self-learning way [24].

A key challenge in CBIR systems for MR images is to reduce

the semantic gap between the low-level visual information

captured by the MRI machine and the high-level semantic

information perceived by the human evaluator. The effec-

tiveness of such a feature extraction framework is more

important in terms of feature representations that can depict

low-level and high-level information completely. To justify

the feasibility of the proposed CBIR system, CNNs auto-

matically generate powerful discriminative features using a

hierarchical learning approach. Feature maps in the earlier

layers extract low-level features, and feature maps in higher

layers extract high-level domain (content)-specific features.

Lower-layer feature maps encode simple structural informa-

tion, such as edges, shape, and textures, and higher layers

build atop each other and combine these low-level feature

maps to encode/construct abstract representation, which inte-

grates local and global information.

Deep learning outperformed state-of-the-art methods in

the field of machine learning. In particular, enhanced per-

formance in computer vision encouraged the use of deep

learning in medical image analysis [25], classification [26],

segmentation [27], [28], fusion [29], computer-based diag-

nosis and prediction [30], [31], lesion/landmark detec-

tion [32]–[34], microscopic image examination [35], [36],

and CBIR [5], [7], [8].

CNNs have been used for decades but were not popu-

lar until Krizhevsky et al. [37] employed the deep learn-

ing approach (AlexNet) and won the ImageNet Large-Scale

Visual Recognition Challenge (ILSVRC) in 2012. Simonyan

and Zisserman [38] introduced a similar but deeper CNN

(VGG Net) and secured first place in the localization

task and second place in the classification task in the

ILSVRC in 2014. Deep learning, and especially CNNs, has

achieved success due to the advancement of computational

technologies such as powerful GPUs, the development of

learning algorithms [39]–[43], and the availability of big

data [44]–[46].

CNNs have shown good performance in computer vision

on large labeled datasets, such as ImageNet [46], which con-

tainsmore than onemillion labeled images. However, it is dif-

ficult to apply such deep CNNs in the medical imaging field.

First, the sample size of the medical image dataset is usually

small because such images require the availability of expert

radiologists to manually examine and label them, which is

time-consuming, laborious and costly. Second, training deep

CNN is a complicated task for a small dataset because of over-

fitting and convergence problems. Third, domain expertise is

required to repeatedly revise themodel and adjust the learning

parameters of themodel to assure that all layers can learn at an

equivalent rate. Therefore, training deep CNN from scratch

is a challenging task that is tedious and time-consuming and

demands much diligence and patience. For the small dataset

scenario, a favorable substitute for training CNN from scratch

is to use a pretrained CNN and adopt a transfer learning and

fine-tuning strategy [47].

Pretrained CNN models have been effectively used in

computer vision applications as feature extractors or as a

baseline for transfer learning [48]–[50]. The main advantage

of CNNs is the ‘‘transferability’’ of the knowledge learned in

pretrainedmodels. Several existingmethods [5], [7], [8], [26],

[47], [51], and [52] have proposed different transfer learning

approaches for medical imaging CBIR using CNNs. Most of

them used an off-the-shelf trained model over a large dataset

of natural images, extracted features from a specified layer of

a pretrained model for the new dataset, and trained a separate

learning method for classification and retrieval.

In this research, we developed a content-based brain tumor

retrieval system for MR images using a pretrained deep

CNN model (VGG19). We adopt transfer learning, propose

a block-wise fine-tuning strategy for feature extractions and

use CFML to measure the similarity distance. The proposed

method is evaluated on a publicly available CE-MRI dataset.

We performed numerous experiments for brain tumor MR

image retrieval, used a five-fold cross-validation test to ensure

robustness, evaluated the performance, and compared our

results with state-of-the-art brain tumor retrieval on the same

CE-MRI dataset. To the best of our knowledge, this is the first

deep learning-based work for brain tumor retrieval on a CE-

MRI dataset.

The rest of the paper is organized as follows. Section II

discusses the proposed research framework and methodology

in detail. The experimental settings, parameter optimization,

retrieval performance, results and comparisons are shown in

Section III. A brief discussion is provided in Section IV, and

the conclusion is presented in Section V.

II. PROPOSED METHOD

This paper proposed an automatic CBIR for retrieving sim-

ilar brain tumor images from a database. Fig. 3 presents

the detailed research framework of the proposed method.

For feature extraction, we used the VGG19 [38] pretrained

on a large ImageNet dataset (more than 1.2 million labeled

images). CFML is applied to measure the similarity distance

between the extracted features of the database images and the

test/query image.

We extracted features from the fully connected layer (FC7)

of VGG19 and fed them into CFML, as shown in Fig. 4. The

contents of the CE-MRI and pretrained VGG19 datasets are

different. Features extracted from the higher layer of the pre-

trained VGG19 did not produce satisfactory results because

higher layers in the network are related to the content-specific

features of the image learned from early layers in the network.

Therefore, we fine-tuned the VGG19 on the CE-MRI dataset

in a block-wise manner and observed the incremental perfor-

mance improvement. This transfer learning and fine-tuning

suggested an alternative to [5], [7], [8], [22], [51], and [52],
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FIGURE 3. The proposed framework for CBIR using pretrained deep CNN (VGG19) and CFML. We trained the VGG19 by fine-tuning on the CE-MRI dataset.
Once the model was successfully optimized and trained, we extracted features of the training and testing datasets from the trained model. We applied
CFML to measure the similarity between the features of the database images and testing/query images. Predicting query image class labels is optional
(dashed line). It will help the radiologist identify tumor types in uncertain cases and enable fast retrieval from the relevant search area of the database.

FIGURE 4. The proposed block-wise VGG19 architecture. B represents the group of layers placed in blocks (shown in Table 1). Bold lines with up-down
arrows towards CFML indicate the feature extraction phase. Feature extraction starts after completion of the training process. The arrow between
FC8 and CFML is optional and is used to predict the class label of the query image.

17812 VOLUME 7, 2019



Z. N. K. Swati et al.: Content-Based Brain Tumor Retrieval for MR Images

FIGURE 5. Three views of a glioma in a patient. The area inside the yellow
outline indicates a tumor. (a) Axial (b) Coronal (c) Sagittal.

TABLE 2. Details of the CE-MRI dataset.

in which pretrained CNNs were used as off-the-shelf feature

extractors. The working mechanism of the proposed research

framework is presented in the following subsections.

A. DATASET

In this research, we used a publicly available CE-MRI dataset

available at (https://figshare.com/articles/brain_tumor_

dataset/1512427). The proposed brain tumor retrieval was

based on two-dimensional images (2-D slices), not 3-D

volume, because in Chinese clinical practice, the acquired

and available MR images are 2-D slices with a large slice

gap. Therefore, our brain tumor retrieval system based on

2-D MR images for clinical application is practical. The

dataset was collected during 2005-2010 from Nanfang Hos-

pital, Guangzhou, China, and General Hospital, Tianjin

Medical University, China. The dataset contains three types

of tumors (i.e., glioma, meningioma, and pituitary tumor,

as shown in Fig. 1 and Fig. 2) from 233 patients with a

total of 3064 images across the axial, coronal, and sagittal

views, as shown in Fig. 5. Table 2 shows the details of the

CE-MRI dataset. The images in the dataset are provided in

matrix form. The size of each image is 512 × 512 pixels, and

the pixel size is 0.49 mm × 0.49 mm.

B. PREPROCESSING

The T1-weighted CE-MRI data are 2-D images of size

512 × 512. In this work, we provided MR images directly to

the CNN, and the convolutional kernel is applied to the pixel

intensity in the image. The result of a convolutional kernel

relies heavily on these intensity values. However, intensity

values in MR images do not have a fixed meaning, and it has

been observed that intensity values across MR images vary

greatly within or between subjects. These intensity values of

MR images are also sensitive to the acquisition conditions.

Data mining and especially CNN approaches need to normal-

ize the inputs; otherwise, the network will be ill-conditioned.

In principle, normalization is performed to obtain the same

range of values for each inputs into the CNNmodel. This can

guarantee a stable convergence of weight and biases. In this

scenario, intensity normalization is necessary to preprocess

MR images. Therefore, we normalize the CE-MR images by

using min-max normalization to scale the intensity value to

[0, 1], which is computed as follows:

yi = (xi − min(x))/(max(x) − min(x)) (1)

where yi is the normalized intensity value against position xi
(where i = 1. . . .n) and min(x) and max(x) are the minimum

and maximum intensity values, respectively, across the entire

image. After normalization, we resize the normalized image

to 224 × 224 and duplicate it three times to create three

channels according to the input size of the pretrained VGG19.

The intensity normalization brings the intensity values

within a coherent range across all the MR images and facil-

itates learning in the training process. Resizing the images

speeds up the training process and solves the memory issue.

C. DEEP CONVOLUTIONAL NEURAL NETWORKS (CNNs)

The training of CNNs starts from the first input layer to the

final classification layer in a feed-forward fashion; then, error

back-propagation starts from the classification layer towards

the first convolutional layer. Neuron i in layer l receives input

from neuron j of layer l-1 in a forward pass computed as

follows:

Inli =
∑n

j=1
W l
ijxj + bi (2)

The output is computed by a nonlinearity ReLu function:

out li = max(0, Inli) (3)

All neurons in the convolutional and fully connected layers

use equations (2) and (3) to calculate the input and produce

output in the form of nonlinear activation. The pooling layer

uses a K × K square window sliding on the N × N feature

map and takes the maximum or average value of the features

inside the window. It decreases the spatial size of the feature

map from N ×N to N
K

× N
K
as it produces a single value from

the K × K region.

The final layer computes the classification probability of

each tumor type using the Softmax function:

out li =
eIn

l
i

∑

i e
out lk

(4)

CNNs are trained with the back-propagation algorithm by

minimizing the following cost function with respect to the

unknown weights W :

C = −
1

m

∑m

i
ln

(

p
(

yi |X i
))

(5)

wherem is the total number of training samples in the training

set, X i is the ith sample in the training set with the label yi
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TABLE 1. Pretrained VGG19 (CNN) Architecture and Parameters.

and p
(

yi |X i
)

is the true classification probability. The cost

function C is minimized by stochastic gradient descent over

the mini-batches of size N and the training cost approxi-

mated by the mini-batch cost. Consider that W t
l represents

the weights at iteration t for convolutional layer l, and Ĉ

represents the mini-batch cost. Then, the updated weights in

the next iteration are computed as follows:

γ t = γ ⌊tN /m⌋

V t+1
l = µV t

l − γ tαl
∂Ĉ

∂Wl

W t+1
l = W t

l + V t+1
l (6)

where al is the learning rate of layer l, γ is the scheduling

rate that decreases the initial learning rate α at the end of

a specified number of epochs, and µ is the momentum that

describes the influence of previously updated weights in the

current iteration.

D. DISTANCE METRIC LEARNING (DML)

Good DML plays an important role in CBIR. The per-

formance of the CBIR system depends on the standard

used for similarity measurement between the query image

and database images. Substantial research has inspired

good DML from the training dataset. Cosine similarity and

Euclidean distance are mostly used to measure the simi-

larity of the features, but these techniques are simple, and

their feature representation power is limited because of

the complexity of the image content and the semantic gap

between the high-level human interpretation and low-level

visual features [53], [54]. Various algorithms of distance

learning [2], [3], [55]–[58] are utilized to overcome the

above problem and achieve better performance for CBIR.

The Mahalanobis distance method is used to determine the

optimum metric, which increases intraclass similarity while

decreasing interclass similarity. The squared Mahalanobis

distance (SMD), also called the generalized quadratic dis-

tance, can be defined as follows:

dM
(

xi, xj
)

= (xi − xj)
TM (xi − xj)

= (xi − xj)
TLTL(xi − xj)

= (Lx i − Lx j)
T (Lx i − Lx j) (7)

where xi and xj represent the feature vectors of two images.

The positive semidefinitematrix (PSD) is denoted byM,while

L represents a linear transformation matrix. xi ∈ RnandM ∈

Rn×n. In the literature, various DML algorithms have been

proposed for the better projection of M or L to minimize the

objective function.We used theDMLnamedCFMLproposed

by Alipanahi et al. [57] and achieved significant results.

The pathological classes of tumors in the dataset are already

known. The same-class tumors share the same label and vice

versa. The feature vectors of images with identical labels are

categorized as similar, ‘‘S’’, and the remaining feature vectors

with different labels are categorized as dissimilar, ‘‘D’’.

S → (xi, xj) ∈ S if xi and xj are similar (8)

D → (xi, xj) ∈ D if xi and xj are not similar (9)

The optimum transformation matrix L∗ of CFML is

expressed as follows:

f
(

L∗
)

= argmin (Tr(LT (MS −MD)L),

s.t. LTMSL = I (10)
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where I denotes the identity matrix, Tr represents the trace of

the matrix, and

Ms =
1

|S|

∑

(xi,xj)∈S
(xi − xj)(x i − xj)

T , (11)

MD =
1

|D|

∑

(xi,xj)∈D
(xi − xj)(x i − xj)

T (12)

The CFML attempts to reduce the SMD among intraclass

and increase the SMD between interclass pairs. The matrix of

eigenvectors produces a closed-form solution corresponding

to the largest eigenvalues of the matrix M−1
s MD. The regu-

larization form of CFML, i.e., L (MS + λI )LT = I , is used,

where λ is a small positive value (λ set to 1.5e-4).

E. TRANSFER LEARNING AND FINE-TUNING

OF CNNs (VGG19)

During the training process, the weights of the CNN layers

are updated after every iteration by equation (6). There are

19 layers and 144 million trainable parameters (weights) in

the VGG19 architecture. To train such a deep network from

scratch with randomly initialized weights and to determine

the optimum weights requires a large dataset. For a small

dataset, it is very difficult to determine the appropriate local

minima for the cost function in equation (5), and the network

will suffer from overfitting. Therefore, weights are initialized

from the pretrained VGG19 model.

After the weights transfer, we extracted features from

the activation of fully connected layer FC7 of the pre-

trained model on the CE-MRI dataset and fed it into

CFML to measure the retrieval performance, achieving a

mAP of 82.23%. To enhance the retrieval performance,

we adopted the fine-tuning strategy of the pretrained model.

TheVGG19 consists of sixteen convolutional layers and three

fully connected layers, as shown in Table 1. If we apply

layer-wise fine-tuning by adding one layer each time, set the

training parameters, train the network and measure retrieval

performance, then it will need to fine-tune nineteen layers.

Because five-fold cross-validation is under consideration,

it will need to fine-tune ninety-five VGG19 architectures.

If we estimate approximately thirty minutes for the training

of each architecture, then it will take more than a week

to complete the fine-tuning of the VGG19 in a layer-wise

manner. Similarly, determining the optimum parameters for

the layer-wise fine-tuning will be more time-intensive. A

small improvement in the results was observed when adopt-

ing a layer-wise fine-tuning approach. Therefore, the VGG19

architecture is divided into six blocks based on pooling layers,

as shown in Table 1. The block-wise architecture of the

VGG19 is shown in Fig. 4. The final fully connected layer

of VGG19 composed of 1000 neurons corresponds to classes

in the ImageNet dataset, so the final fully connected layer

here is changed to three neurons according to classes in the

CE-MRI dataset.

The deep CNN is trained in a block-wise approach by

starting fine-tuning from the final block and keeping all other

blocks (layers) fixed by freezing their learning. Suppose B is

the total number of blocks, αb is the learning rate of block b,

and we want to fine-tune only the final block (B) and then set

αb = 0 for all blocks except block B. If fine-tuning the last

two blocks, then set αb = 0 for b 6= B, B-1. Similarly, set the

learning parameters of all blocks for fine-tuning as shown in

Table 3.

Earlier layers in the pretrained CNNs contain the generic

feature, and higher layers contain the domain (content)-

specific features of the natural images. The learning of the

earlier layers can be frozen because of the low-level features

in these layers. To learn the domain-specific features of MRI

brain tumors, we start training from the higher layers by fine-

tuning. That is why block-wise fine-tuning is initiated from

the top block.

III. EXPERIMENTS AND RESULTS

To test the performance of the proposed approach, we adopted

the same experimental setup as in [1]–[4] and randomly

divided the CE-MRI data of 233 patients into five subsets of

approximately equal size. We ensured no overlap and equal

ratios of the different types of tumors in the five subsets

for the CE-MRI dataset. Dividing according to the patients

ensured that images from the same patient did not exist

simultaneously in the training and testing set. We used five-

fold cross-validation to evaluate the performance. In five-

fold cross-validation, one subset is used as the test dataset,

and the remaining four subsets are sequentially used as the

training dataset (database). Each image in the test dataset

is considered the query image. The final result, called the

mAP, is the average retrieved precision of the five-fold test

dataset. The proposed CBIR architecture was implemented in

MATLAB R2017b and trained and tested on GPU NIVIDA

TITAN X (Pascal) with 12 GB onboard memory.

A. TRAINING AND PARAMETERS OPTIMIZATION

The training and fine-tuning of each CNN takes approx-

imately 20 to 30 minutes, but it depends on the choice

of the training and fine-tuning parameters, proper conver-

gence, training and validation accuracy, and error. To find

the optimum convergence of each CNN, we properly monitor

the improvement of training, validation accuracy and error.

Training stops automatically if there is no improvement with

respect to validation accuracy and error.

TABLE 3. Fine-tuning parameters of the VGG19. FT represents fine-tuning,
B represents the block, αb is the learning rate of specified block B, and µ,
γ and α are training options.
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Table 3 presents the optimum value of each parameter

used in the experiments for fine-tuning. We discovered these

values using a trial-and-error-based approach. We performed

experiments with different values of these parameters and

found during the training process that the proper convergence

depends on the initial learning rate α, the learning rate αb

of each layer and the scheduling rate γ . The optimum value

for α = 0.01 and αb = 0.10 ensured proper convergence.

If we set α and αb to be large, then the CNN fails to con-

verge properly, suffering from overfitting and resulting in low

performance on the testing and validation data. If we set α

and αb to be very small, then the convergence process slows

down. The value of γ is related to convergence speed. If the

convergence is very slow, then γ should be large enough to

keep the learning rate high. If the convergence is very fast,

then γ should be small enough to decrease the learning rate

and prevent the network from overfitting. Our initial choices

of the learning rates α and αb start the convergence relatively

fast. We control α by γ to decrease the learning rate after

every five epochs to prevent the network from overfitting.

During our experimental investigation, the suitable value of

γ = 0.90. Nesterov’s momentum µ describes the influence

of previously updated weights in the current iteration, and its

most commonly used values are [0.5, 0.9, 0.95 and 0.99]. The

reasonable value found during our experimental analysis for

µ is 0.9.

We set the base-learning rate of each layer twice as the

αb, the mini-batch size for training at 64 (the maximum

mini-batch size supported by our GPU for the VGG19) and

the maximum epochs at 50 for fine-tuning throughout the

experiments. However, most of our fine-tuned CNNs con-

verge between 25 and 35 epochs. The validation test prevents

the network from overfitting and helps to monitor proper

convergence. We validate the training process after every

epoch and stop the training process automatically if there is

no improvement on the validation test over 15 epochs.

After training the VGG19, we extract the features from the

FC7 layer of the trained model and apply CFML to measure

the similarity between the testing dataset/query image and the

database images. One of the important parameters of CFML

is reduced dimensionality (D) derived from the projection

matrix (L). Fig. 6 shows the effect of different values of D.

The best results are achieved when D is 2, and the retrieval

performance remains unchanged for D greater than 2. These

stable results for D show the robustness of CFML and reduce

the computational cost in the retrieval phase.

B. PERFORMANCE METRICS

SupposeN is the total number of images in the database; then,

k = 1, 2, . . . ,N is the number of images retrieved from the

database and Tj is the relevance of the two images xj and xi,

where Tjǫ {0, 1}. Following the same performance metrics as

in [1]–[4], the retrieval performance is evaluated based on the

mAP and top n retrieval precision (Prec@n). Precision and

FIGURE 6. Evaluation of the retrieval performance of CMFL with
D = 1, 2, . . . , 10.

recall are computed as follows:

Precision =
∑k

j=1
Tj

/

K (13)

Recall =
∑k

j=1
Tj

/

∑N

j=1
Tj (14)

FIGURE 7. Brain tumor retrieval performance of the pretrained VGG19
and fine-tuned models.

If query image xj and retrieved database image xi are of the

same tumor type then Tj = 1; otherwise, Tj = 0. Presenting

xj to CBIR, the retrieved images are ranked in ascending order

based on their relevance to the xj. Let π (xj) denote the rank of

retrieved image xj in the ranking list. The top n most similar

retrieved images are represented by Prec@n, which is the

precision at the position where n is the most similar database

images returned. Prec@n is calculated as follows:

Prec@n =
1

n

∑N

j=1
Tj1

{

π (xj) ≤ n
}

(15)

where 1 {·} is the indicator function. The average precision

(AP) is the average of the precision at the positions where a

relevant image exists in the ranking list. AP is calculated as

follows:

AP =
1

∑N
j=1 Tj

∑N

j=1
Tj × Prec@j (16)
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TABLE 4. Retrieval performance of the proposed method for specific
types of tumors (Mean ± STD).

TABLE 5. Retrieval performance of the proposed method on five-fold test
datasets and its Mean ± STD.

The mAP is the mean of AP over all the query images and is

used to calculate the overall retrieval performance given by

mAP =
1

M

∑M

q=1
APq (17)

where M is the number of queries.

C. RETRIEVAL PERFORMANCE AND

RESULTS COMPARISON

We evaluated the retrieval performance of features extracted

from each block-wise fine-tuned model on five-fold cross-

validation. We summarized our results in the form of tables

and graphical figures. Fig. 7 summarizes the five-fold aver-

age retrieval performance of the pretrained VGG19 and the

proposed block-wise fine-tuned models. Our experimental

results show that retrieval performance increases gradually

with incremental block-wise fine-tuning.

Table 4 shows the average retrieval performance for indi-

vidual/specific tumor types. The retrieval performance for

meningioma is lower than that for glioma and pituitary tumor.

The reason is an imbalance of data. Table 5 shows the

five-fold retrieval performance on the test datasets and its

average and standard deviation. Fig. 8 describes the retrieval

performance of the proposed CBIR in comparison with the

state-of-the-art CBIR on the same dataset. The retrieval

results of the four compared methods are extracted directly

from the corresponding original papers. Our proposed CBIR

achieved the highest retrieval performance mAP of 96.13%

and Prec@10 of 94.39% with the deep fine-tuned model FT:

B1-B6.

We also examined the transferability of knowledge from

natural images to medical brain MR images. To observe the

visual effect of the low-level and high-level features, we took

feature maps from the deep fine-tuned model FT: B1-B6.

B1 describes the low-level features, while B5 describes the

high-level features. Fig. 9 visualizes the concept of low-level

general features, while Fig. 10 visualizes the concept of

high-level content-specific features of MR images.

In Fig. 9, each square in the montage is the activation

output of a channel in block B1 (the second convolutional and

the ReLu layer), as shown in (a) and (b). In (a), white pixels

FIGURE 9. Visual results of low-level features learned in the first block
B1 of fine-tuned model FT: B1-B6. (c) is the input image. (a) and (b) are a
montage of 64 images on an 8-by-8 grid, one for each channel, showing
the activation output of the second convolutional and ReLu layers in
block B1, respectively. (d) and (e) are the strongest activation channels of
the convolutional and ReLu layers, respectively.

represent strong positive activation, and black pixels repre-

sent strong negative activation. A channel that is mostly gray

does not activate strongly on the input image. The position of

a pixel in the activation of a channel corresponds to the same

position in the input image (c). A white pixel at some location

in a channel indicates that this channel is strongly activated at

that position. When (d) is compared with the input image (c),

it is clear that this channel activates on the edges. It activates

positively on the light edges and negatively on the dark edges.

However, only the positive activation is used because of the

ReLu that follows the convolutional layer, as shown in (b).
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FIGURE 8. Result comparison of the proposed and state-of-the-art CBIR systems on the CE-MRI dataset.

If we compare the strongest activation channel of the convo-

lutional andReLu layers, as shown in (d) and (e), respectively,

then (e) clearly identifies parts of the image that have strong

brain edge features.

In Fig. 10, the deep CNN learns domain (content)-specific

features in higher convolutional layers in a self-learning man-

ner by combining features of earlier layers. We explored

the fourth convolutional and ReLu layer in block B5 of

the deep fine-tuned model (FT: B1-B6) in the same way as

in Fig. 9. There are 512 feature maps, but for simplicity and

owing to space limitations, we explore only the 25 strongest

activation channels, as shown in (a) and (b). These activa-

tion channels illustrate the interesting structure and focus on

the brain area containing the tumor. Many of the channels

in (a) contain areas of activation that are both light and dark.

However, only the positive activation is used because of the

ReLu layer that follows the convolutional layer, as shown

in (b). When the strongest activation channel of the con-

volutional layer (d) is compared with the input image (c),

it represents parts of the image that have the tumor structure.

Similarly, if we compare (e) and (c), then (e) clearly shows

that this strongest activation channel in the ReLu layer acti-

vates on the tumor region. We have not provided the tumor

information (such as tumor location, tumor segment or tumor

boundary) to the CNN, but it has learned that the tumor

region is a useful feature to distinguish between classes of

brain tumors in MR images. Conventional machine learn-

ing methods often use handcrafted features specific to the

problem, but these deep CNNs can learn useful features by

themselves.

We further investigated the usefulness of transfer learning

and fine-tuning for smaller training datasets. For this purpose,

we used validation set one for testing and the remaining

four sets as training data from the five-fold cross-validation

datasets. We reduced the training data by randomly selecting

25, 50, and 75%. We trained FT: B1-B6 on the reduced train-

ing dataset. As described in Table 6, the features extracted

from model FT: B1-B6 show a minor decrease in retrieval

TABLE 6. Retrieval performance on the reduced training dataset.

performance even with 25% training data. The relatively

high performance of the CNN, even with smaller datasets,

indicates the power of the feature representation of convolu-

tional neural networks.

To show the practical results, we present three retrieval

examples for the three categories of brain tumors, as shown

in Fig. 11-13. Due to space limitations, we present only the

Prec@5 (top 5) retrieval results of the query image. Among

these figures, the first image is the query image, and the

remaining images are those retrieved by the proposed CBIR

system. The tumor region is roughly outlined by a yellow

boundary. All the Prec@5 retrieved images are relevant to

the given query image.

IV. DISCUSSION

Wedesigned an automatic content-based brain tumor retrieval

system. The performance of CBIR depends on good fea-

ture representation and suitable distance metric learning.

We extracted the features using the potential of transfer learn-

ing and block-wise fine-tuning of CNN, and similarity was

computed using CFML. The details of these two components

are described in the section on the proposed method. Most

state-of-the-art methods [1]–[4] (details are provided in the

introduction section) use handcrafted features such as tumor

region and outline in the feature extraction phase. Our feature

extraction method is more generic, as we do not use any

handcrafted features. Our proposed deep CNN-based feature

extraction framework learned these discriminative features

in a self-learning way. We performed this research on the

VGG19 model because its architecture is deeper and is suit-
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FIGURE 10. Visual results of high-level features learned in the fifth block
of fine-tuned model FT: B1-B6. (c) is the input image. (a) and (b) are a
montage of 25 images on a 5-by-5 grid, one for each channel, displaying
the top 25 strongest activations of the fourth convolutional and ReLu
layers in block B5, respectively. (d) and (e) are the strongest activation
channels of the convolutional and ReLu layers, respectively.

able for feature representation in terms of localization or

detection of specific content in an image. Furthermore, due

to the limitations of time and space, the objective of our

research focused only on tumor retrieval on brainMR images.

Our results reveal that pretrained deep learning models with

transfer learning and fine-tuning are the best strategy in the

scenario of small datasets, especially in the field of medical

imaging.

The second important component of this research is dis-

tance metric learning. We obtained efficient retrieval perfor-

mance using CFMLwith amAP of 96.13% compared to 70%

FIGURE 11. Prec@5 (top 5) retrieval results for the query image
meningioma.

FIGURE 12. Prec@5 (top 5) retrieval results for the query image glioma.

FIGURE 13. Prec@5 (top 5) retrieval results for the query image pituitary.

using simple Euclidean distance. Furthermore, we achieved

the best results by applying the CFML approach to project the

feature representations into a new space of two dimensions.

Therefore, CFML is very efficient in terms of computation

and memory due to its low dimensionality. An additional

benefit of low-dimension feature vectors is that they can

support indexing techniques [59] (e.g., KD-tree, R-tree, and

quad-trees). Indexing techniques compare the query image
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with only a portion of the relevant database images, thus

improving the retrieval efficiency for a large-scale database.

V. CONCLUSION

In this research, we developed a new CBIR approach to brain

tumor retrieval based on transfer learning and fine-tuning,

which can serve as a helpful tool for clinical diagnosis. The

proposed feature extraction framework suggests an alterna-

tive approach to pretrained CNN off-the-shelf feature extrac-

tion (without training) and training the separate method for

retrieval, and it also demonstrates the transferability of learn-

ing from natural images to medical brain MR images. This

approach may be used to develop CBIR for other body organ

MRI images and other medical imaging domains, such as

X-rays, PET, and CT. Our CBIR is more generic because it

requires only MR images as a query to retrieve the relevant

tumor images from the database. The experimental results

revealed that the proposed CBIR outperformed state-of-the-

art methods on CE-MRI dataset.
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