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Abstract

Background: The development of digital imaging technology is creating extraordinary levels of accuracy that

provide support for improved reliability in different aspects of the image analysis, such as content-based image

retrieval, image segmentation, and classification. This has dramatically increased the volume and rate at which data

are generated. Together these facts make querying and sharing non-trivial and render centralized solutions

unfeasible. Moreover, in many cases this data is often distributed and must be shared across multiple institutions

requiring decentralized solutions. In this context, a new generation of data/information driven applications must be

developed to take advantage of the national advanced cyber-infrastructure (ACI) which enable investigators to

seamlessly and securely interact with information/data which is distributed across geographically disparate resources.

This paper presents the development and evaluation of a novel content-based image retrieval (CBIR) framework. The

methods were tested extensively using both peripheral blood smears and renal glomeruli specimens. The datasets

and performance were evaluated by two pathologists to determine the concordance.

Results: The CBIR algorithms that were developed can reliably retrieve the candidate image patches exhibiting

intensity and morphological characteristics that are most similar to a given query image. The methods described in

this paper are able to reliably discriminate among subtle staining differences and spatial pattern distributions. By

integrating a newly developed dual-similarity relevance feedback module into the CBIR framework, the CBIR results

were improved substantially. By aggregating the computational power of high performance computing (HPC) and

cloud resources, we demonstrated that the method can be successfully executed in minutes on the Cloud compared

to weeks using standard computers.

Conclusions: In this paper, we present a set of newly developed CBIR algorithms and validate them using two

different pathology applications, which are regularly evaluated in the practice of pathology. Comparative

experimental results demonstrate excellent performance throughout the course of a set of systematic studies.

Additionally, we present and evaluate a framework to enable the execution of these algorithms across distributed

resources. We show how parallel searching of content-wise similar images in the dataset significantly reduces the

overall computational time to ensure the practical utility of the proposed CBIR algorithms.
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Background
A growing number of leading institutions now routinely

utilize digital imaging technologies to support investiga-

tive research and routine diagnostic procedures. The

exponential rate at which images and videos are being

generated has resulted in a significant need for efficient

content-based image retrieval (CBIR) methods, which

allow one to quickly characterize and locate images in

large collections based upon the features of a given query

image. CBIR has been one of the most active research

areas in a wide spectrum of imaging informatics fields

over the past few decades [1-13]. Several domains stand

to benefit from the use of CBIR including cinematogra-

phy, education, investigative basic and clinical research,

and the practice of medicine. CBIR has been successfully

utilized in applications spanning radiology [4,11,14,15],

pathology [9,16-18], dermatology [19,20], and cytology

[21-23].

There have been several successful CBIR systems that

have been developed for medical applications since the

1980’s. Several approaches utilize simple features such as

color histograms [24], shape [4,22], texture [6,25], or fuzzy

features [7] to characterize the content of images while

allowing higher level diagnostic abstractions based on sys-

tematic queries [4,25-27]. The recent adoption and pop-

ularity of case-based reasoning [28] and evidence-based

medicine [29] has created a compelling need for more

reliable image retrieval strategies to support diagnos-

tic decisions. In fact, a number of state-of-the-art CBIR

systems [4,9,11-13,15,16,25,30-32] have been designed

to support the processing of queries across imaging

modalities.

With the advent of whole-slide imaging technology, the

size and scale of image-based data has grown tremen-

dously, making it impractical to perform matching oper-

ations across an entire image dataset using traditional

methods. Tomeet this challenge, a new family of strategies

are being developed, which enable investigators to per-

form sub-region searching to automatically identify image

patches that exhibit patterns that are consistent with a

given query patch. In practice, this approach makes it

possible to select a region or object of interest within a

digitized specimen as a query while the algorithm system-

atically identifies regions exhibiting similar characteristics

in either the same specimen or across disparate speci-

mens. The results can then be used to draw comparisons

among patient samples in order to make informed deci-

sions regarding likely prognoses and most appropriate

treatment regimens.

To perform a region-of-interest (ROI) query, Vu et al.

[33] presented a Sam Match framework-based similar-

ity model. The use of a part-based approach was later

reported in [34] to solve the CBIR problem by syn-

thesizing a DoG detector, and a local hashing table

search algorithm. The primary limitation of this approach,

however, was the time cost of the large number of

features that need to be computed. Intra-expansion

and inter-expansion strategies were later developed to

boost the hash-based search quality based on a bag-

of-features model which could more accurately repre-

sent the images. Recently, a structured visual search

method was developed to perform CBIR in medical image

datasets [35]. The primary advantage of this framework

is that it is flexible and can be quickly extended to other

modalities.

Most CBIR algorithms rely on content localization, fea-

ture extraction, and user feedback steps [5-7,25,27,36-40].

The retrieved results are then ranked by some criteria,

such as appearance similarity or diagnostic relevance,

which can also serve as a measure of the practical usabil-

ity of the algorithm. Typically the retrieved images only

include those cases with the most similar appearance

to a given query image whereas introducing relevance

feedback [41-47] to CBIR provides a practical means for

addressing the semantic gap between visual and semantic

similarity.

Large-scale image retrieval applications are generally

computationally expensive. In this paper, we present the

use of the CometCloud [48,49] to execute CBIR in a

parallel fashion on multiple high performance comput-

ing (HPC) and cloud resources as a means for reduc-

ing computational time significantly. CometCloud is an

autonomic cloud framework that allows dynamic, on-

demand federation of distributed infrastructures. It also

provides an effective programming platform that supports

MapReduce, Workflow, and Master-Worker/BOT mod-

els making it possible for investigators to quickly develop

applications that can run across the federated resources

[49-53]. The algorithm that our team developed exploits

the parallelism of CBIR by combining the HPC assets at

Rutgers University with external cloud resources. More-

over, our solution uses cloud abstractions to federate

resources elastically to achieve acceleration, while hid-

ing infrastructure and deployment details. In this way,

the CBIR algorithm can be made available as accessible

services to end users.

The contributions of this paper are: 1) a novel CBIR

algorithm based on a newly developed coarse-to-fine

searching criteria which is coupled with a novel feature

called hierarchical annular histogram (HAH); 2) a CBIR

refinement schema based on dual-similarity relevance

feedback; and 3) a reliable parallel implementation of the

CBIR algorithm based on Cloud computing.

Methods
Research design

After discussing the needs and requirements of patholo-

gists from their perspective, the CBIR study is designed
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to quickly and accurately find images exhibiting sim-

ilar morphologic and staining characteristics through-

out a single or collection of imaged specimens. Our

team specifically choose to use Giemsa stained peripheral

blood smear and hematoxylin and eosin (H&E) stained

renal glomeruli datasets to systematically test the algo-

rithms since these are two routine use case scenarios

that our clinical colleagues indicated might benefit from

the proposed technology. Leukocytes are often differen-

tiated based on traditional morphological characteristics,

however the subtle visible differences exhibited by some

lymphomas and leukemias result in a significant num-

ber of false negative during routine screenings. In many

cases, the diagnosis is only rendered after conducting

immunophenotyping and a range of other molecular or

cytogenetic studies. The additional studies are expensive,

time consuming, and usually require fresh tissues thatmay

not be readily available [54]. Pre-transplantation biopsies

of kidney grafts have become a routine means for select-

ing organs which are suitable for transplantation from

marginal donors. The main histopathology characteristics

that are routinely evaluated by pathologists are percentage

of glomerulosclerosis, interstitial fibrosis, and degree of

vascular pathology [55]. The central incentive for develop-

ing the CBIR algorithms is to determine a reliable means

for assisting pathologists when they are called upon to

render diagnostic decisions based on whole-slide scanned

specimens.

In this paper, we present a novel content-based image

retrieval (CBIR) algorithm that is systematically tested on

both imaged Giemsa stained peripheral blood smears and

digitizedH&E stained renal glomeruli specimens. Because

of the intense computational requirements of the algo-

rithms, our team systematically investigate the use of high

performance computing solutions based on CometCloud

to distribute the tasks of performing CBIR to signifi-

cantly reduce the overall running time. The details of

datasets, the relevant CBIR algorithms, and the Comet-

Cloud implementation of the methods are explained in

detail in the following sections.

In the case of Giemsa stained peripheral blood smear

datasets, the algorithms operate on a given query patch

to quickly and reliably detect other leukocytes of the

same class throughout the imaged specimen in support

of diagnostic decisions. These hematopathology datasets

were acquired using a 20× objective to provide a gross

overview of the specimen while also supplying sufficient

resolution to distinguish among different classes of leuko-

cytes. The dataset consisted of 925 imaged blood smears

(1000 × 1000 pixels). In the case of the H&E stained renal

glomeruli datasets, the algorithms are used to process any

given query patch to discriminate necrotic glomeruli and

normal glomeruli throughout imaged kidney tissue speci-

mens. In these experiments, our team cropped 32 images

(5024 × 3504 pixels) from within eight whole-slide renal

specimens using a 20× objective.

Quality control of all datasets was conducted by an

experienced pathologist (Dr. Zhong) whereas query image

patches and ground-truth classification were determined

by two pathologists (Dr. Zhong and Dr. Goodell). The

retrieved results were evaluated by both pathologists

through a completely independent and blinded process.

During the peripheral blood smear experiments, patholo-

gists were asked to assign each leukocyte retrieved using

the CBIR algorithm to either the relevant or non-relevant

class as a means for judging the appropriateness of each

returned patch. In all, there were five different classes of

leukocytes used in the studies. During the renal glomeruli

studies, either a relevant or non-relevant assignment was

made to judge the performance of the algorithms in

distinguishing between necrotic glomeruli and normal

glomeruli.

The CBIR algorithms consist of four major steps: 1)

regions of interest (ROIs) localization, 2) hierarchical

three-stage searching, 3) retrieval refinement based on

dual-similarity relevance feedback, and 4) high perfor-

mance computing using CometCloud [48]. Figure 1 illus-

trates the actual workflow of the process.

Step 1: regions of interest localization

The first step is to locate the regions of interest (ROIs)

throughout the imaged specimens by excluding the back-

ground regions from the candidate objects. Using color-

decomposition andmorphology [56] based preprocessing,

the algorithm identifies application-specific ROIs. These

regions serve as candidate searching regions in the sub-

sequent stages of hierarchical searching. Candidate image

patches are generated using a sliding window approach

with an overlapping ratio within the range of [50%, 90%].

Step 2: hierarchical three-stage searching

The hierarchical three-stage searching method includes:

coarse searching, fine searching, and mean-shift clustering.

Coarse searching: Let Q represents a query image patch

and P serves the candidate image patches. Each patch

is divided into consecutive concentric rectangular bin

regions (termed as rings) as shown in Figure 2(a-b). As the

number of rings, r, increases, more detailed image char-

acteristics are captured and while the computational time

increases accordingly. r is determined based on cross-

validation. Figure 2(b) illustrates the process of coarse

searching. Given a query image patch, the algorithm com-

putes local features from the innermost ring. Based on a

similarity measure between candidate image patches, P,

and the query image, Q, retrieved image patches, P, are

ranked from high to low, and only the top 50% ranked

candidates are reserved at each step. This procedure

continues until the outermost ring is reached. This
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Figure 1Workflow of the proposed CBIR algorithm.

cascade structure significantly reduces the computational

time, as 50% of the image patches are eliminated in the

very first stage of processing by simply evaluating features

in the innermost ring.

Fine searching: After the coarse searching stage has been

completed, each rectangular annular ring from both the

query and candidate patches are equally subdivided into

eight segments, and local features are calculated in each

segment. The final candidates are chosen based on a

similarity measure of a concatenated feature vector cor-

responding to the eight segments. Figure 2(c) illustrates

the process of the fine searching. This stage is designed

to capture the spatial configuration of the local features.

Due to the limited number of candidates passing through

the coarse searching stage, the computational time for

completing this stage is dramatically reduced.

Mean-shift clustering: In order to assemble the final

retrieval results, mean-shift (MS) clustering [57] is applied

to the top ranked candidate patches, which have survived

both the coarse and fine searching stages. The band-

width b for the mean-shift clustering is calculated as b =
√

( w2 )2+( h2 )2

2 , where w is the width of the query image and h

is the height of the query image. In this way, the final CBIR

results are obtained.

HAH Feature and feature comparison

HAH feature: To implement the hierarchical searching

framework, we develop a hierarchical annular histogram

(HAH). The intensity color histograms of consecutive

concentric rectangular rings are calculated and concate-

nated together to form a coarse searching feature vector,

Hc = (h1, h2, . . . , hr), where hi is the intensity color his-

togram of the ith ring, i ∈ [1, r] and r is the number

of rings selected for the HAH feature. For fine search-

ing, each rectangular annular ring is equally divided into

eight segments, and the color histogram is calculated

from each segment sequentially and then concatenated

together to form the fine searching feature vector, H f =

(h1,1, . . . , h1,8, h2,1, . . . , h2,8, . . . , hr,1, . . . , hr,8), where hi,j is

the intensity color histogram of the ith ring within the jth

segment, j ∈ [1, 8]. Here superscript c represents coarse

searching and f represents fine searching. Throughout

the CBIR study, we use Euclidean distance as the similar-

ity measure. The distance Di, between the ith candidate

patch vi and the query patch q in coarse searching and fine

searching are defined as Dc
i and D

f
i , respectively:

Ds
i = dsi (H

s(qs),Hs(vsi)), s ∈ c, f ,

where dsi (H
s(qs),Hs(vsi)) =

√

(Hs(qs) − Hs(vsi))
2. Here

Hc(qc),H f (qf ) are the feature vector of query image

Figure 2 An illustration of the hierarchical searching framework: (a) region of interest, (b) coarse searching step, and (c) fine searching

step.
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during coarse searching and fine searching stages,

respectively, and Hc(vci ),H
f (v

f
i ) are the feature vector of

the ith candidate patch in the coarse searching and fine

searching stages, respectively.

Figure 3(a) and (b) illustrate the calculation of the HAH

from the innermost rectangle and the fourth ring from

the center. Figure 3(c) and (d) show an example of two

image patches with similar traditional color histogram (d),

but completely different HAH (c). This demonstrates the

capacity of the HAH to differentiate among image patches

exhibiting similar total color distributions, but different

spatial configurations.

In order to compare the performance of the HAH

feature in CBIR, the Gabor wavelet feature [58] and co-

occurrence texture feature [59,60] were compared with

the HAH feature with respect to both speed and accu-

racy using both imaged peripheral blood smear and renal

glomeruli datasets. For the purpose of the studies, pre-

cision and recall were used to measure the performance

of the CBIR algorithm. Precision is defined as the ratio

between the number of retrieved relevant images and the

total number of retrieved images. Recall is defined as the

ratio between the number of retrieved relevant images and

the total number of relevant images in the datasets.

The Gabor wavelet feature: The Gabor wavelet feature

is used to describe the image patterns at a range of dif-

ferent directions and scales. Throughout the experiments,

we utilize a Gabor filter with 8 directions and 5 scales,

(M = 5,N = 8), and the mean value and standard devi-

ation of each filtered image are concatenated to form a

feature vector: f = (μ1,1, σ1,1,μ1,2, σ1,2, . . . ,μ5,8, σ5,8), in

which μm,n and σm,n represent the mean value and stan-

dard deviation of the filtered image using Gabor filter at

the mth scale and nth direction, m ∈ [1,M] , n ∈ [1,N].

The distance Di between the ith candidate patch vi, and

the query patch q, is defined as

Di =
∑

m

∑

n

dm,n,i(q, vi),

where dm,n,i =

√

(μ
q
m,n − μ

vi
m,n)2 + (σ

q
m,n − σ

vi
m,n)2.

COOC texture feature: Co-occurrence (COOC) matri-

ces, also called spatial gray-level dependence matrices,

were first proposed by Haralick et al. [59,60]. COOC

matrices are calculated from an estimation of the second-

order joint conditional probability of the image intensity

with various distances and four specific orientations (00,

450, 900, 1350). COOC texture feature using the COOC

matrices quantifies the distribution of gray-level values

within an image. For the feature comparison experiment,

COOC texture feature including contrast, correlation,

energy, and homogeneity [60], is calculated from the

COOC matrices within the candidate ROIs and the query

image. The distance, Di, between the ith candidate patch

vi, and the query patch q, is defined as

Di =
∑

f

df ,i(q, vi),

where df ,i =
√

(F
q
f ,i − F

vi
f ,i)

2, and F = {contrast, correlation,

energy, homogeneity}.

Stage 3: CBIR retrieval refinement using a dual-similarity

relevance feedback

Relevance feedback is an interactive procedure which is

used to refine the initial retrieval results. Upon comple-

tion of the initial retrieval, top ranked retrieval images

were reviewed by two pathologists with consensus to label

them as relevant or non-relevant as previously described.

Figure 3 An illustration of HAH calculation. (a) Color histogram of the central ring. (b) Color histogram of the fourth ring from the center. An

example of two patches with (c) different HAH, but (d) similar color histogram of the entire image.
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These responses are used as users’ feedback to re-rank the

retrieval results accordingly.
Two types of similarities are used in the above retrieval

and feedback procedure: similarity in visual appearance

as measured by image feature distance and similarity

in semantic category as measured as relevant or non-

relevant. Current relevance feedback algorithms typically

only consider the second similarity. In our algorithm,

we develop a dual-similarity schema that combines both

types of similarity measures. This is achieved by rebuild-

ing the initial distributions of training samples in an

on-line manner.
For each top ranked retrieved image, a 256×3×r dimen-

sion feature vector is constructed, where r is the number

of rings defined in the hierarchical searching process.
Dimension reduction using principal component analy-

sis (PCA) is applied to the original HAH feature space,

and the top principal components accounting for 90% of

the total variance are used as inputs for the following

relevance feedback procedure.
Adaboost [61] is utilized to train an ensemble classi-

fier composed of a set of weak learners. Given a train-

ing dataset, a strong classifier is built as a weighted

sum of weak learners by minimizing the misclassification

errors. Define weightWi, to be measured by a normalized

Euclidean distance Di, representing the image appear-

ance similarity between a pair of retrieved image and

the original query. The initial distribution of the training

samples is recalculated to update the classifier to place

more weights on the visually similar cases following the
relevance feedback step. The algorithm is summarized as

follows.

Algorithm 1: Dual-similarity relevance feedback

Input: Labeled image dataset S with s images, S = {(X1, y1), (X2, y2), . . . , (Xs, ys)}, where yi = −1, 1 with i ∈

[1, s] representing relevant (positive) and non-relevant (negative) image samples. The Euclidean distance bet-

ween retrieved images and query image is denoted as D = {d1, d2, . . . , ds}. S can be further divided into a sub-set of

p positive samples: Sp = {(X1, y1), (X2, y2), . . . , (Xp, yp)|yi = 1, i ∈[1, p] }, and a sub-set of l negative samples: Sn =

{(X1, y1), (X2, y2), . . . , (Xl, yl)|yi = −1, i ∈[1, l] }, p + l = s.

Output: Re-ranked retrieved image datasetR = {(X1, y1), (X2, y2), . . . , (Xr , yr)}.

Recalculate the distribution:

• Calculate the weightW (i) for each sample image Xi based on its Euclidean distance to the query image D(i),

W (i) = 1 −
D(i)−min(D)

max(D)−min(D)
.

• Calculate the feature vector vi ∈ R
F for the i-th sample image. For each dimension f ∈[1, F] of the feature vector vi,

the values from the positive and negative images are fitted with normal Gaussian distributions P
pos
f and P

neg

f . The

distributions are then recalculated such that the probabilities of feature values are proportional to their weights

W (i). Denote the k-th dimension of the feature vector as v(k), for positive sample images Xm,Xn,∀m, n ∈[1, p],

there is
P̄
pos
k

(v|v=vm(k)

P̄
pos
k

(v|v=vn(k)
=

W (m)
W (n)

, and for negative sample images Xs,Xt ,∀s, t ∈[ 1, l], there is
P̄
neg

k
(v|v=vs(k)

P̄
neg

k
(v|v=vt(k)

=
W (s)
W (t) .

Adaboost Initialization:

• Initialize the training weights of the adaboost classifier for all sample images asW1,i = 1
s , where s represents the

total number of images in S .

Adaboost:

for t = 1, . . .T do

• For each dimension f of the feature vector vi, train a binary classifier hf by rebuilding sample set distribution P̄
pos
f

and P̄
neg

f . The misclassification error of the generated classifier is defined as the weighted sum of misclassification

from all sample images, ǫf =
∑s

i=1Wt,i.I(yi �= hf (vi)), here I(.) is the indicator function.
• Choose ht = hf such that ∀j ∈[1, F] , j �= f , ǫf < ǫj and let ǫt = ǫf .
• If ǫt < α, then stop, where α is a chosen error threshold.
• Update weightsW (i).

for i = 1, . . . ,M + 1 do

Wt+1,i =
Wt,i.exp(αtI(yi �=ht(vi)))

∑

i(Wt,i.exp(αtI(yi �=ht(vi))))
, where αt = ln( 1−ǫt

ǫt
)

end for
end for

• Assemble the final classifier: H(x) = sign(
∑T

t=1 αtht(v)).
• Re-rank the top retrieved images using the final strong classifier.

Re-rank the relevant top retrieved images based on the content-wise similarities.



Qi et al. BMC Bioinformatics 2014, 15:287 Page 7 of 17

http://www.biomedcentral.com/1471-2105/15/287

Step 4: accelerating CBIR using CometCloud

Due to the data-independence property of the CBIR

algorithm, we can formulate our problem as a set of

heterogeneous and independent or loosely couple tasks.

In this way, we can parallelize and solve our problem

using the aggregated computational power of distributed

resources. Our team has designed and developed a frame-

work that enables the execution of CBIR across dis-

tributed, federated resources. Our framework uses cloud

abstractions to present the underlying infrastructure as

a single elastic pool of resources regardless of their

physical location or specific particularities. In this way,

computational resources are dynamically provisioned on-

demand to meet the application’s requirements. These

resources can be high performance computing grids,

clouds, or supercomputers. In the current application, the

framework is built on top of CometCloud [48]. Comet-

Cloud is purposely chosen for this application since it

enables dynamic and on-demand federation of advanced

cyber-infrastructures (ACIs). It also provides a flexible

application programming interface (API), for developing

applications that can take advantage of federated ACIs.

Furthermore, it provides fault-tolerance in the resulting

infrastructure.

The framework used to run the CBIR algorithm

across federated resources is implemented using the mas-

ter/worker paradigm. In this scenario, the CBIR software

serves as a computational engine, while CometCloud

orchestrates the entire execution. The master/worker

model is suitable for problems with a large pool of inde-

pendent tasks, where both the tasks and the resources

are heterogeneous. Using this approach, the master

component generates tasks, collects results, and veri-

fies that tasks are properly executed. Each task con-

tains the description of the images to be processed.

All tasks are automatically placed in the CometCloud-

managed distributed task space for execution. Work-

ers are dedicated to carry out tasks pulled from the

CometCloud task space and send results back to the

master.

The implementation that we have presented has several

important and highly desirable properties. From the user’s

perspective, the framework creates a cloud abstraction on

top of the resources that hides infrastructure details and

offers the CBIR software as a readily accessible service. In

this way, one can query the database using different algo-

rithms via a simple interface without consideration of how

and where queries are executed. On the other hand, from

the developer’s perspective, the integration of the existing

CBIR software with the CometCloud framework does not

require any adjustments on the application side. Addition-

ally, the resulting framework completely operates within

the limits of the end-user space. This means that it is pos-

sible to aggregate computational resources without special

privileges, which is very important when using external

resources.

Figure 4 An illustration of results of the three-stage CBIR searching using one neutrophil as a query image from peripheral blood smears

acquired at 20× objective, in which green box labeled regions represent the candidate patches.
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Figure 5 CBIR results using different classes of leukocytes as query images, including basophil, eosinophil, lymphocyte, monocyte, and

neutrophil, respectively. Here green box labeled regions represent the candidate patches that are similar to the query image patch. Each box has

a number to indicate the ranking order of every candidate patch in the dataset. The original sizes of the images were adjusted to fit in the figure.

Figure 6 An example of top 10% CBIR results for a necrotic glomerulus query image. Red box labeled regions indicate the query image. Blue

box labeled regions represent the healthy glomeruli for comparison. Green box labeled regions denote the top 10% ranked retrieved patches,

which include multiple scaled regions at 1/2, 1, 2, 3, and 4 times of the original size of the query image. The original sizes of the images were

adjusted to fit in the figure.
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Figure 7 Local feature comparison using HAH, Gabor wavelet and COOC texture features. (a) Precision-recall curves of CBIR results using

HAH, Gabor wavelet, and COOC texture features on peripheral blood smears. (b) Average of feature calculation times per image patch using HAH,

Gabor wavelet, and COOC texture features on peripheral blood smears. (c) Precision-recall curves of CBIR results using HAH, Gabor wavelet, and

COOC texture features on renal glomeruli images. (d) Average of feature calculation times per image patch using HAH, Gabor wavelet, and COOC

texture features on renal glomeruli images.

Results and discussion
CBIR results and feature comparison

A dual-processor system based on Intel Xeon E5530@2.4

GHz with 24 GB RAM and 64-bit operating system was

used for the CBIR study. Initial CBIR results using two

Table 1 Numbers of relevant/non-relevant images within

top 100 initially retrieved images for peripheral blood

smear and renal glomeruli datasets, which were labeled by

two pathologists with an agreement

Dataset # of relevant images # of non-relevant images

Neutrophil 41 59

Monocyte 53 47

Lymphocyte 42 58

Eosinophil 9 91

Basophil 1 99

Renal tissue 59 41

pathology image datasets and different feature compari-

son are presented below. Figure 4 shows an example of

the CBIR three-stage hierarchical searching results using

one neutrophil as a query image in a peripheral blood

smear dataset acquired using 20× magnification objec-

tive. Green box labeled regions represent the candidate

patches that are similar to the query image patch. Figure 5

shows CBIR results using different classes of leukocytes

Table 2 Percentage of various leukocytes in adults

approximately

Various leukocytes From% To%

Neutrophil 60 70

Monocyte 3 8

Lymphocyte 20 25

Eosinophil 2 4

Basophil 0.5 1
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Figure 8 Top ranked patches before and after relevance feedback of three classes of leukocytes ((a) neutrophil, (b) monocyte, and (c)

lymphocyte). Patches with red rectangles represent the incorrect results (negative examples), and blue rectangles denote the correct results

(positive examples), which were re-assigned to higher rankings through the relevance feedback process. The original sizes of the images were

adjusted to fit in the figure.

as query images, including basophil, eosinophil, lympho-

cyte, monocyte, and neutrophil, respectively. Green box

labeled regions represent the candidate patches that are

similar to the query image patch. Each box has a number

to indicate the ranking order of every candidate patch in

the dataset. Figure 6 shows an example of CBIR results

for a necrotic glomeruli query image using a testing

dataset containing multi-scale regions at 1/2, 1, 2, 3, and

4 times of the original size of the query image. Red box

labeled regions indicate the query image. Blue box labeled

Figure 9 Top ranked patches before and after relevance feedback of the renal glomeruli dataset. Patches with red rectangles represent the

incorrect results (negative examples), and blue rectangles represent the correct results (positive examples), which were re-assigned to higher

rankings through the relevance feedback process.
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regions represent the healthy glomeruli for comparison.

Green box labeled regions represent the top-ranked 10%

of retrieval patches of the 32 randomly selected regions

(5024 × 3504 pixels) cropped from whole-slide scanned

images.

By varying the number of rings ∈ [2, 3, 5, 10, 15] in the

hierarchical searching, the performance of CBIR is sum-

marized as follows. For imaged peripheral blood smears,

all five classes of leukocytes were correctly retrieved using

three inner rings of the HAH. For imaged renal glomeruli,

as the number of rings increased to 10, all necrotic

glomeruli were correctly retrieved. With an increase of

the number of the rings, the computational time also

increased. The number of rings was shown to be depen-

dent upon the complexity of the dataset.

For local feature comparison, image retrieval was per-

formed on the same datasets with the same query images

using HAH, Gabor wavelet, and COOC texture features.

Figure 7(a) and (b) show precision-recall curves and aver-

age of feature calculation times using peripheral blood

smear images, respectively. Figure 7(c) and (d) show

precision-recall curves and average of feature calculation

times using renal glomeruli images, respectively. The area

under a curve (AUC) value of each feature for peripheral

blood smear images and renal glomeruli images are shown

in Figure 7(a) and (c), respectively. The average of feature

computation times are shown in Figure 7(b) and (d). Based

on these experiments, it is clear that HAH feature out-

performs Gabor wavelet and COOC texture features with

respect to both speed and accuracy.

Validation of relevance feedback

To evaluate the performance of the dual-similarity rele-

vance feedback algorithm, both peripheral blood smear

and multi-scale renal datasets were used. Table 1 summa-

rizes the numbers of relevant/non-relevant images within

initial top retrieved 100 images for peripheral blood smear

and renal glomeruli datasets, which were labeled by two

pathologists with consensus. In general, the percentages

of basophils and eosinophils in a given specimen are quite

small (e. g., less than 1% and 4% in our dataset as shown

in Table 2). In addition, they can be accurately retrieved as

we show in Table 1. Due to this reason, only neutrophils,

monocytes, and lymphocytes were utilized for relevance

feedback analysis. In those experiments, we applied rel-

evance feedback on the first 100 initial retrieved image

patches because this number was sufficient to retrieve all

similar cases in the datasets.

The original query images, initial top retrieval results,

and re-ranked results after relevance feedback are showed

in Figures 8 and 9 for blood smear and renal datasets. In

both figures, image patches with red rectangles represent

the incorrect results (negative examples), and the blue

ones represent the correct results (positive examples),

which were re-assigned to higher ranking after rele-

vance feedback. For the retrieval results of leukocyte

image datasets, the ranking of many correct patches

were increased from their initial ranking after relevance

feedback. Relevance feedback corrected for 5/6 of the

incorrect retrieval patches and increased the ranking for

7 patches from the lower ranking (with initial ranking

between 41 and 100) in the neutrophil dataset. This proce-

dure also amended all 10 incorrect patches, and increased

ranking for 23 patches in the monocyte dataset. This pro-

cedure eliminated all 4 incorrect patches, and increased

ranking for 35 patches in the lymphocyte dataset. For the

renal dataset, the relevance feedback procedure success-

fully increased the ranking for all of the 9 correct patches

of multi-scale renal dataset shown in Figure 9.

Ten-fold cross-validation was applied to evaluate the

performance of the proposed dual-similarity relevance

feedback with receiver operating characteristic (ROC)

curves for both peripheral blood smear and renal datasets.

The ROC curves after applying relevance feedback on the

peripheral blood smear and multi-scale renal datasets are

shown in Figure 10.

Another measures of performance for the proposed rel-

evance feedback are the recall rate and processing speed.

The relevance feedback (RF) calculation time includes

feature vector dimension reduction and Adaboost clas-

sifier training. The numbers of training samples were

20, 50, and 90, and the training samples were randomly

selected from the datasets. Based on Figure 11, the val-

ues of area under recall curves increased as the number

of training samples increased for three leukocytes ((a)

neutrophil, (b) monocyte, and (c) lymphocyte), and (d)

renal glomeruli. The recall rate after RF for neutrophils

Figure 10 The ROC curves of the dual-similarity relevance

feedback using the peripheral blood smear image dataset

(neutrophil, monocyte, and lymphocyte), and the renal

glomeruli dataset.
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Figure 11 The recall curves after relevance feedback (RF) and their calculation times using the peripheral blood smear image dataset ((a)

neutrophil, (b) monocyte, and (c) lymphocyte)), and (d) the renal glomeruli dataset. The numbers of training samples were 20, 50 and 90.

(a) using 20 training samples was no better than the result

before RF. This was because the original retrieval process

already provided a good performance. As the value of area

under recall curve before RF was already 76.902, which

was much higher than the rest of cases ((b) monocyte, (c)

lymphocyte, and (d) renal glomeruli). In this specific case,

there was no significant improvement using RF in a small

training set (e.g., 20 training samples). However, RF signif-

icantly improved the recall rate in larger training sets (e.

g., 50 and 90 training samples). In general, the values of

area under recall curves were significantly increased after

RF with the number of training samples increased.

Acceleration of CBIR using CometCloud

We conducted experiments to test the performance of

CBIR using CometCloud. For HAH, we evaluated two

leukocytes query images against a dataset of 925 periph-

eral blood smear images. In the case of CBIR using multi-

scale image candidate patches, we evaluated two different

renal glomeruli query images against a dataset of 32 renal

images. All the experiments were repeated three times to

obtain average results.

During the experiments, the input data were initially

located on a single site, the required files were trans-

ferred as needed. However, once a file was transferred

to a remote site, it was locally staged to minimize the

amount of data transferred across sites, especially when

multiple tasks require the same input data. To address this

issue, a pull model was used where workers request tasks

when they become idle. In this way, the workload was uni-

formly distributed across all workers to address the load

imbalance.
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Figure 12 The execution time of hierarchical searching process using (a) peripheral blood smear dataset, and (b) renal glomeruli dataset,

with different combinations of number of the HAH rings and the percentage of overlapping.

To accommodate the CBIR algorithms, we federated

various resources including HPC clusters and clouds. In

particular, we federated a HPC cluster at Rutgers (a Dell

Power Edge system with 256 cores in 8-core nodes -

“Dell” hereafter), a SMP machine at Rutgers (64 cores -

“Snake” hereafter), and 40 large instances fromOpenStack

[62] (“FutureGrid”, hereafter), which is a cloud similar

to Amazon EC2. Currently we are exploiting the inher-

ent task parallelism of the problem, which means that

we can divide the algorithm into smaller sub-modules

and execute each module independently. This provides

a linear scalability as long as we have more tasks than

computational cores.

Figure 12 presents a summary of the execution time of

the proposed hierarchical searching algorithm using two

representative peripheral blood smears and a multi-scale

renal glomeruli dataset while varying the parameters,

respectively. The results illustrate average values, includ-

ing error bars showing their associated variabilities. Please

note that the Y -axes in the sub-figures represent different

scales. The figure also demonstrates the execution time of

each stage and the time required to transfer the images

for processing. Since the image transfer time represents a

small fraction of the total execution time (i.e., from a few

Figure 13 The execution time of sequential and federated

infrastructure using peripheral blood smear dataset and renal

glomeruli dataset with different combinations of number of the

rings and the percentage of overlapping. Here the Y-axis is in a

logarithmic scale.

seconds to a 2–3 minutes depending on the configura-

tion), in our current implementation we copy the images

sequentially from a central repository. The execution time

varies depending on the algorithm we used, the query and

dataset images, and the configuration (e.g., 90% overlap-

ping takes longer than 50% overlapping). The fraction of

time spent on each stage of the hierarchical searching is

shown in Figure 12.

Figure 13 compares the execution time of different

configurations using a single system and federated cyber-

infrastructure. We observe an average acceleration of

70-fold with a maximum of 96-fold. This is achieved by

elastically using multiple resources as discussed below.

Figure 14 shows the contribution of the FutureGrid cloud

to the execution of the multi-scale algorithm. Cloud

resources significantly accelerate the execution of the

algorithm. During stages with lower parallelism (e.g., last

minutes of the execution), computation can be performed

using local HPC resources and cloud resources can be

released to reduce operational costs.

The variability of the execution time of different tasks

is shown in Figures 15 and 16. Figure 15 shows the aver-

age task execution time and variability using different

configurations. The variability of task execution time is

heterogeneous and depends on the configurations and the

Figure 14 The number of completed tasks over time when

testing the CBIR algorithm using the renal glomeruli dataset.

The area under “FutureGrid” represents the contribution from the

cloud resources.
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Figure 15 The average task execution time per platform using

the peripheral blood smear and renal glomeruli datasets with

different combinations of number of the rings and the

percentage of overlapping. Here “FutureGrid” is abbreviated as “fg”.

machine. In general, the longer the execution takes, the

larger the variability. Figure 16 shows that the execution

time of individual task is relatively heterogeneous. It also

demonstrates that the distribution of tasks among differ-

ent federated resources depends on the number of cores

available in each platform (e.g., one of the cores, snake,

runs only a few tasks). The results show that the par-

allelization of CBIR at the image level can dramatically

reduce the overall computational time.

Conclusion
In this paper, we present a set of newly developed CBIR

algorithms and demonstrate its application on two differ-

ent pathology applications, which are regularly evaluated

in the practice of pathology. The experimental results

suggest that the proposed CBIR algorithm using sequen-

tial HAH searching follows a progression which parallels

to the same logical steps as ever invoked when physi-

cians review digital pathology images. During the review

process, the pathologist typically begins by first iden-

tifying gross locations of potential regions of interest

Figure 16 The execution time per task using (a) the peripheral blood smear dataset and (b) the renal glomeruli dataset.
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(coarse searching in the proposed algorithm) before exe-

cuting the more refined stages (fine searching in the pro-

posed algorithm) to examine the detailed morphometric

characteristics.

For the peripheral blood smear study, we tested perfor-

mance using a range of different leukocytes and exper-

imentally showed the reliable performance of the CBIR

algorithm. The success of the proposed CBIR algo-

rithm in identifying neutrophils suggests further explo-

ration of the HAH feature in detecting abnormal or

hypersegmented neutrophils, which are indicators of

megaloblastic anemia and potential risk of gastric can-

cer. Similarly, a pathologist’s assessment of normal vs.

diseased glomeruli in renal biopsies is often used as an

indicator of overall kidney health, such as, the determi-

nation of graft function from pre-transplantation biop-

sies [55]. Assisted by the proposed CBIR algorithm,

physicians and researchers can quickly review a digital

biopsy to evaluate the proportion of ischemic or necrotic

glomeruli within a given field to quickly assess whether

an incoming specimen is suitable for transplantation or

not. This type of review can have multiple applications,

such as, determining whether a rejection of the organ

might occur by identifying areas of focal and segmental

glomerulosclerosis [63]. Currently, our algorithm requires

some external feedback to optimize the search. We are

exploring different ways of automatizing this process by

applyingmachine learning techniques. On the other hand,

although the proposed hierarchical searching has signifi-

cantly improved the retrieval speed, it is still a computa-

tional demanding procedure. Therefore, we are exploring

new ways of exploiting parallelism to speed-up this

process.

We present a generalizable cloud-enabled CBIR algo-

rithm that can be extended to a wide variety of appli-

cations. Because of the computational requirements

needed for retrieving whole-slide scanned images, we

explore the use of federated high performance computing

(HPC) cyber-infrastructures and clouds using Comet-

Cloud. Comparative results of HPC versus standard com-

putation time demonstrate that the CBIR process can be

dramatically accelerated, from weeks to minutes, making

real-time clinical practice feasible. Moreover, the pro-

posed framework hides infrastructure and deployment

details and offers end-users the CBIR functionality in a

readily accessible manner. We are currently working on

improving the utilization of resources by exploit the par-

ticular capabilities and capacities of each heterogeneous

resource, e.g., switching between the usage of the origi-

nal CBIR implementation in MATLAB (The MathWorks,

Natick, MA) when licenses are available or a parallel

implementation using graphic processing unit (GPU) and

many-core architectures in cases where resources with

accelerators are available.
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