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Abstract. This paper describes WBIIS (Wavelet-Based
Image Indexing and Searching), a new image indexing
and retrieval algorithm with partial sketch image search-
ing capability for large image databases. The algorithm
characterizes the color variations over the spatial extent
of the image in a manner that provides semantically
meaningful image comparisons. The indexing algorithm
applies a Daubechies' wavelet transform for each of the
three opponent color components. The wavelet coe�-
cients in the lowest few frequency bands, and their
variances, are stored as feature vectors. To speed up
retrieval, a two-step procedure is used that ®rst does a
crude selection based on the variances, and then re®nes
the search by performing a feature vector match between
the selected images and the query. For better accuracy in
searching, two-level multiresolution matching may also
be used. Masks are used for partial-sketch queries. This
technique performs much better in capturing coherence
of image, object granularity, local color/texture, and bias
avoidance than traditional color layout algorithms.
WBIIS is much faster and more accurate than traditional
algorithms. When tested on a database of more than
10 000 general-purpose images, the best 100 matches were
found in 3.3 seconds.
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1 Introduction

Searching a digital library [21] having large numbers of
digital images or video sequences has become important
in this visual age. Every day, large numbers of people are

using the Internet for searching and browsing through
di�erent multimedia databases. To make such searching
practical, e�ective image coding and searching based on
image semantics is becoming increasingly important.

In current real-world image databases, the prevalent
retrieval techniques involve human-supplied text anno-
tations to describe image semantics. These text annota-
tions are then used as the basis for searching, using
mature text search algorithms that are available as free-
ware. However, there are many problems in using this
approach. For example, di�erent people may supply
di�erent textual annotations for the same image. This
makes it extremely di�cult to reliably answer user que-
ries. Furthermore, entering textual annotations manually
is excessively expensive for large-scale image databases.

Image feature vector indexing has been developed and
implemented in several multimedia database systems
such as the IBM QBIC System [7, 15] developed at the
IBM Almaden Research Center, the Virage System [10]
developed by Virage, Inc., and the Photobook System
developed by the MIT Media Lab [16, 17]. For each
image inserted into the database, a feature vector on the
order of 500 elements is generated to accurately represent
the content of the image. This vector is much smaller
in size than the original image. The di�cult part
of the problem is to construct a vector that both pre-
serves the image content and yet is e�cient for searching.
Once the feature vectors are generated, they are then
stored in permanent storage. To answer a query, the
image search engine scans through the previously com-
puted vector indexes to select those with shortest dis-
tances to the image query vector. The distance is
computed by a measure such as the vector distance in
Euclidean space. For partial sketch queries, usually a
mask is computed and applied to the feature vector.

In the WBIIS project, we developed a new algorithm
to make semantically-meaningful comparisons of images
e�cient and accurate. Figure 1 shows the basic structure
of the system. To accurately encode semantic features of
images we employ wavelets based on continuous func-
tions, as described by Daubechies [5]. Using these wave-
lets and statistical analysis, our algorithm produces
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feature vectors that provide a much better frequency lo-
calization than other traditional color layout coding al-
gorithms. The localization of wavelets can be ®ne-tuned
to deliver high resolution for higher frequencies and lower
resolution for lower frequencies. We use a novel multi-
step metric to compute the distance between two given
images. Promising results have been obtained in experi-
ments using a database of 10 000 general-purpose images.

2 Preprocessing the images in the database

Many color image formats are currently in use, e.g., GIF,
JPEG, PPM and TIFF are the most widely used formats.
Because images in an image database can have di�erent
formats and di�erent sizes, we must ®rst normalize the
data. For our test database of relatively small images, a
rescaled thumbnail consisting of 128� 128 pixels in Red-
Green-Blue (RGB) color space is adequate for the
purpose of computing the feature vectors.

Bilinear interpolation is used for the rescaling process.
This method resamples the input image by overlaying the
input image with a grid with 128� 128 points. This gives
one grid point for each pixel in the output image. The
input image is then sampled at each grid point to deter-
mine the pixel colors of the output image. When grid
points lie between input pixel centers, the color values of
the grid point are determined by linearly interpolating
between adjacent pixel colors (both vertically and hori-
zontally).

This rescaling process is more e�ective than a Haar-
like rescaling, i.e., averaging several pixels to obtain a
single pixel to decrease image size, and replicating pixels
to increase image size, especially when the image to be
rescaled has frequent sharp changes such as local texture.
It is necessary to point out, however, that the rescaling
process is in general not important for the indexing phase
when the size of the images in the database is close to the
size to be rescaled. The sole purpose for the rescaling is to
make it possible to use the wavelet transforms and to
normalize the feature vectors. Here, we assume the im-
ages in the database to have sizes close to 128� 128. In
fact, images may be rescaled to any other size as long as

each side length is a power of two. Therefore, to obtain a
better performance for a database of mostly very large
images, we would suggest using a bilinear interpolation
to rescale to a large common size, with side lengths being
powers of two, and then apply more levels of Daubechies'
wavelets in the indexing phase.

Since color distances in RGB color space do not re-
¯ect the actual human perceptual color distance, we
convert and store the image in a component color space
with intensity and perceived contrasts. We de®ne the new
values at a color pixel based on the RGB values of an
original pixel as follows:

C1 � �R� G� B�=3
C2 � �R� �maxÿ B��=2
C3 � �R� 2 � �maxÿ G� � B�=4
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Here max is the maximum possible value for each color
component in the RGB color space. For a standard 24-
bit color image, max � 255. Clearly, each color compo-
nent in the new color space ranges from 0 to 255 as well.
This color space is similar to the opponent color axes

RG � Rÿ 2 � G� B

BY � ÿRÿ G� 2 � B
WB � R� G� B
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de®ned in [1] and [20].
Besides the perception correlation properties [11] of

such an opponent color space, one important advantage
of this alternative space is that the C1 axis, or the inten-
sity, can be more coarsely sampled than the other two
axes on color correlation. This reduces the sensitivity of
color matching to a di�erence in the global brightness of
the image, and it reduces the number of bins and sub-
sequent storage in the color histogram indexing.

3 Multiresolution color layout image indexing using
wavelets and the fast wavelet transform

Many end-users are interested in searching an image
database for images having similar image semantics with
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Fig. 1. Basic structure of the WBIIS system
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respect to a given query image or a hand-drawn sketch.
Although it is not yet possible to fully index the image
semantics using a computer vision approach, there are
several ways to index the images so that semantically-
meaningful queries can be performed by comparing the
indexes. The color histogram is one of the many ways to
index color images. However, while a global histogram
preserves the color information contained in images, it
does not preserve the color locational information. Thus,
using similarity of histograms as a measure, two images
may be considered to be very close to each other even
though they have completely unrelated semantics. Shape
and texture-based detection and coding algorithms are
other techniques of indexing images. They both have
substantial limitations for general-purpose image data-
bases. For example, current shape detection algorithms
only work e�ectively on images with relatively uniform
backgrounds. Texture coding is not appropriate for non-
textural images.

Storing color layout information is another way to
describe the contents of the image. It is especially useful
when the query is a partial sketch rather than a full im-
age. In traditional color layout image indexing, we divide
the image into equal-sized blocks, compute the average
color on the pixels in each block, and store the values for
image matching using Euclidean metric or variations of
the Euclidean metric. It is also possible to compute the
values based on statistical analysis of the pixels in the
block. Both techniques are very similar to image rescaling
or subsampling. However, they do not perform well when
the image contains high frequency information such as
sharp color changes. For example, if there are pixels of
various colors ranging from black to white in one block,
an e�ective result value for this block cannot be predicted
using these techniques.

Work done by the University of Washington [12]
applies the Haar wavelet to multiresolution image que-
rying. Forty to sixty of the largest magnitude coe�cients
are selected from the 1282 � 16 384 coe�cients in each of
the three color channels. The coe�cients are stored as �1
or ÿ1 along with their locations in the transform matrix.
As demonstrated in the cited paper, the algorithm per-
forms much faster than traditional algorithms, with an
accuracy comparable to traditional algorithms when the
query is a hand sketch or a low-quality image scan.

One drawback of using the Haar transform to de-
compose images into low frequency and high frequency is
that it cannot e�ciently separate image signals into low
frequency and high frequency bands. From the signal
processing point of view, since the wavelet transform is
essentially a convolution operation, performing a wavelet
transform on an image is equivalent to passing the image
through a low-pass ®lter and a high-pass ®lter [9]. The
low-pass and high-pass ®lters corresponding to the Haar
transform do not have a sharp transition and fast at-
tenuation property. Thus, the low-pass ®lter and high-
pass ®lter cannot separate the image into clean distinct
low frequency and high frequency parts. On the other
hand, Daubechies wavelet transform with longer length
®lters [5] has better frequency properties. Because in our
algorithm we rely on image low frequency information to

do comparisons, we applied the Daubechies wavelet
transform instead of the Haar transform.

Moreover, due to the normalization of functional
space in the wavelet basis design, the wavelet coe�cients
in the lower frequency bands, i.e., closer to the upper-left
corner in a transform matrix, tend to be more dominant
(are of larger magnitude) than those in the higher fre-
quency bands. Coe�cients obtained by sorting and
truncating will most likely be in the lower frequency
bands. For the Haar case,

F0�x�n�� �
1
���

2
p �x�n� � x�n� 1�� �3�

F1�x�n�� �
1
���

2
p �x�n� ÿ x�n� 1�� �4�

coe�cients in each band are expected to be 2=
���

2
p

times
larger in magnitude than those in the next higher
frequency band, i.e., those in one level previous to the
current level. For a 128� 128 image, we expect the
coe�cients in the transform to have an added weight
varying from 1 to 8 before the truncation process. As
indicated in Eq. (3), the low frequency band in a Haar
wavelet transform is mathematically equivalent to the
averaging color block or image rescaling approach in
traditional layout algorithms mentioned above. Thus, the
accuracy is not improved when the query image or the
images in the database contain high frequency color
variation.

Although the University of Washington approach can
achieve a much faster comparison by storing only 40 to
60 coe�cients for each color channel as a feature vector,
much useful information about the image is discarded.
Thus, it is possible for two images having the same fea-
ture vector to di�er completely in content. In addition,
two pictures with similar content but di�erent locations
of sharp edges may have feature vectors that are far apart
in feature space. This is why the University of Wash-
ington algorithm has a sharp decrease in performance
when the query image consisted of a small translation of
the target image.

We have developed a color layout indexing scheme
using Daubechies' wavelet transforms that better repre-
sents image semantics, namely, object con®guration and
local color variation, both represented by Daubechies'
wavelet coe�cients. For large databases, feature vectors
obtained from multi-level wavelet transforms are stored
to speed up the search. We apply a fast wavelet transform
(FWT) with Daubechies' wavelet to each image in the
database, for each of the three color components. Some
coe�cients of the wavelet transform, and their standard
deviations, are stored as feature vectors. Given a query
image, the search is carried out in two steps. In the ®rst
step, a crude selection based on the standard deviations
stored is carried out. In the second step, a weighted
version of the Euclidean distance between the feature
coe�cients of an image selected in the ®rst step and those
of the querying image is calculated, and the images with
the smallest distances are selected and sorted as matching
images to the query. We will show below that this algo-
rithm can be used to handle partial hand-drawn sketch
queries by modifying the computed feature vector.
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3.1 Daubechies' wavelets and fast wavelet transform

When processing signals, the prime consideration is the
localization, i.e., the characterization of local properties,
of a given basis function in time and frequency. In our
case, the signals we are dealing with are 2-D color images,
for which the time domain is the spatial location of
certain color pixels and the frequency domain is the color
variation around a pixel. Thus, we seek a basis function
that can e�ectively represent the color variations in each
local spatial region of the image. In this subsection, we
examine the various transforms and their properties to
arrive at a transform that has attractive properties for the
image retrieval problem.

Spline-based methods are e�cient in analyzing the
spatial localization for signals that contain only low
frequencies. Traditional Fourier-based methods [4, 8],
such as the Discrete Cosine Transform (DCT) aim to
capture the frequency content of the signal. The Discrete
Fourier Transform and its inverse are de®ned as

F �k� �
X

Nÿ1

n�0

f �n�eÿj2pnk=N �5�

f �n� � 1

N

X

Nÿ1

k�0

F �k�ej2pnk=N : �6�

Discrete Fourier Transforms are currently used ef-
fectively in signal and image processing because of the
frequency domain localization capability. They are ideal
for analyzing periodic signals because the Fourier ex-
pansions are periodic. However, they do not have the
spatial localization property because of their in®nite ex-
tensibility.

Two mathematical methods are available for non-
periodic signals, the Windowed Fourier Transform
(WFT) and the wavelet transform. The WFT analyzes the
signal in both spatial and frequency domains simulta-
neously by encoding the signal through a scaled window
related to both location and local frequency. Therefore,
signals are easily underlocalized or overlocalized in spa-
tial domain if the spatial behavior is inconsistent with the
frequency of the signal. Wavelets are basis functions that
have some similarities to both splines and Fourier series.
They have advantages when the aperiodic signal contains
many discontinuities or sharp changes.

Wavelets, developed in mathematics, quantum phys-
ics, and statistics, are functions that decompose signals
into di�erent frequency components and analyze each
component with a resolution matching its scale. Appli-
cations of wavelets to signal denoising, image compres-
sion, image smoothing, fractal analysis and turbulence
characterization are active research topics [22, 18].

Wavelet analysis can be based on an approach de-
veloped by Haar [14]. Haar found an orthonormal base
de®ned on �0; 1�, namely h0�x�; h1�x�; . . . ; hn�x�; . . . , other
than the Fourier bases, such that for any continuous
function f �x� on �0; 1�, the series

X

1

j�1

h f ; hjihj�x� �7�

converges to f �x� uniformly on �0; 1�. Here, hu; vi denotes
R 1

0
u�x�v�x�dx and v is the complex conjugate of v.
One version of Haar's construction [14,2,3] can be

written as follows:

h�x� �
1; x 2 �0; 0:5�
ÿ 1; x 2 �0:5; 1�
0; elsewhere

8

>
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>

:

�8�

hn�x� � 2j=2h�2jxÿ k� �9�

where n � 2j � k, k 2 �0; 2j�, x 2 �k2ÿj; �k � 1�2ÿj�.
There are problems with Haar's construction. For

example, Haar's base functions are discontinuous step
functions and are not suitable for analyzing continuous
functions with continuous derivatives. If we consider
images as 2-D continuous surfaces, we know that Haar's
base functions are not appropriate for image analysis.

Another basis for wavelets is that of Daubechies. For
each integer r, Daubechies' orthonormal basis [5, 6, 13]
for L2�R� is de®ned as

/r;j;k�x� � 2j=2/r�2jxÿ k�; j; k 2 Z �10�
where the function /r�x� in L2�R� has the property that
f/r�xÿ k�jk 2 Zg is an orthonormal sequence in L2�R�.

Then the trend fj, at scale 2
ÿj, of a function f 2 L2�R�

is de®ned as

fj�x� �
X

k

hf ;/r;j;ki/r;j;k�x�: �11�

The details or ¯uctuations are de®ned by

dj�x� � fj�1�x� ÿ fj�x�: �12�
To analyze these details at a given scale, we de®ne an
orthonormal basis wr�x� having properties similar to
those of /r�x� described above.

/r�x� and wr�x�, called the father wavelet and the
mother wavelet, respectively, are the wavelet prototype
functions required by the wavelet analysis. Figure 2
shows some popular mother wavelets. The family of
wavelets such as those de®ned in Eq. (10) are generated
from the father or the mother wavelet by change of scale
and translation in time (or space in image processing).

Daubechies' orthonormal basis has the following
properties:

± wr has the compact support interval �0; 2r � 1�
± wr has about r=5 continuous derivatives

±
R1
ÿ1 wr�x�dx � � � � �

R1
ÿ1 xrwr�x�dx � 0:

Daubechies' wavelets give remarkable results in image
analysis and synthesis due to the above properties. In
fact, a wavelet function with compact support can be
easily implemented by ®nite length ®lters. This ®nite
length property is important for spatial domain local-
ization. Furthermore, functions with more continuous
derivatives analyze continuous functions more e�ciently
and avoid the generation of edge artifacts. Since the
mother wavelets are used to characterize details in the
signal, they should have a zero integral so that the trend
information is stored in the coe�cients obtained by the
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father wavelet. A Daubechies' wavelet representation of a
function is a linear combination of the wavelet function
elements.

Daubechies' wavelets are usually implemented in nu-
merical computation by quadratic mirror ®lters [14].
Multiresolution analysis of trend and ¯uctuation is im-
plemented using convolution with a low-pass ®lter and a
high-pass ®lter that are versions of the same wavelet. For
example, if we denote the sampled signals as x�n�; n 2 Z,
then Eq.( 3) and Eq.( 4) are quadratic mirror ®lters for
Haar's wavelet. In fact, average color block layout image
indexing is equivalent to the Haar transform with high-
pass ®ltering neglected. Daubechies' wavelets transform
is more like a weighted averaging which better preserves
the trend information stored in the signals if we consider
only the low-pass ®lter part. Although Daubechies'
wavelets may not be better than Haar's for all image
analysis applications, various experiments and studies
[22] have shown that Daubechies' wavelets are better for
dealing with general-purpose images.

Figures 5 and 6 show comparisons of the Haar
wavelet, which is equivalent to average color blocks, and
Daubechies' wavelets. In Fig. 5, we notice that the signal
with a sharp spike is better analyzed by Daubechies'
wavelets because much less energy or trend is stored in
the high-pass bands. Daubechies' wavelets are better
suited for natural signals or images than a ¯at Haar
wavelet. In layout image indexing, we want to represent
as much energy in the image as possible in the coe�cients
of the feature vector. When using the Haar wavelet, we
lose much trend information in the discarded high-pass
bands. Figure 6 shows the reconstruction of two images
based only on the feature vectors of traditional layout
indexing (same as Haar) and those of WBIIS using
Daubechies' wavelets. Clearly, images reconstructed by
saved Daubechies' coe�cients are closer to the original
images than those reconstructed by saved Haar's coe�-
cients. Here, we use image reconstruction to compare
information loss or encoding e�ciency between Haar and
Daubechies in the course of truncating discrete wavelet
representations. Although these two examples in them-

selves do not imply that a searching scheme using
Daubechies' wavelets is better than that using Haar's
wavelet, they may help explain observations on how the
schemes function. Figures 11 and 10 show the results of
the searches using the two di�erent wavelet bases. Saved
Haar wavelet coe�cients do not capture high frequency
local texture as e�ectively as the saved Daubechies'
wavelet coe�cients.

Because the original signal can be represented in
terms of a wavelet expansion using coe�cients in a linear
combination of the wavelet functions, similar to Fourier
analysis, data operations can be performed using just the
corresponding wavelet coe�cients. If we truncate the
coe�cients below a threshold, image data can be sparsely
represented.

The wavelet transform o�ers good time and frequency
localization. Information stored in an image is decom-
posed into averages and di�erences of nearby pixels. The
information in smooth areas is decomposed into the av-
erage element and near-zero di�erence elements. The
wavelets approach is therefore a suitable tool for data
compression, especially for functions with considerable
local variations. For example, the basis functions are very
¯exible with respect to both scale index j and position
index k. We may decompose the image even further by
applying the wavelet transform several times recursively.
Figure 3 shows the multi-scale structure in the wavelet
transform of an image.

3.2 Wavelet image layout indexing in WBIIS

The discrete wavelet transform (DWT) we described can
be directly used in image indexing for color layout type
queries. Our algorithm is as follows:

For each image to be inserted to the database, obtain
128� 128 square rescaled matrices in �C1;C2;C3� com-
ponents following Eq. (1) in Sect. 2. Compute a 4-layer 2-
D fast wavelet transform on each of the three matrices
using Daubechies' wavelets. Denote the three matrices
obtained from the transforms as WC1

�1 :128; 1 :128�,

Fig. 2. Plots of some analyzing wavelets. First row: father wavelets, /�x�: Second row: mother wavelets, w�x�
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WC2
�1 :128; 1 :128� and WC3

�1 :128; 1 :128�1 Then the up-
per-left 8� 8 corner of each transform matrix,
WCi

�1 :8; 1 :8�, represents the lowest frequency band of the
2-D image in a particular color component for the level of
wavelet transform we used. The lower frequency bands in
the wavelet transform usually represent object con®gura-
tions in the images and the higher frequency bands repre-
sent texture and local color variation. The three 8� 8
submatrices (namely, WCi

�1 :8; 9 :16�, WCi
�9 :16; 1 :8� and

WCi
�9 :16; 9 :16�) closest to the 8� 8 corner submatrix

WCi
�1 :8; 1 :8� represent detailed information in the origi-

nal image to some extent, though most of the ¯uctuation
information is stored in the thrown-away higher frequency
band coe�cients. Extracting a submatrix WCi

�1 :16; 1 :16�
of size 16� 16 from that corner, we get a semantic-pre-
serving compression of 64:1 over the original thumbnail of
128� 128 pixels.We store this as part of the feature vector.

Then we compute the standard deviations, denoted as
rc1 ; rc2 ; rc3 , of the 8� 8 corner submatrices WCi

�1 :8; 1 :8�.
Three such standard deviations are then stored as part of
the feature vector as well. Figure 4 shows two images
with the upper-left corner submatrices of their 2-D fast
wavelet transforms in �C1;C2;C3� color space. Notice
that the standard deviation of the coe�cients in the
lowest frequency band obtained from the ®rst image
di�ers considerably from that obtained from the second
image. Since the standard deviations are computed based
on the wavelet coe�cients in the lowest frequency band,
we have eliminated disturbances arising from detailed
information in the image.

We also obtain a 5-level 2-D fast wavelet transform
using the same bases. We extract and store a submatrix of
size 8� 8 from the upper-left corner. Thus, we have
stored a feature index using the multiresolution capabil-
ity of the wavelet transform.

Because the set of wavelets is an in®nity set, di�erent
wavelets may give di�erent performance for di�erent
types of image. One should take advantage of this char-
acteristic in designing an image retrieval system. To

match the characteristics of the signal we are analyzing,
we used a Daubechies-8 or Symmlet-8 wavelet for the
DWT process. Symmlets were designed by Daubec-
hies [6] to be orthogonal, smooth, nearly symmetric, and
non-zero on a relatively short interval (compact support).
Wavelet subclasses are distinguished by the number of
coe�cients and by the level of iteration. Most often they
can be classi®ed by the number of vanishing moments.
The number of vanishing moments is weakly linked to
the number of oscillations of the wavelet, and determines
what the wavelet does or does not represent. The number
of vanishing moments for the subclass of our Symmlet
wavelet is 8, which means that our wavelet will ignore
linear through eighth degree functions.

Wavelets perform better than traditional layout cod-
ing because the coe�cients in wavelet-created compres-
sion data actually contain su�cient information to
reconstruct the original image at a lower loss rate using
an inverse wavelet transform.

3.3 Wavelet image layout matching in WBIIS

When a user submits a query, we must compute the
feature vector for the querying image and match it to
the pre-computed feature vectors of the images in the
database. This is done in two phases.

In the ®rst phase, we compare the standard deviations
stored for the querying image with the standard devia-
tions stored for each image in the database.

Figure 7 demonstrates the histograms of the standard
deviations we computed for general-purpose images.
Studying the three histograms, we found that the stan-
dard deviations of the intensity component are a lot more
diverse than those of the other two. We would consider
rC1

more dominant than rC2
or rC3

alone. Also, more
images in this general-purpose image database have
lower standard deviations. For any given standard devi-
ation computed for the query, we want to ®nd roughly
the same number of images having standard deviations
close to those of the query. Based on the trends shown in
the histograms, we have developed the following selec-
tion criterion for the ®rst step.

original image (256 ´ 256) 1-level wavelet transform 3-level wavelet transform

Fig. 3. Multi-scale structure in the wavelet transform of an image. Dots indicates non-zero wavelet coe�cients after thresholding. Daubechies-8 wavelet is

used for this transform

1 Here we use MATLAB notation. That is, A�m1 :n1;m2 :n2� denotes
the submatrix with opposite corners A�m1;m2� and A�n1; n2�
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Denote the standard deviation information computed
for the querying image as rc1 , rc2 and rc3 . Denote the
standard deviation information stored in the database
indexing for an image as r0c1 , r

0
c2
and r0c3 .

If the acceptance criteria2

rc1b < r0c1 <
rc1
b

� �

j j

rc2b < r0c2 <
rc2
b

� �

&& rc3b < r0c3 <
rc3
b

� �� �

fails, then we set the distance of the two images to 1,
which means that the image will not be further consid-
ered in the matching process. Here, b � 1ÿ percent

100
and

percent is a threshold variable set to control the number

Fig. 4. Two images with the upper-left corner submatrices of their fast wavelet transforms in �C1;C2;C3� color space. The standard deviations we stored for

the ®rst image are rC1
� 215:93 rC2

� 25:44, and rC3
� 6:65 while means of the coe�cients in the lowest frequency band arelC1

� 1520:74, lC2
� 2124:79,

and lC3
� 2136:93. The standard deviations we stored for the second image arerC1

� 16:18, rC2
� 10:97, and rC3

� 3:28 while means of the coe�cients in

the lowest frequency band are lC1
� 1723:99, lC2

� 2301:24 and lC3
� 2104:33

(a) (b) (c) (d)

Fig. 5. Comparison of Haar's wavelet and Daubechies wavelets on a 1-D signal. (a) original signal �xeÿx2 � of length 1024 (b) coe�cients in high-pass bands

after a 4-layer Haar transform (c) coe�cients in high-pass bands after a 4-layer Daubechies-3 transform (d) coe�cients in high-pass bands after a 4-layer

Daubechies-8 transform

2 Here we use standard C notation. That is, j j denotes OR and &&

denotes AND.
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of images passing the ®rst matching phase. Usually it is
set to around 50. Note that the above acceptance criteria
holds if and only if

r0c1b < rc1 <
r0c1
b

� �

j j

r0c2b < rc2 <
r0c2
b

� �

&& r0c3b < rc3 <
r0c3
b

� �� �

holds.
Having ®rst a fast and rough cut and then a more re-

®ned pass maintains the quality of the results while im-
proving the speed of the matching. Usually about one ®fth
of the images in thewhole database passes through the ®rst
cut. That means we obtain a speed-up of about ®ve by
doing this step. For a database of 10 000 images, about
2000 images will still be listed in the queue for the Euclid-
ean distance comparison. Although it is possible that the
®rst pass may discard some images that should be in the
result list, in most cases the quality of the query response is
slightly improved due to this ®rst pass. In fact, an image
with almost the same color, i.e., low standard deviation, is
very unlikely to have the same semantics as an image with
very high variation or high standard deviation.

A weighted variation of Euclidean distance is used for
the second phase comparison. If an image in the database
di�ers from the querying image too much when we
compare the 8� 8� 3 � 192 dimensional feature vector,
we discard it. The remaining image vectors are used in the
®nal matching, using the 16� 16� 3 � 768 dimensional
feature vector with more detailed information consid-
ered. Let w1;1, w1;2, w2;1, w2;2, wc1 , wc2 and wc3 denote the
weights. Then our distance function is de®ned as

Dist�Image; Image0�

� w1;1

X

3

i�1

�wci k WCi;1;1 ÿ W 0
Ci;1;1

k�

� w1;2

X

3

i�1

�wci k WCi;1;2 ÿ W 0
Ci;1;2

k�

� w2;1

X

3

i�1

�wci k WCi;2;1 ÿ W 0
Ci;2;1

k�

� w2;2

X

3

i�1

�wci k WCi;2;2 ÿ W 0
Ci;2;2

k�

where

Original image

(128 ´ 128)

`saved Haar's coe�. (16 ´ 16)

and its image recpmstruction

`saved Daubechie's coe�. (16 ´ 16)

and its image recpmstruction

Fig. 6. Comparison of Haar's wavelet and Daubechies-8 wavelet

histogram of rC1
histogram of rC2

histogram of rC3

Fig. 7. Histogram of the standard deviations of the wavelet coe�cients in the lowest frequency band. Results were obtained from a database of more than

10 000 general purpose images
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commercial algorithm

WBIIS

Fig. 8. Comparisons with a commercial algorithm on a

galaxy-type image. Note that many images unrelated to the

galaxy query image are retrieved by the commercial

algorithm. The upper-left corner image in each block of

images is the query. The image to the right of that image is

the best matching image found. And so on. Results were

obtained from a database of approximately 10 000 images
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WCi;1;1 �WCi
�1 :8; 1 :8�

WCi;1;2 �WCi
�1 :8; 9 :16�

WCi;2;1 �WCi
�9 :16; 1 :8�

WCi;2;2 �WCi
�9 :16; 9 :16�

and k uÿ v k denotes the Euclidean distance. In practice,
we may compute the square of the Euclidean distances
instead in order to reduce computation complexity. If we
let wj;k = 1, then the function Dist�I1; I2� is the Euclidean
distance between I1 and I2. However, we may raise w2;1,
w1;2, or w2;2 if we want to emphasize the vertical,
horizontal or diagonal edge details in the image. We
may also raise wc2 or wc3 to emphasize the color variation
more than the intensity variation.

To further speed up the system, we use a component
threshold to reduce the amount of Euclidean distance

computation. That is, if the di�erence at any component
within the feature vectors to be compared is higher than a
pre-de®ned threshold, we set the distance of the two
images immediately to 1 so that the image will not be
further considered in the matching process.

The angle of any two feature vectors in the n-dimen-
sional feature vector space is an alternative measure to
the Euclidean distance we discussed above. The cosine
value of the angle can be obtained by computing the
vector dot product in a normalized vector space. This
alternative measure reduces the sensitivity to color or
brightness shift.

3.4 Wavelet partial query layout matching in WBIIS

A partial image query can be based on an image of low
resolution, a partial image, a very low resolution block

algorithm by University of Washington

WBIIS

Fig. 9. Query example. Many images

unrelated to a water scene are retrieved

by the University of Washington algo-

rithm. The upper-left corner image in

each block of images is the query. Results

were obtained from a database of ap-

proximately 10 000 images
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algorithm by University of Washington

WBIIS with Haar Wavelet

WBIIS with Daubechies' Symmlet-8 Wa-

velet

Fig. 10. Another query example. The

upper-left corner image in each block of

images is the query. Results were ob-

tained from a database of approximately

10 000 images
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algorithm by University of Washington

commercial algorithm

WBIIS with Haar Wavelet

WBIIS with Daubechies' Symmlet-8 Wavelet

Fig. 11. Comparison on a texture image. The

upper-left corner image in each block of images is

the query. Results were obtained from a database

of approximately 10 000 images
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sketch or a hand-drawn sketch. Figure 12 shows the
di�erent types of partial image queries our system is
designed to handle. We assume that the users do not care
about the non-speci®ed areas, but are only interested in
®nding images in the database that best match the
speci®ed areas of the query image. This kind of query is
very useful in real-world digital libraries. For example, if
a user wants to ®nd all images with a racing car of any
color in the center of an image, the user may simply form
a query by cutting o� the center area of an image with a
white car.

To handle partial image queries, spatial localization
of the feature vector is crucial. For example, if we use
some variations of the color moments to represent im-
ages, we would not be able to answer partial sketch
queries because each element in a feature vector is a
function of all pixels in the image. Due to the spatial
localization properties of our wavelet-based image in-
dexing, we can implement a retrieval algorithm for par-
tial sketch queries with ease.

When a user submits a partial image query, we ®rst
rescale the query image into a 128� 128 rescaled image.
At the same time, the non-speci®ed areas are rescaled to
®t in the 128� 128 rescaled image. A binary mask, de-
noted initially as M0�1 :128; 1 :128� is created to represent
the speci®ed areas. Then we compute the feature vector
of the rescaled query image using the wavelet-based in-
dexing algorithm we discussed above with the non-spec-
i®ed areas being assigned as black. Here, the standard
deviations are computed based on the wavelet coe�cients
within an 8� 8 mask M4�1 :8; 1 :8� which is a subsample
of M0�1 :128; 1 :128�.

Comparison of the query feature vector with the
stored vectors for the image database is done in two
phases.

In the ®rst phase, we compare the standard deviations
computed for the querying image with the standard de-
viations within the mask for the wavelet coe�cients
stored for each image in the database. That is, we need to
®rst re-compute the standard deviations of the wavelet
coe�cients in the masked areas for each image in the
database. In cases where the users specify a majority of
pixels in the query, we may simply use the pre-computed
and stored standard deviation information. Then a sim-
ilar distance measure is used to compare the standard
deviation information.

A masked weighted variation of the Euclidean dis-
tance is used for the second phase comparison. The dis-
tance function is de®ned as3

Dist�Image; Image0�

� w1;1

X

3

i�1

�wci k M4 : � WCi;1;1 ÿM4 : � W 0
Ci;1;1

k�

� w1;2

X

3

i�1

�wci k M4 : � WCi;1;2 ÿM4 : � W 0
Ci;1;2

k�

� w2;1

X

3

i�1

�wci k M4 : � WCi;2;1 ÿM4 : � W 0
Ci;2;1

k�

� w2;2

X

3

i�1

�wci k M4 : � WCi;2;2 ÿM4 : � W 0
Ci;2;2

k�

If an image in the database di�ers from the querying
image too much when we compare the 8� 8� 3 � 192
dimensional feature vector, we discard it. The remaining
image vectors are used in the ®nal matching, using the
16� 16� 3 � 768 dimensional feature vector. The mea-
sure is the same as discussed in the previous subsection
except that we usually assign di�erent weights in the three
color components for partial queries with low resolution.
In fact, when the resolution in the partial sketch is low,
we need to emphasize the color variation rather than
the intensity variation. For example, a red block
(i.e., R=255, G=0, B=0) shows the same color intensity
as a green block (i.e., R=0, G=255, B=0). As a result,
we raise wc2 and wc3 to about twice the setting for wc1 .

4 Results

4.1 Performance issues

This algorithm has been implemented by embedding it
within the IBM QBIC multimedia database system. The
discrete fast wavelet transforms are performed on IBM
RS/6000 workstations. To compute the feature vectors

low resolution partial image block sketch hand-drawn sketch

Fig. 12. Types of partial sketch queries our WBIIS system aims to handle. Black areas in a query image represent non-speci®ed areas

3 Here we use standard MATLAB notation. That is, ` . * ' denotes

component-wise product
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for the 10 000 color images in our database requires
approximately 2 hours of CPU time.

The matching speed is very fast. Using a SUN Sparc-
20 workstation, a fully-speci®ed query takes about 3.3
seconds of response time with 1.8 seconds of CPU time to
select the best 100 matching images from the 10 000
image database using our similarity measure. It takes
about twice the time to answer a partially speci®ed query.

There are many ways to further speed up the system
for very large image databases. For example, we may pre-
sort and store the standard deviation information within
the feature vectors of the images in the database because
we must compare this information for each query. Also,
we may use a better algorithm to ®nd the ®rst k matching
images if k is smaller than log2�n� if the database contains
n images. In fact, an algorithm of execution time of O�kn�
can be constructed for this task to replace the quick-sort
algorithm with run time O�n log�n�� we are currently
using.

Figures 8±11 show accuracy comparisons of our
wavelet algorithm with the color layout algorithms in
IBM QBIC and Virage, two of the most popular com-
mercial multimedia databases, and the system developed
by University of Washington. Figures 13±15 show the
query results obtained from partial sketch image queries.
Default parameters are used for the University of
Washington's algorithm. In all cases, the number of
reasonably similar images retrieved by our algorithm
within the best matches is higher. In our comparisons of
query results, we consider one retrieval algorithm as
better than another if the number of similar images
among a ®xed number of best matching images is higher.
We do not attempt to compare two images which are
both very similar to a query image because we do not
have a quantitative measure of the similarity between two
images. When several images are all very close to the
query image, it is meaningless to rank their similarities to
the query image since subjective opinions often dominate
and the distances are too close to make ranking orders
simply based on sorting results. For example, in Fig. 9,
the second and third images retrieved by our algorithm
are both very close to the ®rst image (the query image).
Some people may favor the second one because the color
of the boat is the same as that of the boat in the query
image; on the other hand, some may favor the third one
since its view is broader in vertical direction, just as the
query image.

With our resources, it is impossible for us to compare
and quantify the accuracy of the algorithms on all 10 000
query images in the image database. In general, our
wavelet-based algorithm outperforms the above men-
tioned algorithms by returning more semantically-
meaningful images in the set of best matching images,
especially when the image contains large local color
variations.

4.2 Limitations of the search

WBIIS is designed to be invariant to scale and aspect
ratio changes since query images and all images in the

database are normalized to the same size and aspect ratio
before the matching step. Color and intensity shift can be
handled by the alternative measure discussed at the end
of Sect. 3.3.

The WBIIS system is designed to handle color layout
type queries. Because of the nature of color layout
search, WBIIS has limitations in certain types of appli-
cations when high degrees of rotation and translation
invariance are important. However, WBIIS can handle
small amount of rotation and translation changes. In the
searching phase, a global measure, i.e., the set of the
standard deviations of the saved wavelet coe�cients, is
utilized to measure the image coherence. The multi-scale
indexing scheme is also used to avoid bias. Experiments
have shown that WBIIS with Daubechies' wavelets is well
capable of handling a maximum rotation of 20 degrees
and a maximum translation around 20% in general. In
Fig. 9, for instance, the system successfully ®nds images
with wind surfers in various parts, many of which di�er a
lot from that of the query. Similar situation can be found
in Figs. 10, 11 and 14. The system is more sensitive to
rotation and translation changes when performing
partial sketch search with large non-speci®ed areas.
Currently the system cannot handle queries based on
subregions.

5 Conclusions and future work

In this paper, we have explored some alternatives for
improving both the speed and accuracy of traditional
color layout image indexing algorithms used in large
multimedia database systems. An e�cient wavelet-based
multi-scale indexing and matching system using Daub-
echies' wavelets developed by us has been demon-
strated.

It is possible to improve the searching accuracy by
®ne-tuning the algorithm, e.g., using a perceptually-
comparable color space and adjusting weights for dif-
ferent wavelet coe�cients when computing the distance
between two images. Sensitivity to rotation and trans-
lation changes can be further reduced by introducing a
more sophisticated matching metric. It is also possible
to make the searching faster by developing a better
algorithm for storing and matching the feature vectors.
We are also working on shape-based image indexing
and searching algorithms using only the high-pass
wavelet ®lters. Experiments with our algorithm on a
video database system could be another interesting
study.

Finally, we are working on applying this technique
to di�erent types of image databases such as medical
images and scanned art images. We are actively
working with the Stanford University Libraries to
integrate our image querying system into digital
library systems such as the MediaWeaver system [19].
Our wavelet-based image search engine is currently
being used at the Stanford University Library to assist
teaching and research projects in liberal art depart-
ments.
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Fig. 13. Partial sketch queries in di�erent resolutions. The

upper-left corner image in each block of images is the query.

Black areas in a query image represent non-speci®ed areas.

Results were obtained from a database of approximately

10 000 images
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University of
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Fig. 14. Query results on a hand-drawn query image. Black areas in a query image represent non-speci®ed areas. Equivalent query for the two systems.

Results were obtained from a database of approximately 10 000 images
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