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AbstractÐThe paper presents a review of 200 references in content-based image retrieval. The paper starts with discussing the

working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap.

Subsequent sections discuss computational steps for image retrieval systems. Step one of the review is image processing for retrieval

sorted by color, texture, and local geometry. Features for retrieval are discussed next, sorted by: accumulative and global features,

salient points, object and shape features, signs, and structural combinations thereof. Similarity of pictures and objects in pictures is

reviewed for each of the feature types, in close connection to the types and means of feedback the user of the systems is capable of

giving by interaction. We briefly discuss aspects of system engineering: databases, system architecture, and evaluation. In the

concluding section, we present our view on: the driving force of the field, the heritage from computer vision, the influence on computer

vision, the role of similarity and of interaction, the need for databases, the problem of evaluation, and the role of the semantic gap.
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1 INTRODUCTION

THERE is something about Munch's ªThe Screamº or
Constable's ªWivenoe Parkº that no words can convey.

It has to be seen. The same holds for of a picture of the
Kalahari Desert, a dividing cell, or the facial expression of
an actor playing King Lear. It is beyond words. Try to
imagine an editor taking in pictures without seeing them or
a radiologist deciding on a verbal description. Pictures have
to be seen and searched as pictures: by objects, by style, by
purpose.

Research in content-based image retrieval today is a

lively discipline, expanding in breadth. As happens during

the maturation process of many a discipline, after early

successes in a few applications, research is now concentrat-

ing on deeper problems, challenging the hard problems at

the crossroads of the discipline from which it was born:

computer vision, databases, and information retrieval.
At the current stage of content-based image retrieval

research, it is interesting to look back toward the beginning

and see which of the original ideas have blossomed, which

haven't, and which were made obsolete by the changing

landscape of computing. In February 1992, the US National

Science Foundation (USNSF) organized a workshop in

Redwood, California, to ªidentify major research areas that

should be addressed by researchers for visual information

management systems that would be useful in scientific,

industrial, medical, environmental, educational, entertain-

ment, and other applicationsº [81]. In hindsight, the

workshop did an excellent job of identifying unsolved

problems that researchers should have undertaken. In

particular, the workshop correctly stated that ªVisual

Information Management Systems should not be consid-

ered as an application of the existing state of the art (in

computer vision and databases) to manage and process

imagesº and that ªcomputer vision researchers should

identify features required for interactive image understanding,

rather than their discipline's current emphasis on automatic

techniquesº (emphasis added). As possible application

fields, the workshop considered mainly Grand Challenge

problems, such as weather forecasting, biological modeling,

medical images, satellite images, and so on. Undoubtedly,

the participants saw enough to justify the use of the large

computational and storage capacity necessary for visual

databases. This in 1992. The workshop was preceded by

many years by the Conference on Database Applications of

Pictorial Applications, held in Florence in 1979, probably

one of the first conferences of that kind [13]. In the

introduction, it was said that: ªThis has facilitated the

advancement of integrated databases [...] on the one hand,

of and graphical and image processing (in brief: pictorial)

applications on the other.º Then, the author proceeds to

complain that: ºDevelopments in these two fields have

traditionally been unrelated,º an observation still very

much valid today.
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Just after the USNSF workshop, the Mosaic Internet-

browser was released, spawning the Web revolution that

very quickly changed all cards. In the same era, a host of

new digital vision sensors became available. The number of

images that the average user could reach increased

dramatically in just a few years. Instantly, indexing tools

for the Web or digital archives became urgent.
In this paper, we present a view of what we like to call

the ªearly yearsº of content-based image retrieval. While

content based-image retrieval papers published prior to

1990 are rare, often obsolete, and of little direct impact

today, the number of papers published since 1997 is just

breathtaking. So much, in fact, that compiling a compre-

hensive review of the state of the art already exceeds the

possibility of a paper like this one. A selection was

necessary and with it came the need to establish some

selection criteria. In addition to the obvious one (complete-

ness of a paper, importance to the field), we have also

considered accessibility for the reader. That is to say, we

have preferred, whenever possible, to include journal
papers over conference papers. We also felt that the field
is too young and mobile to make a precise historic account
and we have made no attempt in that direction.

We adopt patterns of use and patterns of computation as
the leading principles of our review. We follow the data as
they flow through the computational process and consider
alternative processes with the same position in the flow
(Fig. 2). In the data flow diagrams, we use the conventions
indicated in Fig. 1. We concentrate on computational
methods to arrive at a tool-based overview rather than a
system-based overview. The choice implies that references
describing complete systems are split, where parts of the
method will appear in several sections of the paper. For a
system-based review, see [141].

We restrict ourselves to still pictures and leave video
databases as a separate topic. Video retrieval could be
considered a broader topic than image retrieval as video is
built from single images. From another perspective, video
retrieval could be considered simpler than image retrieval
since video reveals its objects more easily as the points
corresponding to one object move together. In still pictures,
the author's narrative expression of intention is in frame
selection, illumination, and composition. In addition, video
has a linear timeline, as important to the narrative structure
of video as it is in text. We leave video retrieval for another
place, for example, [1], [16].

The paper is organized as indicated in Fig. 2. First we
discuss the scope of the content-based retrieval in Section 2.
In that section, the characteristics of the domain and sources
of knowledge are being discussed. Then, description of
content is analyzed in two steps. First, in Section 3, image
processing methods by color, texture, and local shape are
discussed. They serve as a preprocessing step to the
partitioning of the data array and the computation of
features, as discussed in Section 4. In Section 5, we discuss
the interpretation of a single image and the similarity
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Fig. 1. Data flow and symbol conventions as used in this paper. Different

styles of arrows indicate different data structures.

Fig. 2. Basic algorithmic components of query by pictorial example captured in a data-flow scheme while using the conventions of Fig. 1.



between a pair of images. Query definition, display, and

interaction are the topic of Section 6. The paper concludes at

the level of systems: indexing, system architecture, and

evaluation of performance. Each chapter is concluded by a

discussion on the state of the art.

2 SCOPE

In the literature, a wide variety of content-based retrieval

methods and systems may be found. In this section, we

discuss patterns in applications, the repertoire of images,

the influence of the scene and the role of domain

knowledge, and the semantic gap between image features

and the user.

2.1 Applications of Content-Based Retrieval

In [31], we see three broad categories of user aims when

using the system, see Fig. 3.

. There is a broad class of methods and systems aimed
at browsing through a large set of images from
unspecified sources. Users of search by association at
the start have no specific aim other than find
interesting things. Search by association often
implies iterative refinement of the search, the
similarity or the examples with which the search
was started. Systems in this category typically are
highly interactive, where the specification may by
sketch [30] or by example images. The oldest realistic
example of such a system is probably [88]. The result
of the search can be manipulated interactively by
relevance feedback [68], [51]. To support the quest
for relevant results, other sources than images are
also employed, see for example, [168], [21].

. Another class of users aims the search at a specific
image. The search may be for a precise copy of the
image inmind, as in searchingart catalogues, e.g., [48].
Target search may also be for another image of the
same object of which the user has an image. This is
target search by example. Target search may also be
applied when the user has a specific image in mind
and the target is interactively specified as similar to a
group of given examples, for instance [31]. These
systems are suited to search for stamps, art, industrial
components, and catalogues, in general.

. The third class of applications, category search, aims
at retrieving an arbitrary image representative of a
specific class. It may be the case that the user has an
example and the search is for other elements of the
same class. Categories may be derived from labels or
emerge from the database [170], [186]. In category
search, the user may have available a group of
images and the search is for additional images of the
same class [28]. A typical application of category
search is catalogues of varieties. In [74], [79], systems
are designed for classifying trademarks. Systems in
this category are usually interactive with a domain
specific definition of similarity.

These three types of use are not the whole story [42]. A
study [121] of journalists identified five typical patterns of
use: searches for one specific image, general browsing to
make an interactive choice, searches for a picture to go with
a broad story, searches to illustrate a document, and
searches for fill-ins only on the esthetic value of the picture.
An attempts to formulate a general categorization of user
requests for still and moving images are found in [6]. This
and similar studies reveal that the range of queries is wider
than just retrieving images based on the presence or
absence of objects of simple visual characteristics.

2.2 The Image Domain and the Sensory Gap

In the repertoire of images under considerationÐthe image
domain IÐthere is a gradual distinction between narrow
and broad domains [160]. At one end of the spectrum, we
have the narrow domain:

A narrow domain has a limited and predictable variability in all
relevant aspects of its appearance.

In a narrow domain, one finds a limited variability of the

content of the images. Usually, the recording circumstances

are also similar over the whole domain. In the narrow

domain of lithographs, for instance, the recording is under

white light with frontal view and no occlusion. Also, when

the object's appearance has limited variability, the semantic

description of the image is generally well-defined and, by

and large, unique. Another example of a narrow domain is

a set of frontal views of faces recorded against a clear

background. Although each face is unique and has large

variability in the visual details, there are obvious geome-

trical, physical, and color-related constraints governing the

domain. The domain would be wider had the faces been

photographed from a crowd or from an outdoor scene. In

that case, variations in illumination, clutter in the scene,

occlusion, and viewpoint will have a major impact on the

analysis.
On the other end of the spectrum, we have the broad

domain:

A broad domain has an unlimited and unpredictable variability in
its appearance even for the same semantic meaning.

In broad domains, images are polysemic and their
semantics are described only partially. It might be the case
that there are conspicuous objects in the scene for which the
object class is unknown or even that the interpretation of the
scene is not unique. A broad class of images can be found in
large photo stocks [168] or other photo archives [42]. The
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broadest class available to date is the set of images available
on the Internet.

Many problems of practical interest have an image

domain in between these extreme ends of the spectrum, see

Fig. 4. The notions of broad and narrow domains are helpful

in characterizing patterns of use, in selecting features, and

in designing systems. In a broad image domain, the gap

between the feature description and the semantic inter-

pretation is generally wide. For narrow, specialized image

domains, the gap between features and their semantic

interpretation is usually smaller, so domain-specific models

may help. For faces, many geometric models have been

suggested, as well as statistical models [127]. These

computational models are not available for broad image

domains as the required number of computational variables

would be enormous.
For broad image domains in particular, one has to resort

to generally valid principles. Is the illumination of the

domain white or colored? Does it assume defined and fully

visible objects or may the scene contain clutter and

occluded objects? Is it a 2D-recording of a 2D-scene or a

2D-recording of a 3D-scene? The given characteristics of

illumination, presence or absence of occlusion, clutter, and

differences in camera viewpoint determine demands on the

retrieval methods.

The sensory gap is the gap between the object in the world and the
information in a (computational) description derived from a
recording of that scene.

The sensory gap makes the description of objects an ill-
posed problem: It yields uncertainty in what is known
about the state of the object. The sensory gap is particularly
poignant when a precise knowledge of the recording
conditions is missing. The 2D-records of different
3D-objects can be identical. Without further knowledge,
one has to decide that they might represent the same object.
Also, a 2D-recording of a 3D-scene contains information
accidental for that scene and that sensing but one does not
know what part of the information is scene related. The
uncertainty due to the sensory gap not only holds for the

viewpoint, but also for occlusion (where essential parts

telling two objects apart may be out of sight), clutter, and

illumination.
Comparing alternative interpretations can attenuate the

sensory gap. Content-based image retrieval systems may

provide support in this disambiguation through elimination

among several potential explanations, much the same as in

natural language processing.

2.3 Domain Knowledge

In visual search, explicit representation of the knowledge of

the domain is important to alleviate the sensory gap.

Among the sources of general knowledge, we mention:

. Laws of syntactic (literal) equality and similarity
define the relation between image pixels or image
features regardless of its physical or perceptual
causes. For instance, considering two images similar
because they both exhibit some selected shades of
blue in their upper parts is productive in separating
outdoor scenes from other images. It is syntactic
similarity because the method doesn't make a
reference to the reasons by which this similarity
exists (in this case, the scattering in the sky) or to the
perceptual reasons by which these two images will
appear similar to an observer. By the same token, the
RGB color space is effective in literal similarity (as it
is effective in art [65]) while it does not represent the
process of physical color formation or the process of
color perception.

. Laws describing the human perception of equality
and similarity are important because they define
equality on the same basis as the user experiences it.
In color, the CIE-Lab and Munsell-spaces were
designed to conform to the human perception of
color similarity. If the appreciation of a human
observer of an object is based on the perception of
certain conspicuous items in the image [177], it is
natural to direct the computation of broad domain
features to these points and regions [157], [138].
Similarly, a biologically plausible architecture [76] of
center-surround processing units is likely to select
regions which humans would also focus on first.

. Physical laws describing equality and difference of
images under differences in sensing and object
surface properties. The physics of illumination,
surface reflection, and image formation have a
general effect on images. The general laws of physics
may be employed for large classes of objects. A
common example is the law for uniform light
reflection off matte objects. These laws are exploited
to design color features expressing equality regard-
less of the pose and viewpoint.

. Geometric and topological rules describe equality
and differences of patterns in space. When two
objects are geometrically equal, the physical proper-
ties of their surfaces or the physical conditions of the
sensing may be different. As an example of
geometric laws used in retrieval, for all images with
depth, local details near the horizon will appear
smaller. Also, the horizon is geometrically defined as
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a virtual line containing the focal points. Another
example of geometric laws is the expression of
spatial [22] or topological relationships [172] be-
tween objects.

. Category-based rules encode the characteristics
common to class z of the space of all notions Z. If
z is the class of all teapots, the characteristics include
the presence of a spout. Categories are almost
exclusively used in a narrow domains. The domain
knowledge may take the form of further constraints
to the literal image qualities, additional physical or
geometrical laws, or domain-specific man-made
customs. When the domain is engineering drawings,
detailed geometric knowledge will steer the detec-
tion of symbols. In medieval art, color and the
relative position of objects have a symbolic meaning
[30], generating a set of constraints useful in the
search. Each application domain has a private set of
constraints.

. Finally, man-made customs or man-related patterns
introduce rules of culture-based equality and differ-
ence. Under culture, we also assume language. In the
search for indoor pictures, one may check for many
straight lines and perpendicular corners as a first
selection criterion. Utensils have a deterministic size
to allow grip. Fashion determines colors [95].

These laws are ordered as indicated in Fig. 5.

2.4 Use and User, the Semantic Gap

We opine that most of the disappointments with early
retrieval systems come from the lack of recognizing the
existence of the semantic gap and its consequences for
system set-up.

The semantic gap is the lack of coincidence between the
information that one can extract from the visual data and the
interpretation that the same data have for a user in a given
situation.

A linguistic description is almost always contextual,
whereas an image may live by itself. A linguistic descrip-
tion of an image is a daunting, probably impossible task

[146]. A user looks for images containing certain objects or
conveying a certain message. Image descriptions, on the
other hand, rely on data-driven features and the two may be
disconnected. Association of a complete semantic system to
image data would entail at least solving the general object
recognition problem from a single image. Since this
problem is yet unsolved, research is focused on different
methods to associate higher level semantics to data-driven
observables.

As indicated in Fig. 2, the most immediate means of
semantic characterization entail annotation by keywords or
captions. This reduces content-based access to information
retrieval [135]. Common objections to the practice of
labeling are cost and coverage. On the cost side, labeling
thousands of images is a cumbersome and expensive job to
the degree that the deployment of the economic balance
behind the database is likely to decrease. To solve the
problem, systems in [21], [142] use a program that explores
the Internet, collecting images and inserting them in a
predefined taxonomy on the basis of the text surrounding
them. A similar approach for digital libraries is taken by
[24]. On the coverage side, labeling is seldom complete,
context sensitive, and, in any case, there is a significant
fraction of requests whose semantics can't be captured by
labeling alone [6], [64]. Both methods will cover the
semantic gap only in isolated cases.

2.5 Discussion on Scope

The pivotal point in content-based retrieval is that the user
seeks semantic similarity, but the database can only provide
similarity by data processing. This is what we called the
semantic gap. At the same time, the sensory gap between
the properties in an image and the properties of the object
plays a limiting role in retrieving the content of the image.

We discussed applications of content-based retrieval in
three broad types: target search, category search, and search
by association. Target search connects with the tradition of
pattern matching in computer vision. New challenges in
content-based retrieval are the huge amount of objects to
search among, the incomplete query specification, the
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ignoring the variations due to noise, of course.



incomplete image description, and the variability of sensing
conditions and object states. Category search builds on the
object recognition and statistical pattern recognition meth-
ods in computer vision. New challenges in content-based
retrieval compared to the achievements of object recogni-
tion are the interactive manipulation of results, the usually
very large number of object classes, and the absence of an
explicit training phase for feature and classifier tuning.

Search by association is further removed from most of
the computer vision tradition. It is hampered most by the
semantic gap. As long as the gap is there, use of content-
based retrieval for browsing will not be within the grasp of
the general public as humans are accustomed to rely on the
immediate semantic imprint the moment they see an image.
The aim of content-based retrieval systems must be to
provide maximum support in bridging the semantic gap
between the simplicity of available visual features and the
richness of the user semantics.

We analyze characteristics of the image domain, the
domain knowledge, and the types of use as the prime
factors determining the functionality of a system. An
important distinction is that between broad and narrow
domains. The broader the domain, the more browsing or
search by association can be the right solution. The
narrower the domain, the more likely an application of
domain knowledge will succeed. The challenge for image
search engines on a broad domain is to tailor the engine to the
narrow domain the user has in mind via specification, examples,
and interaction.

3 DESCRIPTION OF CONTENT: IMAGE PROCESSING

It is important to establish that content-based retrieval does
not rely on describing the content of the image in its
entirety. It may be sufficient that a retrieval system presents
similar images, similar in some user-defined sense. The
description of content should serve that goal primarily.

We consider the description of content in two steps. First,
we discuss image-processing operations that transpose the
image data into another spatial data array, see Fig. 6. We
divide the methods over local color, the local texture, or
local geometry. They may be characterized in general by:

f�x� � g � i�x�; �1�

where i�x� is the image, element of image space I , g is an
operator on images, and the resulting image field is given
by f�x�. Computational parameters of g may include the
size of the neighborhood around x to compute f�x� or a

homogeneity criterion when the size of the patch to
compute f�x� depends on the actual data, as in [163],
[126], for example.

So, the purpose of image processing in image retrieval
must be to enhance aspects in the image data relevant to the
query and to reduce the remaining aspects.

One such goal can be met by using invariance as a tool to
deal with accidental distortions in the information intro-
duced by the sensory gap. From the above discussion on the
sensory gap, it is clear that invariant features may carry
more object-specific information than other features as they
are insensitive to the accidental conditions of the sensing.
The aim of invariant descriptions is to identify objects, no
matter from how and where they are observed, at the loss of
some of the information content. If two objects ti (or two
appearances of the same object) are equivalent under a
group of transformations W , they are in an equivalence
class [18]:

t1 �
W

t2 () 9w 2 W : t2 � w � t1: �2�

A property f of t is invariant under W if and only if ft
remains the same regardless the unwanted condition
expressed by W ,

t1 �
W

t2 �) ft1 � ft2 : �3�

The degree of invariance, that is, the dimensionality of
the group W , should be tailored to the recording circum-
stances. In general, a feature with a very wide class of
invariance loses the power to discriminate among essential
differences. The size of the class of images considered
equivalent grows with the dimensionality of W . In the end,
the invariance may be so wide that no discrimination
among objects is retained. The aim is to select the tightest
set of invariants suited for the expected set of nonconstant
conditions. What is needed in image search is a specifica-
tion of the minimal invariant conditions in the specification
of the query discussed in [159]. The minimal set of invariant
conditions can only be specified by the user as it is part of
his or hers intention. The oldest work on invariance in
computer vision has been done in object recognition, as
reported, among others, in [117]. Invariant description in
image retrieval is relatively new, but quickly gaining
ground for a good introduction, see [18], [32]. An alternative
to invariant features1 is to represent the viewing conditions
separately from the objects in the scene. This way no
information is lost in the reduction to invariant features,
while the information is only rearranged. It should be left to
the later stages to decide what is important.

3.1 Color Image Processing

Color has been an active area of research in image retrieval,
more than in any other branch of computer vision. Color
makes the image i�x� take values in a color vector space.
The interest in color may be ascribed to the superior
discriminating potentiality of a three-dimensional domain
compared to the single dimensional domain of gray-level
images.
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Two aspects of color return in many of the contributions.
One is that the recorded color varies considerably with the
orientation of the surface, the viewpoint of the camera, the
position of the illumination, the spectrum of the illuminant,
and the way the light interacts with the object. This
variability should be dealt with in one way or another.
Second, the human perception of color is an intricate topic
where many attempts have been made to capture percep-
tual similarity.

Only when there is no variation in the recording or in the
perception is the RGB color representation a good choice
since that representation was designed to match the input
channel of the eye. RGB-representations are in wide-spread
use. They describe the image in its literal color properties.
An image expressed as �R�x�; G�x�; B�x�� (indices will be
omitted from now on) makes most sense when recording in
the absence of variance, as is the case, e.g., for art paintings
[64], the color composition of photographs [48], and
trademarks [79], [39], where two-dimensional images are
recorded in frontal view under standard conditions.

A significant improvement over the RGB-color space (at
least for retrieval applications) comes from the use of
opponent color representations [169], which uses the
opponent color axes �RÿG; 2BÿRÿG;R�G�B�. This
representation has the advantage of isolating the brightness
information on the third axis. With this solution, the first
two chromaticity axes can be down-sampled as humans are
more sensitive to brightness than they are to chroma. They
are invariant to changes in illumination intensity and
shadows.

Others approaches use the Munsell or the Lab-spaces
because of their relative perceptual uniformity. The Lab-
representation is designed so that the Euclidean distance
between two colors representations models the human
perception of color differences. Care should be taken when
digitizing the nonlinear conversion to Lab-space [115].

The HSV-representation is often selected for its invariant
properties. The hue is invariant under the orientation of the
object with respect to the illumination and camera direction
and hence more suited for object retrieval.

A wide variety of tight photometric color invariants for
object retrieval were derived in [57] from an analysis of the
Schafer model of object reflection. They derive for matte
patches under white light the invariant color space

RÿG

R�G
;ÿ

BÿR

B�R
;
GÿB

G�B

� �

;

only dependent on sensor and surface albedo. For a shiny
surface and white illumination, they derive the invariant
representation as

jRÿGj

jRÿGj � jBÿRj � jGÿBj

and two more permutations. The color models are robust
against major viewpoint distortion.

Color constancy is the capability of humans to perceive
the same apparent color in the presence of variations in
illumination which change the physical spectrum of the
perceived light. In computer vision, color constancy was
first considered in [49]. For flat, matte, and uniformly

illuminated objects, the paper forms the canonical gamut
defined as the convex set of physically feasible normalized
RGB, i.e., rgb-responses. The reference then maps all
observed rgb-responses in the image into the canonical
one. The map explaining all observations determines the
color constancy. In [47], this is improved to include specular
reflection, shape, and varying illumination. By computing
the blue-ratio vector �rb ;

g
b ; 1�, only color orientation is used

and intensity is ruled out. In this 2D-space, the color
constancy map can again be selected from a canonical
gamut of colors and surfaces. In [56], the ratios

Rx1Gx2

Rx2Gx1

;
Gx1Bx2

Gx2Bx1

;
Bx1Rx2

Bx2Rx1

� �

offer more stability to surface geometry variations. Color
constancy was applied to retrieval in [54] by using an
illumination invariant color representation. The authors
index the ratio of neighboring colors. Color constant
indexing leads to some loss in discriminating power among
objects, but yields illumination independent retrieval
instead. The scheme was improved in [158] by using
algebraic invariants.

Rather than invariant descriptions, another approach to
cope with the inequalities in observation due to surface
reflection is to search for clusters in a color histogram of the
image. In the RGB-histogram, clusters of pixels reflected off
an object form elongated streaks. Hence, in [126], a
nonparametric cluster algorithm in RGB-space is used to
identify which pixels in the image originate from one
uniformly colored object.

3.2 Image Processing for Local Shape

Under the name ªlocal shape,º we collect all properties that
capture conspicuous geometric details in the image. We
prefer the name local shape over differential geometrical
properties to express the result rather than the method. The
result of local shape evaluation is a dense image data field
different from object shape (discussed in Section 4).

Local shape characteristics derived from directional color
derivativesÐin the paper referred to as texture proper-
tiesÐhave been used in [115] to derive perceptually
conspicuous details in highly textured patches of diverse
materials. A wide, rather unstructured variety of image
detectors can be found in [165].

Scale space theory was devised as the complete and
unique primary step in preattentive vision, capturing all
conspicuous information [187]. It provides the theoretical
basis for the detection of conspicuous details on any scale.
In [105], a series of Gabor filters of different directions and
scale have been used to enhance image properties [137].
Conspicuous shape geometric invariants are presented in
[136]. A method employing local shape and intensity
information for viewpoint and occlusion invariant object
retrieval is given in [148]. The method relies on voting
among a complete family of differential geometric invar-
iants. Also, [178] searches for differential affine-invariant
descriptors. From surface reflection, in [5], the local sign of
the Gaussian curvature is computed while making no
assumptions on the albedo or the model of diffuse
reflectance.
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Combining shape and color both in invariant fashion is a
powerful combination, as described by [56], where the
colors inside and outside affine curvature maximums in
color edges are stored to identify objects.

3.3 Image Texture Processing

In computer vision, texture is defined as all what is left after
color and local shape have been considered or it is defined
by such terms as structure and randomness. Many common
textures are composed of small textons usually too great in
number to be perceived as isolated objects. The elements
can be placed more or less regularly or randomly. They can
be almost identical or subject to large variations in their
appearance and pose. In the context of image retrieval,
research is mostly directed toward statistical or generative
methods for the characterization of patches.

Basic texture properties include the Markovian analysis,
dating back to Haralick in 1973, and generalized versions
thereof [91], [58]. In retrieval, the property is computed in a
sliding mask for localization [99], [59].

Another important texture analysis technique uses
multiscale autoregressive MRSAR-models, which consider
texture as the outcome of a deterministic dynamic system
subject to state and observation noise [174], [106]. Other
models exploit statistical regularities in the texture field [9].

Wavelets [34] have received wide attention. They have
often been considered for their locality and their compres-
sion efficiency. Many wavelet transforms are generated by
groups of dilations or dilations and rotations that have been
said to have some semantic correspondent. The lowest
levels of the wavelet transforms [34], [26] have been applied
to texture representation [92], [162] sometimes in conjunc-
tion with Markovian analysis [25]. Other transforms have
also been explored, most notably fractals [44]. A solid
comparative study on texture classification from mostly
transform-based properties can be found in [133].

Texture search proved useful in satellite images [98] and
images of documents [33]. Textures also served as a support
feature for segmentation-based recognition [102], but the
texture properties discussed so far offer little semantic
referent. They are therefore ill-suited for retrieval applica-
tions inwhich the userwants to use verbal descriptions of the
image. Therefore, in retrieval research, in [101], the Wold
features of periodicity, directionality, and randomness are
used, which agree reasonably well with linguistic
descriptions of textures as implemented in [128].

3.4 Discussion on Image Processing

Image processing in content-based retrieval should primar-
ily be engaged in enhancing the image information the
query poses, not in describing the content of the image in its
entirety.

To enhance the image information, retrieval has set the
spotlights on color, as color has a high discriminating
power among objects in a scene, much higher than gray
levels. The purpose of most image color processing is to
reduce the influence of the accidental conditions of the
scene and sensing (i.e., the sensory gap). Progress has been
made in tailored color space representation for well-
described classes of variant conditions. Also, the application
of geometric description derived from scale space theory

will reveal viewpoint and scene independent salient point
sets, thus opening the way to similarity of images on a few
most informative regions or points.

In this section, we have made a separation between color,
local geometry, and texture. At this point, it is safe to
conclude that the division is artificial. Wavelets say some-
thing about the local shape as well as the texture and so do
many scale space and local filter strategies. For the purposes
of content-based retrieval, an integrated view on color,
texture, and local geometry is urgently needed as only an
integrated view on local properties can provide the means
to distinguish among hundreds of thousands different
images. A recent advancement in that direction is the
fusion of illumination and scale invariant color and texture
information into a consistent set of localized properties [66].
Also, in [20], homogeneous regions are represented as
collections of ellipsoids of uniform color or texture, but
invariant texture properties deserve more attention, [173]
and [185]. Further research is needed in the design of
complete sets of image properties with well-described
variant conditions which they are capable of handling.
Invariance is just one side of the coin, where discriminating
power is the other. In content-based image retrieval, the
first steps are taken to establish the discriminating power of
invariant properties [55]. This is essential as the balance
between stability against variations and retained discrimi-
natory power determines the effectiveness of a property.

4 DESCRIPTION OF CONTENT: FEATURES

In the first section, we discuss the ultimate form of spatial
data by grouping the data into object silhouettes, clusters of
points or point-sets. In subsequent sections, we leave the
spatial domain to condense the pictorial information into
feature values.

4.1 Grouping Data

In content-based image retrieval, the image is often divided
in parts before features are computed from each part, see
Fig. 7. Partitionings of the image aim at obtaining more
selective features by selecting pixels in a trade-off against
having more information in features when no subdivision
of the image is used at all. We distinguish the following
partitionings:

. When searching for an object, it would be most
advantageous to do a complete object segmentation
first: ªStrong segmentation is a division of the image
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data into regions in such a way that region T
contains the pixels of the silhouette of object O in the
real world and nothing else, specified by: T � O.º

It should be noted immediately that object segmentation for

broad domains of general images is not likely to succeed,

with a possible exception for sophisticated techniques in

very narrow domains.

. The difficulty of achieving strong segmentation may
be circumvented by weak segmentation where
grouping is based on data-driven properties: ªWeak
segmentation is a grouping of the image data in
conspicuous regions T internally homogenous ac-
cording to some criterion, hopefully with T � O.º

The criterion is satisfied if region T is within the bounds of

object O, but there is no guarantee that the region covers all

of the object's area. When the image contains two nearly

identical objects close to each other, the weak segmentation

algorithm may falsely observe just one patch. Fortunately,

in content-based retrieval, this type of error is rarely

obstructive for the goal. In [125], the homogeneity criterion

is implemented by requesting that colors be spatially

coherent vectors in a region. Color is the criterion in [50],

[126]. In [20], [112], the homogeneity criterion is based on

color and texture. The limit case of weak segmentation is a

set of isolated points [148], [57]. No homogeneity criterion is

needed then, but the effectiveness of the isolated points rest

on the quality of their selection. When occlusion is present

in the image, weak segmentation is the best one can hope

for. Weak segmentation is used in many retrieval systems,

either as a purpose of its own or as a preprocessing stage for

data-driven model-based object segmentation.

. When the object has a (nearly) fixed shape, like a
traffic light or an eye, we call it a sign: ªLocalizing
signs is finding an object with a fixed shape and
semantic meaning, with T � xcenter.º

Signs are helpful in content-based retrieval as they deliver
an immediate and unique semantic interpretation.

. The weakest form of grouping is partitioning: ªA
partitioning is a division of the data array regardless
of the data, symbolized by: T 6� O.º

The area T may be the entire image or a conventional
partitioning as the central part of the image against the
upper, right, left, and lower parts [67]. The feasibility of
fixed partitioning comes from the fact that images are
created in accordance with certain canons or normative
rules, such as placing the horizon about 2/3 up in the
picture or keeping the main subject in the central area. This
rule is often violated, but this violation in itself has semantic
significance. Another possibility of partitioning is to divide
the image in tiles of equal size and summarize the dominant
feature values in each tile [130].

Each of these four approaches to partitioning leads to a
preferred type of features, as summarized in Fig. 8 and
illustrated in Fig. 9, where feature hierarchies are used to
make a combination on all types.

4.2 Global and Accumulating Features

In the computational process, features are calculated next.
The general class of accumulating features aggregate the
spatial information of a partitioning irrespective of the
image data. A special type of accumulative features are the
global features which are calculated from the entire image.
Accumulating features are symbolized by:

Fj �
X

Tj

h � f�x�; �4�

where � represents an aggregations operation (the sum in
this case, but it may be a more complex operator). Fj is
the set of accumulative features or a set of accumulative
features ranked in a histogram. Fj is part of feature space
F . Tj is the partitioning over which the value of Fj is
computed, see Fig. 9 for an illustration. In the case of
global features, Tj�void represents the image, otherwise, Tj
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represents a fixed tiling of the image. The operator h may
hold relative weights, for example, to compute transform
coefficients.

A simple but very effective approach to accumulating
features is to use the histogram, that is, the set of features
F�m� ordered by histogram index m. The original idea to
use histograms for retrieval comes from Swain and Ballard
[169], who realized that the power to identify an object
using color is much larger than that of a gray-valued image.
As a histogram loses all information about the location of an
object in the image, [169], [41] project the histogram back
into the image to locate it by searching for best matches. A
histogram may be effective for retrieval as long as there is a
uniqueness in the color pattern held against the pattern in
the rest of the entire data set. In addition, the histogram
shows an obvious robustness to translation of the object and
rotation about the viewing axis. Swain and Ballard also
argue that color histograms change slowly with change in
viewpoint and scale and with occlusion.

All of this is in favor of the use of histograms. When very
large data sets are at stake, plain histogram comparison will
saturate the discrimination. For a 64-bin histogram, experi-
ments show that, for reasonable conditions, the discriminat-
ing power among images is limited to 25,000 images [167].
To keep up performance, in [125], a joint histogram is used,
providing discrimination among 250,000 images in their
database, rendering 80 percent recall among the best 10 for
two shots from the same scene using simple features. Other
joint histograms add local texture or local shape [61],
directed edges [78], and local higher order structures [48].

Another alternative is to add adimension representing the
local distance. This is the correlogram [73], defined as a three-
dimensional histogramwhere the colors of any pair are along
the first and second dimension and the spatial distance
between them along the third. The autocorrelogram defining
thedistances betweenpixels of identical colors is foundon the
diagonal of the correlogram. A more general version is the
geometric histogram [134], with the normal histogram, the
correlogram, and several alternatives as special cases. This

also includes the histogram of the triangular pixel values,
reported to outperform all of the above as it contains more
information.

To avoid an explosion of dimensions of the histogram,
one could also prefer to reconsider the quality of the
information along each of the dimensions. In Section 3, we
have considered invariant representations suited to enrich
the information on the axes of the histogram as it rules out
the accidental influence of sensing and scene conditions.

A different view on accumulative features is to demand
that all information (or all relevant information) in the
image is preserved in the feature values. When the bit-
content of the features is less than the original image, this
boils down to compression transforms. Many compression
transforms are known, but the quest is for transforms
simultaneously suited as retrieval features. As proper
querying for similarity is based on a suitable distance
function between images, the transform has to be applied
on a metric space. The components of the transform have to
correspond to semantically meaningful characteristics of the
image. Finally, the transform should admit indexing in
compressed form yielding a big computational advantage
over having the image be untransformed first. Schneier and
Abdel-Mottaleb [149] is just one of many where the cosine-
based JPEG-coding scheme is used for image retrieval. The
JPEG-transform fulfills the first and third requirement, but
fails on a lack of semantics. In the MPEG-standard, the
possibility of including semantic descriptors in the com-
pression transform is introduced [29]. For an overview of
feature indexes in the compressed domain, see [103]. In [92],
a wavelet packet was applied to texture images and, for
each packet, entropy and energy measures were deter-
mined and collected in a feature vector. In [75], vector
quantization was applied in the space of coefficients to
reduce its dimensionality. This approach was extended to
incorporate the metric of the color space in [146]. In [77], a
wavelet transform was applied independently to the three
channels of a color image and only the sign of the most
significant coefficients is retained. In a recent paper [3], a
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scheme is offered for a broad spectrum of invariant

descriptors suitable for application on Fourier, wavelets,
and splines and for geometry and color alike.

Another type of complete feature sets capturing all

information in the image is to use moments. Their invariant

combinations of moments [72] and [89] have been success-

fully employed in retrieval of objects in [48], especially
when the image contains just the object.

4.3 Salient Features

Another way to avoid the brittleness of strong segmentation
is to opt for weak segmentation. This leads to a grouping of

the data into homogeneous regions. From the merged

regions, a selection is made on their salience. The most

conspicuous regions are stored. The limit case of a weak
segmentation is thedetectionof conspicuouspoints, seeFig. 9.

Salient features may be covered by the generic equation:

Fj�x� �
^

Tj

h � f�x�; �5�

where ^ stands for a local selection operation and operator h

maximizes the saliency of the processed image field f�x�.

The area Tj over which the value of Fj is searched for is

usually the whole image, although there would be no
objection to concentrating on the center or top part of the

image in search for specific events.
As the information of the image is condensed into just a

limited number of feature values, the information should be

selected with precision for greatest saliency and proven

robustness. That is why saliency in [100] is defined as the
special pointswhich survive longestwhengraduallyblurring

the image in scale space. Also, in [138], lifetime is an

important selection criterion for salient points in addition to

wiggliness, spatialwidth, andphase congruency. To enhance
the quality of salient descriptions, in [178], invariant and

salient features of local patches have been considered. In each

case, the image is summarized in a list of conspicuous points.

In [148], salient and invariant transitions in grayvalue images
are recorded. Similarly, in [57], [55], photometric invariance is

the leading principle in summarizing the image in salient

transitions in the image. Salient feature calculations lead to

sets of regions or points with known location and feature

values capturing their salience.
In [20], first, the most conspicuous homogeneous regions

in the image are derived and mapped into feature space.

Then, expectation-maximization [37] is used to determine

the parameters of a mixture of Gaussians to model the

distribution of points into the feature space. The means and
covariance matrices of these Gaussians, projected on the

image plane, are represented as ellipsoids characterized by

their center x, their area, eccentricity, and direction. The

average values of the color and texture descriptions inside

the ellipse are also stored.

4.4 Signs

When one of the possible interpretations of an image is so
preponderant that it can be considered the meaning of the

image, the image holds a sign, characterized by the

probability P on interpretation z:

Pz�x� � P �zjhz � f�x�� �6�

with symbols as in (5). The analysis leads to a localization of
a sign with its probability. Typical signs are an icon, a
character, a traffic light, or a trademark. In the case of maps,
the interpretation of map symbols and their spatial relation-
ships provides access to the content of the map [144]. Other
systems based on signs are designed with specific applica-
tion domains in mind, like OCR from an image [200], faces
to detect from the image [197], medical images [90], [17],
textile [95], art [65], or detecting the constituent components
of silhouettes of plants based on a visual lexicon in [180].

For signs, a strong semantic interpretation is within
grasp and the undisputed semantic interpretation brings
clarity in interpreting the image. That is the attractiveness of
using signs, in spite of the fact that the analysis tends to
become application-oriented.

4.5 Shape and Object Features

The theoretically best way to enhance object-specific
information contained in images is by segmenting the
object in the image. But, as discussed above, the brittleness
of segmentation algorithms prevents the use of automatic
segmentation in broad domains. In fact, in many cases, it is
not necessary to know exactly where an object is in the
image as long as one can identify the presence of the object
by its unique characteristics. When the domain is narrow, a
tailored segmentation algorithm may be needed more and,
fortunately, also be better feasible. When segmentation is
applied, we have:

tj�x� � sj � f�x�; �7�

where f�x� is the data field resulting from the processing
above (equal to the image i�x� when g is the identity
operator), sj is the segmentation operator for object j, and
tj�x� indicates the object area Tj. For shape, Fj is a (possibly
ordered) set of features from F for j:

Fj �
X

Tj

h � tj�x�; �8�

where � represents an aggregation operation and h is the
functional computing shape in this case. Object internal
features are computed similar to (4).

The object internal features are largely identical to the
accumulative features, now computed over the object area.
They need no further discussion here.

An abundant comparison of shape for retrieval can be
found in [109], evaluating many features on a 500-element
trademark data set. Straightforward features of general
applicability include Fourier features and moment invar-
iants of the object this time, sets of consecutive boundary
segments, or encoding of contour shapes [43].

For retrieval, we need a shape representation that allows
a robust measurement of distances in the presence of
considerable deformations. Many sophisticated models
widely used in computer vision often prove too brittle for
image retrieval. On the other hand, the (interactive) use of
retrieval makes some mismatch acceptable and, therefore,
precision can be traded for robustness and computational
efficiency.
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More sophisticated methods include elastic matching
and multiresolution representation of shapes. In elastic
deformation of image portions [36], [122] or modal
matching techniques [150], image patches are deformed to
minimize a cost functional that depends on a weighed sum
of the mismatch of the two patches and on the deformation
energy. The complexity of the optimization problem
depends on the number of points on the contour. Hence,
the optimization is computationally expensive and this, in
spite of the greater precision of these methods, has limited
their diffusion in image databases.

Multiscale models of contours have been studied as a
representation for image databases in [116]. Contours were
extracted from images and progressively smoothed by
dividing them into regions of constant sign of the second
derivative and progressively reducing the number of such
regions. At the final step, every contour is reduced to an
ellipsoid which could be characterized by some of the
features in [48]. A different view on multiresolution shape is
offered in [94], where the contour is sampled by a polygon
and then simplified by removing points from the contour
until a polygon survives selecting them on perceptual
grounds. When computational efficiency is at stake, an
approach for the description of the object boundaries is
found in [201], where an ordered set of critical points on the
boundary are found from curvature extremes. Such sets of
selected and ordered contour points are stored in [108]
relative to the basis spanned by an arbitrary pair of the
points. All point pairs are used as a basis to make the
redundant representation geometrically invariant, a techni-
que similar to [192] for unordered point sets.

For retrieval of objects in 2D-images of the 3D-worlds, a
viewpoint invariant description of the contour is important.
A good review of global shape invariants is given in [140].

4.6 Description of Structure and Lay-Out

When feature calculations are available for different entities
in the image, they may be stored with a relationship
between them, see Fig. 9 for an illustration. Such a
structural feature set may contain feature values plus
spatial relationships, a hierarchically ordered set of feature
values, or relationships between point sets or object sets.
The process is symbolized by:

Hj;k �
X

Tj;k

h � f�x�; �9�

where Tj;k indicates the kth part of the jth object and Hj;k is
an (ordered) spatial relationship describing object j in k
elements. Structural and layout feature descriptions are
captured in a graph, hierarchy, or any other ordered set of
feature values and their relationships.

To that end, in [107], [50], lay-out descriptions of an
object are discussed in the form of a graph of relations
between blobs. A similar lay-out description of an image in
terms of a graph representing the spatial relations between
the objects of interest was used in [129] for the description
of medical images. In [53], a graph is formed of topological
relationships of homogenous RGB-regions. When selected
features and the topological relationships are viewpoint
invariant, the description is viewpoint invariant, but the

selection of the RGB-representation as used in the paper
will only suit that purpose to a limited degree. The systems
in [70], [163] study spatial relationships between regions,
each characterized by locations, size, and features. In the
later system, matching is based on the 2D-string representa-
tion founded by Chang and Hau [22]. For a narrow domain,
in [129], [132], the relevant elements of a medical X-ray
image are characterized separately and joined together in a
graph that encodes their spatial relations.

Starting from a shape description, the authors in [94]
decompose an object into its main components, making the
matching between images of the same object easier.
Automatic identification of salient regions in the image,
based on nonparametric clustering followed by decomposi-
tion of the shapes found into limbs, is explored in [52].

4.7 Discussion on Features

Also in the description of the image by features, it should be
kept in mind that for retrieval a total understanding of the
image is rarely needed. Strong segmentation of the scene
and complete feature descriptions may not be necessary at
all to achieve a similarity ranking. Of course, the deeper one
goes into the semantics of the pictures, the deeper the
understanding of the picture will also have to be, but the
critical point in the advancement of content-based retrieval
is the semantic meaning of the image that is rarely self-
evident.

The theoretically best approach to a semantic interpreta-

tion of an image remains the use of a strong segmentation of

the scene. Automatic strong segmentation is, however, hard

to achieve, if not impossible for general domains. The

brittleness of strong segmentation is a mostly unsurpassable

obstacle when describing the content of images by describ-

ing the content of its objects. Especially for broad domains

and for sensory conditions where clutter and occlusion are

to be expected, automatic strong segmentation is hard, if not

impossible. In that case, segmentation is to be done by hand

when retrieval relies on it.
Narrow domains such as trademark validation, the

identification of textiles, and the recognition of fish depend

on the shape of the object, assessing similarity on the basis of

the silhouettes. The fine-to-coarse decompositions are attrac-

tive in their discriminating power and computational

efficiency. Again, a major bottleneck is the highly accurate

segmentation of the object (as well as a frontal viewpoint of

the object). In selected narrowdomains, thismay be achieved

by recording the object against a clear background.
General content-based retrieval systems have dealt with

segmentation brittleness in a few ways. First, a weaker
version of segmentation has been introduced in content-
based retrieval. In weak segmentation, the result is a
homogeneous region by some criterion, but not necessarily
covering the complete object silhouette. It results in a fuzzy,
blobby description of objects, rather than a precise
segmentation. Salient features of the weak segments capture
the essential information of the object in a nutshell. The
extreme form of the weak segmentation is the selection of a
salient point set as the ultimately efficient data reduction in
the representation of an object, very much like the focus-of-
attention algorithms for an earlier age. Only points on the
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interior of the object can be used for identifying the object
and conspicuous points at the borders of objects have to be
ignored. Little work has been done on how to make the
selection. Weak segmentation and salient features are a
typical innovation of content-based retrieval. It is expected
that salience will receive much attention in the further
expansion of the field, especially when computational
considerations gain in importance.

The alternative is to do no segmentation at all. Content-
based retrieval has gained from the use of accumulative
features, computed on the global image or partitionings
thereof, disregarding the content, the most notable being
the histogram. Where most attention has gone to color
histograms, histograms of local geometric properties and
texture are following. To compensate for the complete loss
of spatial information, the geometric histogram was
recently defined with an additional dimension for the
spatial layout of pixel properties. As it is a superset of the
histogram, an improved discriminability for large data sets
is anticipated. When accumulative features are calculated
from the central part of a photograph may be very effective
in telling them apart by topic, but the center does not
always reveals the purpose. Likewise, features calculated
from the top part of a picture may be effective in telling
indoor scenes from outdoor scenes, but again this holds to a
limited degree. A danger of accumulative features is their
inability to discriminate among different entities and
semantic meanings in the image. More work on semantic-
driven groupings will increase the power of accumulative
descriptors to capture the content of the image.

Structural descriptions match well with weak segmenta-
tion, salient regions, and weak semantics. One has to be
certain that the structure is within one object and not an
accidental combination of patches which have no meaning
in the object world. The same brittleness of strong
segmentation lurks here. We expect a sharp increase in
the research of local, partial, or fuzzy structural descriptors
for the purpose of content-based retrieval, especially of
broad domains.

5 INTERPRETATION AND SIMILARITY

When the information from images is captured in a feature
set, there are two possibilities for endowing them with
meaning: One derives an unilateral interpretation from the
feature set, while the other one compares the feature set
with the elements in a given data set on the basis of a
similarity function, see Fig. 10.

5.1 Semantic Interpretation

In content-based retrieval, it is useful to push the semantic
interpretation of features derived from the image as far as
one can.

Semantic features aim at encoding interpretations of the image
which may be relevant to the application.

Of course, such interpretations are a subset of the possible
interpretations of an image. To that end, consider a feature
vector F derived from an image i. For given semantic
interpretations z from the set of all interpretations Z, a
learning phase leads to conditional probabilities:

P � P �zjF�: �10�

A strong semantic feature with interpretation zj would
generate a P �zjF� � ��zÿ zj�. If the feature carries no
semantics, it would generate a distribution P �zjF� � P �z�

independent of the value of the feature. In practice, many
feature types will generate a probability distribution that is
neither a pulse nor independent of the feature value. This
means that the feature value ªskewsº the interpretation of
the image, but does not determine it completely.

Under the umbrella weak semantics, we collect the
approaches that try to combine features in some semanti-
cally meaningful interpretation. Weak semantics aims at
encoding, in a simple and approximate way, a subset of the
possible interpretations of an image that are of interest in a
given application. As an example, the system in [30] uses
color features derived from Itten's color theory to encode
the semantics associated to color contrast and harmony in
art application.

SMEULDERS ET AL.: CONTENT-BASED IMAGE RETRIEVAL AT THE END OF THE EARLY YEARS 1361

Fig. 10. Data flow diagram of similarity and interpretation.



In the MAVIS2-system [84], data are considered at four
semantic levels, embodied in four layers called the raw
media, the selection, the selection expression, and con-
ceptual layers. Each layer encodes information at an
increasingly symbolic level. Agents are trained to create
links between features, feature signatures at the selection
layer, interrelated signatures at the selection expression
layer, and concept (expressed as textual labels) at the
conceptual layer. In addition to the vertical connections, the
two top layers have intralayer connections that measure the
similarity between concepts at that semantic level and
contribute to the determination of the similarity between
elements at the lower semantic level.

5.2 Similarity between Features

A different road to assigning a meaning to an observed
feature set, is to compare a pair of observations by a
similarity function. While searching for a query image iq�x�
among the elements of the data set of images, id�x�,
knowledge of the domain will be expressed by formulating
a similarity measure Sq;d between the images q and d on the
basis of some feature set. The similarity measure depends
on the type of features, see Fig. 10.

The similarity of two feature vectors F, accumulative or
object features alike, is given by:

Sq;d � s�Fq;Fd�: �11�

At its best use, the similarity measure can be manipulated to
represent different semantic contents; images are then
grouped by similarity in such a way that close images are
similar with respect to use and purpose. There is surpris-
ingly little work dedicated to characterizing similarity
measures. A few ideas, however, have emerged. A common
assumption is that the similarity between two feature
vectors F can be expressed as:

s�Fq;Fd� � g � d�Fq;Fd�; �12�

where g is a positive, monotonically nonincreasing function
and d is a distance function on F . This assumption is
consistent with a class of psychological models of human
similarity perception [154], [147] and requires that the
feature space be metric. If the feature space is a vector
space, d often is a simple Euclidean distance, although there
is indication that more complex distance measures might be
necessary [147]. This similarity model was well-suited for
early query by example systems in which images were
ordered by similarity with one example.

A different view sees similarity as an essentially
probabilistic concept. This view is rooted in the psycholo-
gical literature [8] and, in the context of content-based
retrieval, it has been proposed, for example, in [114]. A
general form of such a similarity measure would be

s�Fq;Fd� � f�P �F̂q � Fd��; �13�

where � means that the two features describe images of the
same class and F̂q � �Fq � �; �Fq are the ªrealº stimulus and �
noise due to sensory and measurement conditions.

Measuring the distance between histograms has been an
active line of research since the early years of content-based

retrieval, where histograms can be seen as a set of ordered

features:

s�Fq;Fd� � g � d�Fq;Fd�; �14�

In content-based retrieval, histograms have mostly been

used in conjunction with color features, but there is nothing

against being used in texture or local geometric properties.

Swain and Ballard [169] proposed the use of the intersection

distance d\�F
q;Fd� �

Pn
j�1 min�Fq

j ;F
d
j �, where F

q and F
d

are two histograms containing n bins each. They also

proved that if all images have the same number of pixels,

i.e.,
P

j Fj is the same for all images, then this distance has

the same ordinal properties as the L1 distance. In [62], a

different approach is followed. The distance between two

histograms is defined in vector form as

d��F
q;Fd� �

����������������������������������������������

�Fq ÿ F
d�t��Fq ÿ F

d�

q

;

where the matrix � expresses the similarity between the jth

and the kth bins. This has the advantage of considering the

similarity between values in the feature space, i.e., of

incorporating the metric of the feature space into the

similarity measure.
Other commonly used distance functions for color

histograms include the Minkowski distances

dr�F
q;Fd� �

X

n

j�1

jFq
j ÿ F

d
j j
r

" #1
r

:

These measures do not take into account the similarity

between different, but related bins of a histogram. In [166],

it is observed that this may lead to false negatives. The

paper proposes the use of cumulative histograms of the

form ~F
q
�m� �

Pm
k�0 F

q
k after ordering the bins by parameter

j. Comparisons between cumulative rather than plain

histograms show that the former tend to be more forgiving

for changes in the bin assignment due to noise. An

alternative, also explored in the paper, is to describe the

histogram by the first three statistical moments, where 3 is

an empirical finding. In [166], the histogram was applied to

color images by representing colors in the HSV -system and

computing the moments of the channel separately, resulting

in nine parameters, three moments for each of the three

color channels. A recent distance measure for color

histograms is found in [4], where a hue histogram and a

saturation histogram are formed separately with the

advantages of saving on memory and the possibility of

excluding colors from a query. The reference compares

colors on the basis of the angular distance in RGB-space.
The natural measure to compare ordered sets of

accumulative features is nonparametric test statistics. They

can be applied to the distributions of the coefficients of

transforms to determine the likelihood that two samples

derive from the same distribution [35], [131]. They can also

be applied to compare the equality of two histograms and

all variations thereof.
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5.3 Similarity of Object Silhouettes

In [183], a good review is given of methods to compare
shapes directly after segmentation into a set of object
points t�x�:

Sq;d � s�tq�x�; td�x��; �15�

without an intermediate description in terms of shape
features.

For shape comparison, the authors make a distinction
between transforms, moments, deformation matching, scale
space matching, and dissimilarity measurement. Difficulties
for shape matching based on global transforms are the
inexplicability of the result and the brittleness for small
deviations. Moments, specifically their invariant combina-
tions, have been frequently used in retrieval [89]. Matching
a query and an object in the data file can be done along the
ordered set of eigen shapes [150] or with elastic matching
[36], [11]. Scale space matching is based on progressively
simplifying the contour by smoothing [116]. By comparing
the signature of annihilated zero crossings of the curvature,
two shapes are matched in a scale and rotation invariant
fashion. A discrete analogue can be found in [94], where
points are removed from the digitized contour on the basis
of perceptually motivated rules. Results on a 2,000-element
database are reported to perform better than most of the
methods listed above.

When based on a metric, dissimilarity measures will
render an ordered range of deviations suited for a
predictable interpretation. In [183], an analysis is given for
the Hausdorff and related metrics between two shapes on
robustness and computational complexity. The directed
Hausdorff metric is defined as the maximum distance
between a point on query object q and its closest counterpart
on d. The partial Hausdorff metric, defined as the kth
maximum rather than the absolute maximum, is used in
[63] for affine invariant retrieval.

5.4 Similarity of Structural Features

The result of a structural description is a hierarchically
ordered set of feature valuesH, see Fig. 9. In this section, we
consider the similarity of

Sq;d � s�Hq; Hd� �16�

between the two structural or layout descriptions.
Many different techniques have been reported for the

similarity of feature structures. In [191], [74], a Bayesian
framework is developed for the matching of relational
attributed graphs by discrete relaxation. This is applied to
line patterns from aerial photographs.

A metric for the comparison of two topological arrange-
ments of named parts, applied to medical images, is defined
in [172]. The distance is derived from the number of edit-
steps needed to nullify the difference in the Voronoi-
diagrams of two images.

In [23], 2D-strings describing spatial relationships be-
tween objects are discussed and, much later, reviewed in
[198]. From such topological relationships of image regions,
in [71], a 2D-indexing is built in trees of symbol strings, each
representing the projection of a region on the coordinate
axis. The distance between Hq and Hd is the weighed

number of editing operations required to transform the one
tree to the other. In [153], a graph is formed from the image
on the basis of symmetry as it appears from the medial axis.
Similarity is assessed in two stages via graph-based
matching followed by energy-deformation matching.

In [53], hierarchically ordered trees are compared for the

purpose of retrieval by rewriting them into strings. A

distance-based similarity measure establishes the similarity

scores between corresponding leaves in the trees. At the

level of trees, the total similarity score of corresponding

branches is taken as the measure for (sub)tree-similarity.

From a small size experiment, it is concluded that

hierarchically ordered feature sets are more efficient than

plain feature sets, with projected computational shortcuts

for larger data sets.

In [163], images are transformed into homogeneous

regions for retrieval based on color layout. The regions

are scanned, typically five equally spaced vertical scans,

and converted into a string of symbols taken from a

visual dictionary. The strings are summarized into

region-relative histograms, F�i; j�, indicating how many

times a symbol precedes another symbol in one of the

scans. During querying, the similarity of q to d is given

by
P

i �F
q
F

d�ÿ1 P

j F
q
F

d, that is, the element-by-element

correspondence of the region ordered histograms.

5.5 Similarity of Salient Features

Salient features are used to capture the information in the
image in a limited number of salient points. Similarity
between images can then be checked in several different
ways.

In the first place, the color, texture, or local shape
characteristics may be used to identify the salient points of
the data as identical to the salient points of the query.

Sq;d � g � d�Fq;Fd�; �17�

where Fq and Fd are feature vectors of salient properties
and g is an optional monotone function. A measure of
similarity between the feature values measured of the
blobs resulting from weak segmentation consists of a
Mahalanobis distance between the feature vector com-
posed of the color, texture, position, area, eccentricity,
and direction of the two ellipses [20]. If the features of
the ellipse are collected in a vector F, the distance
between q and d is given by

dq;d � �Fq ÿ Fd�
T
�

ÿ1�Fq ÿ Fd�
h i1

2

;

where � is a diagonal weights matrix set by the user.
The similarity between two blobs is defined as
Sq;d � exp�ÿdq;d=2�.

In the second place, one can store all salient points from
one image in a histogram on the basis of a few character-
istics, such as color on the inside versus color on the
outside. The similarity is then based on the group-wise
presence of enough similar points [57].

Sq;d � g � d�Fq;Fd�; �18�
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where F
q and F

d are histograms merely indicating the
presence of salient points. The metric d�Fq;Fd� is now
aiming at measuring the presence of the same set of salient
points. Comparing sparsely occupied histograms has long
been used in text retrieval, where vector space modeling
[143] implies the registration in a N-dimensional
histogram F with as many dimensions as there are different
words in the dictionary, typically 10,000. In a binary vector
space, each dimension is expressing whether that word is
present or absent in the text. A text is a point in this high
dimensional space. Differences between the text d in the
data file and the query q boil down to the intersection
distance discussed above: distance

d\�F
q;Fd� �

X

1::i::N

\i F
d�::i::�;Fq�::i::�;

over all dimensions. The same strategy is used when
comparing salient point features derived from different
images. The intersection is appropriate when both q and d

may be partially occluded in the image or cluttered with the
background. When q is neither cluttered or occluded but d
may still be, the intersection should be replaced by the
<-operation. The model has been used in image retrieval in
[158], while keeping access to their location in the image by
back-projection [169]. Following the development of the
vector space model in text retrieval, a weight per dimension
may favor the appearance of some salient features over an
other. See also [69] for a comparison with correlograms.

A third alternative for similarity of salient points is to
concentrate only on the spatial relationships among the
salient points sets Pq and Pd

Sq;d � g � d�Pq;Pd�: �19�

In point-by-point-based methods for shape comparison,
shape similarity is studied in [83], where maximum
curvature points on the contour and the length between
them are used to characterize the object. To avoid the
extensive computations, one can compute the algebraic
invariants of point sets, known as the crossratio. Due to
their invariant character, these measures tend to have only a
limited discriminating power among different objects. A
more recent version for the similarity of nameless point-sets
is found in geometric hashing [192], where each triplet
spans a base for the remaining points of the object. An
unknown object is compared on each triplet to see whether
enough similarly located points are found. Geometric
hashing, though attractive in its concept, is too computa-
tionally expensive to be used on the very large data sets of
image retrieval due to the anonymity of the points.
Similarity of two points sets Pq and Pd given in a row-
wise matrix is discussed in [188]. A distance is given for
similarity invariance by,

D2�Pq;Pd� � 1ÿ
kPqP

T
d k

2 � 2 det�PqP
T
d �

kPdk
2kPqk

2

and, for affine transformations,

D2�Pq;Pd� � 2ÿ tr�P�
d Pd �P

�
q Pq�;

where P
�
d and P

�
q are the pseudoinverse of Pd and Pq,

respectively.

5.6 Similarity at the Semantic Level

In [70], knowledge-based type abstraction hierarchies are

used to access image data based on context and a user

profile, generated automatically from cluster analysis of the

database. Also in [24], the aim is to create a very large

concept-space inspired by the thesaurus-based search from

the information retrieval community. In [115], a linguistic

description of texture patch visual qualities is given and

ordered in a hierarchy of perceptual importance on the

basis of extensive psychological experimentation.
A more general concept of similarity is needed for

relevance feedback, in which similarity with respect to an

ensemble of images is required. To that end, in [45], more

complex relationships are presented between similarity and

distance functions defining a weighted measure of two

simpler similarities

S�s; S1; S2� � w1 exp�ÿd�S1; s�� � w2 exp�ÿd�S2; s��:

The purpose of the bireferential measure is to find all

regions that are similar to two specified query points, an

idea that generalizes to similarity queries given multiple

examples. The approach can be extended with the defini-

tion of a complete algebra of similarity measures with

suitable composition operators [45], [38]. It is then possible

to define operators corresponding to the disjunction,

conjunction, and negation of similarity measures, much

like traditional databases. The algebra is useful for the user

to manipulate the similarity directly as a means to express

characteristics in specific feature values.

5.7 Learning an Interpretation

As data sets grow large and the available processing power

matches that growth, the opportunity arises to learn from

experience. Rather than designing, implementing, and

testing an algorithm to detect the visual characteristics for

each different semantic term, it becomes possible to learn

the semantics of objects from their appearance.
For a review on statistical pattern recognition, see [80]. In

[182], a variety of techniques is discussed treating retrieval

as a classification problem.
One approach is principal component analysis over a

stack of images taken from the same class z of objects. This

can be done in feature space [118] or at the level of the entire

image, for example, faces in [113]. The analysis yields a set

of ªeigenfaceº images, capturing the common character-

istics of a face without the need of a geometric model.
Effective ways to learn from partially labeled data have

recently been introduced in [194], [139], both using the

principle of transduction [181]. This saves the effort of

labeling the entire data set, unfeasible and unreliable as it

grows big.
In [186], preliminary work is reported towards automatic

detection of categories on totally unlabeled data sets. They

represent objects as probabilistic constellations of features.

Recurring salient rigid parts are selected automatically by

maximization of the expectation.
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In [176], a very large number of precomputed features is
considered, of which a small subset is selected by boosting
[80] to learn the image class.

An interesting technique to bridge the gap between

textual and pictorial descriptions to exploit information at

the level of documents is borrowed from information

retrieval, called latent semantic indexing [151], [199]. First,

a corpus is formed of documents (in this case, images with a

caption) from which features are computed. Then, by

singular value decomposition, the dictionary covering the

captions is correlated with the features derived from the

pictures. The search is for hidden correlations of features

and captions.

5.8 Discussion on Interpretation and Similarity

Whenever the image itself permits an obvious interpreta-

tion, the ideal content-based system should employ that

information. A strong semantic interpretation occurs when

a sign can be positively identified in the image. This is

rarely the case due to the large variety of signs in a broad

class of images and the enormity of the task to define a

reliable detection algorithm for each of them. Weak

semantics rely on inexact categorization induced by

similarity measures, preferably online by interaction. The

categorization may agree with semantic concepts of the

user, but the agreement is, in general, imperfect. Therefore,

the use of weak semantics is usually paired with the ability

to gear the semantics of the user to his or her needs by

interpretation. Tunable semantics is likely to receive more

attention in the future, especially when data sets grow big.

Similarity is an interpretation of the image based on the

difference with another image. For each of the feature types,

a different similarity measure is needed. For similarity

between feature sets, special attention has gone to establish-

ing similarity among histograms due to their computational

efficiency and retrieval effectiveness.

Similarity of shape has received considerable attention in

the context of object-based retrieval. Generally, global shape

matching schemes break down when there is occlusion or

clutter in the scene. Most global shape comparison methods

implicitly require a frontal viewpoint against a clear enough

background to achieve a sufficiently precise segmentation.

With the recent inclusion of perceptually robust points in

the shape of objects, an important step forward has been

made.

Similarity of hierarchically ordered descriptions deserves

considerable attention as it is one mechanism to circumvent

the problems with segmentation while maintaining some of

the semantically meaningful relationships in the image. Part

of the difficulty here is to provide matching of partial

disturbances in the hierarchical order and the influence of

sensor-related variances in the description.

Learning computational models for semantics is an

interesting and relatively new approach. It gains attention

quickly as the data sets and the machine power grow big.

Learning opens up the possibility to an interpretation of the

image without designing and testing a detector for each

new notion. One such approach is appearance-based

learning of the common characteristics of stacks of images

from the same class. Appearance-based learning is suited

for narrow domains. For success of the learning approach,

there is a trade-off between standardizing the objects in the

data set and the size of the data set. The more standardized

the data are the less data will be needed, but, on the other

hand, the less broadly applicable the result will be.

Interesting approaches to derive semantic classes from

captions or a partially labeled or unlabeled data set have

been presented recently, see above.

6 INTERACTION

We turn our attention to the interacting user. Interaction of

users with a data set has been studied most thoroughly in

categorical information retrieval [123]. The techniques

reported there need rethinking when used for image

retrieval as the meaning of an image, due to the semantic

gap, can only be defined in context. Image retrieval requires

active participation of the user to a much higher degree

than required by categorized querying. In content-based

image retrieval, interaction is a complex interplay between

the user, the images, and their semantic interpretations.

6.1 Query Space: Definition and Initialization

To structure the description of methods, we first define

query space. The first component of query space is the

selection of images IQ from the large image archive I .

Typically, the choice is based on factual descriptions like the

name of the archive, the owner, date of creation, or Web site

address. Any standard retrieval technique can be used for

the selection. The second component is a selection of the

features FQ � F derived from the images in IQ. In practice,

the user is not always capable of selecting the features most

fit to reach the goal. For example, how should a general user

decide between shape description using moments or Four-

ier coefficients? Under all circumstances, however, the user

should be capable of indicating the class of features relevant

for the task, like shape, texture, or both. In addition to

feature class, [57] has the user indicate the requested

invariance. The user can, for example, specify an interest in

features robust against varying viewpoint, while the

expected illumination is specified as white light in all cases.

The appropriate features can then be automatically selected

by the system. As concerns the third component of query

space, the user should also select a similarity function, SQ.

To adapt to different data sets and goals, SQ should be a

parameterized function. Commonly, the parameters are

weights for the different features. The fourth component of

query space is a set of labels ZQ � Z to capture goal-

dependent semantics. Given the above, we define an

abstract query space:

The query space Q is the goal dependent 4-tuple
fIQ;FQ;SQ;ZQg.

To start a query session, an instantiationQ � fIQ; FQ; SQ; ZQg
of the abstract query space is created. When no knowledge
about past or anticipated use of the system is available, the
initial query space Q0 should not be biased toward specific
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images or make some image pairs a priori more similar than
others. The active set of images IQ is therefore equal to all of
IQ. Furthermore, the features of FQ are normalized based on
the distribution of the feature values over IQ e.g., [48], [142].
To make SQ unbiased over FQ, the parameters should be
tuned, arriving at a natural distance measure. Such a measure
can be obtained by normalization of the similarity between
individual features to a fixed range [184], [142]. For the
instantiation of a semantic label, the semantic gap prevents
attachment to an image with full certainty. Therefore, in the
ideal case, the instantiation ZQ of ZQ assigns, for each i 2 IQ
and each z 2 ZQ, a probability Pi�z�, rather than a strict label.

The query space forms the basis for specifying queries,

display of query results, and for interaction.

6.2 Query Specification

For specifying a query q in Q, many different interaction

methodologies have been proposed. A query falls in one of

two major categories: exact query, where the query answer

set A�q� equals the images in IQ, satisfying a set of given

criteria, and an approximate query, where A�q� is a ranking of

the images in IQ with respect to the query, based on SQ.

Within each of the two categories, three subclasses can be

defined depending on whether the query relates to the

spatial content of the image, to the global image informa-

tion, or to groups of images. An overview of the initializa-

tion and specification of queries is shown in Fig. 11.
For exact queries, the three subclasses are based on

different predicates the result should satisfy:

. Exact query by spatial predicate is based on the location
of silhouettes, homogeneous regions, or signs. Query
on silhouette location is applicable in narrow
domains only. Typically, the user queries using an
interpretation z 2 ZQ. To answer the query, the

system then selects an appropriate algorithm for
segmenting the image and extracting the domain-
dependent features. In [156], the user interactively
indicates semantically salient regions to provide a
starting point. The user also provides sufficient
context to derive a measure for the probability of z.
Implicit spatial relations between regions sketched
by the user in [163] yield a pictorial predicate. Other
systems let the user explicitly define the predicate on
relations between homogeneous regions [20]. In both
cases, to be added to the query result, the homo-
genous regions as extracted from the image must
comply with the predicate. A Web search system in
which the user places icons representing categories
like human, sky, and water in the requested spatial
order is presented in [97]. In [144], users pose
spatial-predicate queries on geographical signs
located in maps based on their absolute or relative
positions.

. Exact query by image predicate is a specification of
predicates on global image descriptions, often in the
form of range predicates. Due to the semantic gap,
range predicates on features are seldom used in a
direct way. In [120], ranges on color values are pre-
defined in predicates like ªMostlyBlueº and ªSome-
Yellow.º Learning from user annotations of a
partitioning of the image allows for feature range
queries like: ªamount of sky > 50 percent and
amount of sand > 30 percentº [130].

. Exact query by group predicate is a query using an
element z 2 ZQ, where ZQ is a set of categories that
partitions IQ. Both in [21] and [179], the user queries
on a hierarchical taxonomy of categories. The
difference is that the categories are based on
contextual information in [21] while they are inter-
pretations of the content in [179].
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In the approximate types of query specifications, the user

specifies a single feature vector or one particular spatial

configuration in FQ, where it is anticipated that no image

will satisfy the query exactly.

. Approximate query by spatial example results in an
image or spatial structure corresponding to literal
image values and their spatial relationships. Pictorial
specification of a spatial example requires a feature
space such that feature values can be selected or
sketched by the user. Low-level feature selectors use
color pickers or selections from shape and texture
examples [48], [61]. Kato et al. [88] were the first to
let users create a sketch of the global image
composition which was then matched to the edges
in IQ. Sketched outlines of objects in [93] are first
normalized to remove irrelevant detail from the
query object before matching it to objects segmented
from the image. When specification is by parameter-
ized template [36], [150], each image in IQ is
processed to find the best match with edges of the
images. The segmentation result is improved if the
user may annotate the template with salient details
like color corners and specific textures. Preidentifi-
cation of all salient details in images in IQ can then
be employed to speed up the search process [161].
When weak segmentation of the query image and all
images in IQ is performed, the user can specify the
query by indicating example regions [20], [163].

. Approximate query by image example feeds the system a
complete array of pixels and queries for the most
similar images, in effect asking for the k-nearest-
neighbors in feature space. Most of the current
systems have relied upon this form of querying [48],
[61]. The general approach is to use an SQ based on
global image features. Query by example queries are
subclassified [184] into query by external image
example, if the query image is not in the database,
versus query by internal image example. The difference
in external and internal example is minor for the
user, but affects the computational support as, for
internal examples, all relations between images can
be precomputed. Query by image example is suited
for applications where the target is an image of the
same object or set of objects under different viewing
conditions [57]. In other cases, the use of one image
cannot provide sufficient context for the query to
select one of its many interpretations [146].

. Approximate image query by group example is specifica-
tion through a selection of images which ensemble
defines the goal. The rationale is to put the image in
its proper semantic context to make one of the
possible interpretations z 2 ZQ preponderant. One
option is that the user selects m > 1 images from a
palette of images presented to find images best
matching the common characteristics of the
m images [31]. An m-query set is capable of defining
the target more precisely. At the same time, the
m-query set defines relevant feature value variations
and nullifies irrelevant variations in the query.
Group properties are amplified further by adding

negative examples. This is achieved in [10] by
constructing a query q best describing positive and
negative examples indicated by the user. When, for
each group in the database, a small set of
representative images can be found, they are stored
in a visual dictionary from which the user creates the
query [146].

Of course, the above queries can always be
combined into more complex queries. For example,
both [20], [163] compare the similarity of regions
using features. In addition, they encode spatial
relations between the regions in predicates. Even
with such complex queries, a single query q is rarely
sufficient to make A�q� the user desired answer set.
For most image queries, the user must engage in
active interaction with the system on the basis of the
query results as displayed.

6.3 Query Space Display

There are several ways to display the query result to the
user. In addition, system feedback can be given to help the
user in understanding the result. We define:

The visualization operator V maps the query space Q into the
display space D having perceived dimension d.

Note that d is the intrinsic dimensionality of the query result
or d is induced by the projection function in V if the query
result is of too high a dimension to visualize directly. In
both cases, d is not necessarily equal to the two dimensions
of the screen, so an additional projection operator might be
required to map D onto the screen.

When the query is exact, the result of the query is a set of
images fulfilling the predicate. As an image either fulfills
the predicate or not, there is no intrinsic order in the query
result and d � 0 is sufficient.

For approximate queries, the images in IQ are given a
similarity ranking based on SQ with respect to the query. In
many systems, the role of V is limited to bounding the
number of images displayed, which are then displayed in a
2D rectangular grid [48], [21]. Note, however, that we
should have d � 1. If the user refines its query using query
by example, the images displayed do not have to be the
images closest to the query. In [184], images are selected
that together provide a representative overview of the
whole active database. An alternative display model dis-
plays the image set minimizing the expected number of
total iterations [31].

The space spanned by the features in FQ is a high-
dimensional space. When images are described by feature
vectors, every image has an associated position in this
space. In [146], [175], [68], the operator V maps the high-
dimensional feature space onto a display space with d � 3.
Images are placed in such a way that distances between
images in D reflect SQ. A simulated fisheye lens is used to
induce perception of depth in [175]. In the reference, the set
of images to display depends on how well the user
selections conform to selections made in the community
of users. To improve the user's comprehension of the
information space, [68] provides the user with a dynamic
view on FQ through continuous variation of the active
feature set. The display in [86] combines exact and
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approximate query results. First, the images in IQ are
organized in 2D-layers according to labels in ZQ. Then, in
each layer, images are positioned based on SQ.

In exact queries based on accumulative features, back-
projection [169], [41] can be used to give system feedback,
indicating which parts of the image fulfill the criteria. For
example, in [130], each tile in the partition of the image
shows the semantic label, like sky, building, or grass, the tile
received. For approximate queries, in addition to mere rank
ordering, in [20], system feedback is given by highlighting
the subparts of the images contributing most to the ranking
result.

6.4 Interacting with Query Space

In early systems, the process of query specification and
display is iterated, where, in each step, the user revises the
query. Updating the query often is still appropriate for exact
queries. For approximate queries, however, the interactive
session should be considered in its entirety. During the
session, the system updates the query space, attempting to
learn the goals from the user's feedback. As for the user, the
result is what is visualized in display space, we define:

An interactive query session is a sequence of query spaces
fQ0; Q1; ::::; Qnÿ1; Qng with An�q� � V �Qn�.

In a truly successful session, An�q� is the user's search goal.
The interaction process is schematically indicated in Fig. 12.
The interaction of the user yields a relevance feedback RFi

in every iteration i of the session. The transition from Qi to
Qi�1 materializes the feedback of the user. For target search,
category search, or associative search, various ways of user
feedback have been considered. All are balancing between
obtaining as much information from the user as possible
and keeping the burden on the user minimal. The simplest
form of feedback is to indicate which images are relevant
[31]. In [28], [110], the user in addition explicitly indicates
nonrelevant images. The system in [142] considers five
levels of significance, which gives more information to the
system, but makes the process more difficult for the user.
When d � 2, the user can manipulate the projected
distances between images, putting away nonrelevant
images and bringing relevant images closer to each other
[146]. The user can also explicitly bring in semantic
information by annotating individual images, groups of
images, or regions inside images [111] with a semantic label.

In general, user feedback leads to an update of query
space:

fIiQ; F
i
Q; S

i
Q; Z

i
Qg ÿ!

RFi
fIi�1

Q ; F i�1
Q ; Si�1

Q ; Zi�1
Q g: �20�

Different ways of updating Q are open. In [184], the
images displayed correspond to a partitioning of IQ. By
selecting an image, one of the sets in the partition is selected
and the set IQ is reduced. Thus, the user zooms in on a target
or a category.

The methods follows the pattern:

IiQ ÿ!
RFi

Ii�1
Q : �21�

In current systems, the feature vectors in FQ correspond-
ing to images in IQ are assumed fixed. This has great
advantages in terms of efficiency. When features are

parameterized, however, feedback from the user could lead
to optimization of the parameters. For example, in para-
meterized detection of objects based on salient contour
details, the user can manipulate the segmentation result to
have the system select a more appropriate salient detail
based on the image evidence [161]. The general pattern is:

F i
Q ÿ!

RFi
F i�1
Q : �22�

For associative search, users typically interact to learn the
system the right associations. Hence, the system updates the
similarity function:

Si
Q ÿ!

RFi
Si�1
Q : �23�

In [28], [142], SQ is parameterized by a weight vector on
the distances between individual features. The weights in
[28] are updated by comparing the variance of a feature in
the set of positive examples to the variance in the union of
positive and negative examples. If the variance for the
positive examples is significantly smaller, it is likely that the
feature is important to the user. The system in [142] first
updates the weight of different feature classes. The ranking
of images according to the overall similarity function is
compared to the rankings corresponding to each individual
feature class. Both positive and negative examples are used
to compute the weight of the feature, computed as the
inverse of the variance over the positive examples. The
feedback RFi in [146] leads to an update of the user-desired
distances between pairs of images in IQ. The parameters of
the continuous similarity function should be updated to
match the new distances. A regularization term is intro-
duced, limiting the deviation from the initial natural
distance function.

The final set of methods follow the pattern:

Zi
Q ÿ!

RFi
Zi�1
Q : �24�

The system in [111] precomputes a hierarchical grouping
of partitionings (or images for that matter) based on the
similarity for each individual feature. The feedback from
the user is employed to create compound groupings
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corresponding to a user given z 2 ZQ. The compound
groupings are such that they include all of the positive and
none of the negative examples. Unlabeled images in the
compound group receive label z. The update of probabil-
ities P is based on different partitionings of IQ. For category
and target search, a system may refine the likelihood of a
particular interpretation, updating the label based on
feature values or on similarity values. The method in
[110] falls in this class. It considers category search, where ZQ

is {relevant, nonrelevant}. In the limit case for only one
relevant image, the method boils down to target search. All
images indicated by the user as relevant or nonrelevant in
current or previous iterations are collected and a Parzen
estimator is constructed incrementally to find optimal
separation between the two classes. The generic pattern,
which uses similarity in updating probabilities, is the form
used in [31] for target search with ZQ = {target}. In the
reference, an elaborate Bayesian framework is derived to
compute the likelihood of any image in the database being
the target, given the history of actions RFi. In each iteration,
the user selects examples from the set of images displayed.
Image pairs are formed by taking one selected and one
displayed, but nonselected, image. The probability of being
the target for an image in IQ is increased or decreased
depending on the similarity to the selected and the
nonselected example in the pair.

6.5 Discussion on Interaction

Any information the user can provide in the search process
should be employed to provide the rich context required in
establishing the meaning of a picture. The interaction
should form an integral component in any modern image
retrieval system, rather than a last resort when the
automatic methods fail. Already, at the start, interaction
can play an important role. Most of the current systems
perform query space initialization irrespective of whether a
target search, a category search, or an associative search is
requested. But, the fact of the matter is that the set of
appropriate features and the similarity function depend on
the user goal. Asking the user for the required invariance
yields a solution for a specific form of target search. For
category search and associative search, the user-driven
initialization of query space is still an open issue.

For image retrieval, we have identified six query classes,
formed by the Cartesian product of the result type {exact,
approximate} and the level of granularity of the descrip-
tions {spatial content, image, image groups}. The queries
based on spatial content require segmentation of the image.
For large data sets, such queries are only feasible when
some form of weak segmentation can be applied to all
images or when signs are selected from a predefined
legend. A balance has to be found between flexibility on the
user side and scalability on the system side. Query by image
example has been researched most thoroughly, but a single
image is only suited when another image of the same
object(s) is the aim of the search. In other cases, there is
simply not sufficient context. Queries based on groups, as
well as techniques for prior identification of groups in data
sets, are promising lines of research. Such group-based
approaches have the potential to partially bridge the
semantic gap while leaving room for efficient solutions.

The query result has an inherent display dimension
which is often ignored. Most methods simply display
images in a 2D grid. Enhancing the visualization of the
query result is, however, a valuable tool in helping the user-
navigating query space. As apparent from the query space
framework, there is an abundance of information available
for display. New visualization tools are urged to allow for
user- and goal-dependent choices on what to display.

Through manipulation of the visualized result, the user
gives feedback to the system. The interaction patterns as
enumerated here reveal that, in current methods, feedback
leads to an update of just one of the components of query
space. There is no inherent reason why this should be the
case. In fact, joint updates could indeed be effective and
well worth researching. For example, the pattern which
updates category membership based on a dynamic similar-
ity function would combine the advantages of browsing
with category and target search.

One final word about the impact of interactivity on the
architecture of the system. The interacting user brings about
many new challenges for the response time of the system.
Content-based image retrieval is only scalable to large data
sets when the database is able to anticipate what interactive
queries will be made. A frequent assumption is that the
image set, the features, and the similarity function are
known in advance. In a truly interactive session, the
assumptions are no longer valid. A change from static to
dynamic indexing is required.

7 SYSTEM ASPECTS

7.1 Storage and Indexing

We have been concerned with the content of the image
eventually leading to a feature vector F or a hierarchically
ordered set H containing the information of the image.
Repetition over all images in the data set yields a file of
feature vectors, the data file. In the previous section, we
discussed the request as translated into the query image
vector, Fq, to be compared with the elements Fd of data file
on the basis of the similarity function.

Scientifically and practically, the most interesting appli-
cations of retrieval are on large data sets, where there is
statistically sound coverage of the image spectrum and
learning general laws from the data sets makes sense. For
large image sets, computational performance cannot be
ignored as an issue. When storing the feature vectors in a
standard, linear file with one record to each feature vector,
we are bound to scan through all feature vectors. In that
case, we have to perform N fetches of a record plus
subsequent calculations to find the data vector most similar
to the query feature vector. The response time of the system
is O�N� and, so, it is the number of operations when
inserting a new element in the database and updating the
mutual distance matrix among the elements. Linear scan-
ning the feature vector file puts interactive response times
out of reach, most certainly for data sets of 10,000 images
and more.

In addition to the number of images, the dimension of
the image vector can also be considerable. In [176], over
10,000 features are computed from the image each
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describing a local pattern. In the example of a wavelet
histogram for texture-based retrieval [162], an image has
a nine-dimensional vector for each pixel compressed to a
512-bin histogram to a total of 5122 histograms of 512
bins per image. The shape indexing technique [153]
represents an image vector by a hierarchically ordered
set of six types of nodes and three types of links, each
encoding a number of image descriptors. Indexing in high
dimensional spaces is difficult by the curse of dimension-
ality, a phenomenon by which indexing techniques
become inefficient as the dimensionality of the feature
space grows. The performance of R�-trees degrades by a
factor of 12 as the number of dimensions increases from 5
to 10 [190].

We focus on three classes of indexing methods that are in
use on large image databases, substantiated by performance
figures: space partitioning, data partitioning, and distance-based
techniques. In space-partitioning index techniques, the
feature space is organized like a tree as discussed in [15].
A node in this tree stands for a region in this space. When
the number of points in a region exceeds a prescribed
amount, the region is split into subregions which become
the children of the node containing the original region. The
best known index in this class is the kÿ d tree. A kÿ d tree
is a data structure that generalizes binary trees in
k dimensions, hence the name. It splits an overfilled node
of the tree along its k dimensions, an splits the data points
in the node along the median of the data values [7]. In the
implementation of the reference, there is an approximation
bound �. In [152], a 15-fold decrease in response time is
reported using the kÿ d tree for a 20-nearest neighbors
query over N � 500,000 images with M � 78 dimensions in
feature space and � � 0:1. A further improvement is the
kÿ d B-tree as a multidimensional generalization of
standard B-tree with splitting capacity of the kÿ d tree. It
is a balanced data structure with equal depth from the root,
with O�logN� performance [196].

Data partitioning index techniques associate, with each
point in feature space, a region that represents the
neighborhood of that vector. An R-tree is such a data
partitioning structure to index hyperrectangular regions in
M-dimensional space. The leaf nodes of an R-tree represent
the minimum bounding rectangles of sets of feature vectors.
An internal node is a rectangle encompassing the rectangles
of all its children. An R�-tree is a variant which does not
allow the minimum bounding rectangles in a node to
overlap. In R�-tree, the minimum bounding rectangles may
overlap. The ordinary R-tree, family has not been very
successful for vectors with dimension somewhere over 10.
The VAM-split R-tree splits along the dimension of
maximum variance [190], hence the name, and was shown
to have a better performance than standard R�-tree. Since
the splitting criterion is dependent on the spread of the data
rather than the number of data in a bucket, it proves to be
very effective, even for clustered data and for correlated
dimensions. A VAM-split R-tree can be constructed two
orders of magnitude faster than an R�-tree, taking less than
a second for a 20-nearest-neighbors query for M � 11 on an
N � 100,000 image database. The SS-tree [189] and its
further improvement, the SR-tree [87], use the intersection

of the minimum bounding hypersphere and minimum
bounding hyperrectangle as the bounding region of a data
element. As the dimension grows, it combines, for one
bounding region, the advantage of the small volume of the
hyperrectangle with the small diameter of the hypersphere.
It has been shown that the SR-tree is efficient in low and
high feature vector sizes.

Distance-based index structures are example-based
space-partitioning techniques, and, hence, very suited for
query by example when feature space is metric. The
primary idea is to pick an example point and divide the
rest of the feature space into M 0 groups in concentric rings
around the example. This results in a distance-based index,
the vantage point tree first proposed in [195]. In [14], the
VP-tree was generalized for high dimensional feature
vectors. The MVP-tree is a static data structure that uses
multiple example (vantage) points at each node. The first
vantage point is used to create M 0 partitions. And in each
partition, a second vantage point creates M 0 more divisions.
MVP-trees, with M 0 � 3, Mmaxpernode � 13, using the L2

metric found to perform fewer distance calculations during
vector comparison for a nearest-neighbor search than
competing techniques. The M-tree proposed in [27] is a
more robust and scalable indexing strategy that uses the
triangle-inequality of metric spaces, but, at the same time,
retains the data partitioning properties of spatial access
methods such as the R-tree and the SS-tree. M-trees are
similar to MVP-trees in the sense that they both split the
space based on spherical volumes around some reference
vectors. However, M-trees are locally adapting, balanced
indexes. Hence, they are less affected by the distribution of
vectors in feature space.

Although the M-tree cannot guarantee worst case
performance, it has been shown to work well in practice,
with distance computation costs of O�logM� in most cases.
It also has the advantage of dealing directly with features
that can be represented in a metric space but not in a vector
space, unlike techniques like FastMap [46] or multidimen-
sional scaling which approximate the feature space with a
vector space that maintains approximately the same metric.

It is regrettable that not toomuchwork across the division
between the disciplines of vision and databases has been
done yet, with a few exceptions in commercial systems [48],
[61] and research [46], [85], [171]. Recentwork from the vision
side is found in [170], where the database organizes itself for
narrow domains in clustering hierarchies of the most
expressive features, and in [2], where clusters of feature
values are sought in a graph-theoretical representation.

7.2 System Architectures

Many systems like Photobook [128], PictoSeek [57], and
[116] are rooted in computer vision. In such systems, the
data and features are typically stored in files addressed by
name. From an architectural point of view, this approach is
likely to run into data integrity and performance problems
when trying to scale up to a large database and a large
number of users.

The large number of elements is clearly an issue in [21],
[40], [168] and any other of the numerous Web search
engines, where the emphasis is on filling the database using
the World Wide Web as a logical repository. Architectural
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issues focus on modules for searching the Web. In such
architectures, a clear distinction can be made between off-
line indexing and online readout for retrieval. The separa-
tion simplifies database integrity greatly. Hence, with
simple, static index structures one can obtain a good
performance during retrieval.

One step beyond the read-only databases is the use of a
standard database management system extended for image
retrieval. Groundbreaking examples are QBIC [48] and
Virage [61]. In [120], an extended relational database system
was used. Reducing image retrieval as a plug-in module in
an existing database solves the integrity problem for image
content and allows dynamic updates. It also provides
natural integration with features derived from other
sources. Standard databases maintain a narrow data-
exchange channel between the search engine and the data
and, hence, performance is rather poor. In the references,
visualization and knowledge management is not being
addressed as part of the integrated system.

For more complete systems, detailed architectures are to
be considered. One of the early contributions to do so can be
found in the CORE-system [193], which has been the basis
for many different applications. The architecture is centered
around a general Data Base Management System on top of
which modules for analysis, indexing, training, and
retrieval have been resolved in the database parlance. In
such an approach, the database structure dominates knowl-
edge management, feature calculation, and visualization
tools, which severely hampers ease of expression in these
areas.

The generic architecture described in [60] is based on a
detailed model of the various information types. Each
information type holds its data in a separate repository
rather than the unified database, specifically separating
data-driven and semantic, information bearing features.
The advantage is that processing units, one for each new
data type, can be put together quickly. The drawback is that
the distinction between information-bearing features and
data-driven features varies with the level of knowledge in
the system and, hence, will be obstructing knowledge-based
analysis.

The Infoscopes architecture [82] follows a similar
distinction of features. It adds a new dimension to the
architecture of content-based systems by making explicit
the knowledge for the various parts of the system. The
Piction system [155] proposes an architecture for collabora-
tive use of image information and related textual informa-
tion, while making knowledge explicit.

The systems discussed so far put their main emphasis on
data and, later, on knowledge processing. In contrast,
systems reviewed in [141] and, particularly, the MARS-
system [142], are based on the information retrieval
paradigm. The interaction with the user is considered
crucial for a successful system. They propose an architec-
ture for future systems which has a sequential processing
structure from features to user interaction. This architecture
ignores the role of data organization and explicit domain
knowledge.

Integration of database research and visualization [96]
has brought about techniques for visualizing the structure

and content of an image database. Content-based similarity
between images is not exploited here. The systems in [68],
[184] have pursued integration furthest by using content-
based similarity, interaction, and visualization, as well as
database techniques for retrieving relevant images. Hence,
they use techniques from three of the research fields
identified earlier. The El NinÄo database system [146]
proposes an architecture for the integration of several,
possibly remote, engines through a mediator. The interac-
tion is viewed as an outside source of knowledge infusion;
semantics are expected to emerge in the course of the
interaction. The addition of a knowledge component would
lead to truly integrated content-based image retrieval
systems.

7.3 System Evaluation

The evaluation of image retrieval is a difficult yet essential
topic for the successful deployment of systems and their
usefulness in practical applications. The initial impetus for
the evaluation of image databases comes from the neigh-
boring discipline of information retrieval, in which user-
based evaluation techniques have reached a considerable
degree of sophistication [143]. The main tool that image
retrieval research borrowed from information retrieval are
the precision and recall measures. Suppose a data set D and
a query q are given. Through the use of human subjects, the
data set can be divided into two sets: the set of images
relevant for the query q, R�q� and its complement, the set of
irrelevant images �R�q�. Suppose that the query q is given to
a data set and that it returns a set of images A�q� as the
answer. The precision of the answer is the fraction of the
returned images that is indeed relevant for the query:

p �
jA�q� \R�q�j

jA�q�j
; �25�

while the recall is the fraction of relevant images that is
returned by the query:

r �
jA�q� \R�q�j

jR�q�j
�26�

While precision and recall are a useful tool in informa-
tion retrieval, in the context of image databases, they are not
sufficient for two reasons. First, the selection of a relevant
set in an image database is much more problematic than in
a text database because of the more problematic definition
of the meaning of an image. In the case of a document, the
human judgment of whether a certain document is relevant
to a certain query is relatively stable and there is a strong
connection between this judgment and the statistical
characteristics of the presence of certain elementary units
(words). In the case of an image, relevance is much less
stable because of the larger number of interpretation, of a
image separated from a linguistic context. Moreover, no
analysis in terms of semiotically stable constitutive elements
can be done therefore, the correlation between image
relevance and low-level feature is much more vague.

The second reason is that image databases usually do not
return an undifferentiated set of ªrelevantº results, but a
ranked list of results or some more complex configuration
that shows the relation between the results of the query.
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Although a query result is, in principle, an ordering of the
whole database, the size of the answer set A�q� is usually
reduced to k most relevant images. When the number of
relevant images is greater than k, recall is meaningless as a
measure of the quality of the database.

In spite of these drawbacks, precision and recall (or other

measures derived from them) are useful measurements in

special circumstances. In particular, when the image

database relies on the strong semantics provided by label

or other textual description, precision and recall can be

usefully employed [164].

In [119], the problem was considered of measuring the

performance of a database without using the notion of

relevant set. They assumed that an ideal database would

take a query q and provide an ideal ordering of the

database: Z � �z1; . . . ; zk�. The ideal database will also

provide a relevance measure for each image, S�Ij� 2 �0; 1�.

The database under test, on the other end, will order the

image, given the same query q, as ZQ � �z�1 ; . . . ; z�k �, where

��1; . . . ; �k� is a permutation of �1; . . . ; k�. The displacement

of the image Ij between the two orderings is given by

jjÿ �jj, and all the displacements can be added and

weighted by the relevance of the respective images

obtaining the weighed displacement

! �
X

j

S�Ij�jjÿ �jj: �27�

The weighed displacement gives a way of comparing the

outputs of two databases, but this leaves open the problem

of obtaining the ideal ordering Z. In most cases, such

ordering is obtained by performing experiments with

human subjects.
With respect to experimental practices that use human

subjects, a distinction can be made between the evaluation
of a complete system and that of parts of a system [145]. In

the first case, the system can be evaluated in the context of a
well-defined activity by measuring the increased effective-
ness resulting from the introduction of the database. Well-
known techniques from social sciences can be used for the
experimental design [19] and for the statistical analysis of
the data [104]. In the second case, human subjects should be
used to obtain the ground truth. Such an approach is
followed, for instance, in [12], [124].

7.4 Discussion on System Aspects

As concerns system architecture, we maintain that a full-
grown content-based retrieval system will result from the
integration of a sensory and feature calculating part, a
domain knowledge and interpretation module, an interac-
tion and user interface module, and a storage and indexing
module. For the system architectures discussed above, we
conclude that most systems have an innovative emphasis
understandably limited to one or two of these components.
We feel there is a need for a framework for content-based
image retrieval providing a more balanced view of the four
constituent components. The framework would be based on
explicit communication protocols to permit a discipline
specific parlance within each of the modules, see Fig. 13.
Such a framework follows the lines of object-oriented
modular design, task differentiation, class abstractions,
data hiding, and a communication protocol as CORBA.

8 CONCLUDING REMARKS

At the end of this review, we would like to present our view
on a few trends:

1. The driving force. Content-based image retrieval came
around quickly. Suddenly it was there, like the new
economy. And it moves fast. In our review, most of
the journal contributions are from the last five years.
We are aware of the fact that much of what we have
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said here will be outdated soon, and hopefully so,
but we hope we laid down patterns in computation
and interaction which may last a little longer.

The impetus behind content-based image retrie-
val is given by the wide availability of digital
sensors, the Internet, and the falling price of storage
devices. Given the magnitude of these driving
forces, it is to us that content-based retrieval will
continue to grow in every direction: new audiences,
new purposes, new styles of use, new modes of
interaction, larger data sets, and new methods to
solve the problems.

What is needed most to bring the early years of
content-based retrieval to an end is more precise
foundations. For some of the reviewed papers, it was
not clear what problem they were trying to solve or
whether the proposed method would perform better
than an alternative. A classification of usage-types,
aims, and purposes would be very helpful here,
including hard criteria for distinguishing among
domain types. In spite of the difficulties intrinsic to
the early years, it is now clear that content-based
retrieval is not just old wine in new sacks. It will
demand its own view of things as it is our belief that
content-based retrieval in the end will not be part of
the field of computer vision alone. The man-machine
interface, domain knowledge, and database technol-
ogy each will have their impact on the product.

2. The heritage of computer vision. An important obstacle
to overcome before content-based image retrieval
could take off was to realize that image retrieval
does not entail solving the general image under-
standing problem. It may be sufficient that a
retrieval system present similar images, similar in
some user-defined sense. Strong segmentation of the
scene and complete feature descriptions may not be
necessary at all to achieve the similarity ranking. Of
course, the deeper one goes into the semantics of the
pictures, the deeper the understanding of the picture
will have to be, but that could very well be based on
categorizing pictures rather than on a precise
understanding.

We discussed applications of content-based re-
trieval in three broad types: target search, category
search, and search by association. These user aims
are rooted in the research tradition of the field.

Target search builds on pattern matching and
object-recognition. New challenges in content-based
retrieval are the huge amount of objects among
which to search, the incompleteness of the query
specification and of the image descriptions, and the
variability of sensing conditions and object states.

Category search builds on object recognition
and statistical pattern recognition problems. New
challenges in content-based retrieval compared to
the achievements of object recognition are the
interactive manipulation of results, the usually
very large number of classes, and the absence of
an explicit training phase for feature selection and
classification tuning.

In the search by association, the goal is unspeci-
fied at the start of the session. Here, the heritage of
computer vision is limited to feature sets and
similarity functions. The association process is
essentially iterative, interactive, and explicative.
Therefore, association search is hampered most by
the semantic gap. All display and relevance feed-
back has to be understood by the user, so the
emphasis must be on developing features transpar-
ent to the user.

3. The influence on computer vision. In reverse, content-
based image retrieval offers a different look at
traditional computer vision problems.

In the first place, content-based retrieval has
brought large data sets. Where the number of test-
images in a typical journal paper was well under a
hundred until very recently, a state-of-the-art paper
in content-based retrieval reports experiments on
thousands of images. Of course, the purpose is
different for computer vision and content-based
retrieval. It is much easier to compose a general
data set of arbitrary images rather than the specific
ones needed in a computer vision application, but
the stage has been set for more robustness. For one
thing, to process a thousand images at least
demands software and computational method be
robust.

In the second place, content-based retrieval has
run into the absence of a general method for strong
segmentation. Especially for broad domains and for
sensory conditions where clutter and occlusion are
to be expected, strong segmentation into objects is
hard, if not impossible. Content-based retrieval
systems have dealt with the segmentation bottleneck
in a few creative ways. First, a weaker version of
segmentation has been introduced in content-based
retrieval. In weak segmentation, the result is a
homogeneous region by some criterion, but not
necessarily covering the complete object silhouette.
Weak segmentation leads to the calculation of salient
features capturing the essential information of the
object in a nutshell. The extreme form of the weak
segmentation is the selection of a salient point set as
the ultimately efficient data reduction in the repre-
sentation of an object, very much like the focus-of-
attention algorithms for an earlier age. Weak
segmentation and salient features are a typical
innovation of content-based retrieval. It is expected
that salience will receive much attention in the
further expansion of the field, especially when
computational considerations will gain in impor-
tance. The alternative to work around strong
segmentation is to do no segmentation at all. Global
features, such as wavelets and histograms, have
been very effective. When the image is recorded
with a photographic purpose, it is likely that the
center of the image means something different than
the surrounding parts of the image, so using that
division of the picture could be of help too. Using no
segmentation at all is likely to run dry on semantics

SMEULDERS ET AL.: CONTENT-BASED IMAGE RETRIEVAL AT THE END OF THE EARLY YEARS 1373



at the point where characteristics of the target are not
specific enough in large databases to discriminate
against the features of all other images.

In the third place, content-based retrieval has
revitalized interest in color image processing. This is
due to superior identification of trivalued intensities
in identifying an object, as well as to the importance
of color in the perception of images. As content-
based is user-oriented, color cannot be left out. The
purpose of most image color processing here is to
reduce the influence of accidental conditions of the
scene and the sensing (i.e., the sensory gap) by
computing sensing and scene invariant representa-
tions. Progress has been made in tailored color space
representation for well-described classes of variant
conditions. Also, the application of local geometrical
descriptions derived from scale space theory will
reveal viewpoint and scene independent salient
point sets, thus opening the way to similarity of
images on a small number of most informative
regions or points.

Finally, attention for invariance has been revita-
lized as well with many new features and similarity
measures. For content-based retrieval, invariance is
just one side of the coin, where discriminating power
is the other. Little work has been reported so far to
establish the remaining discriminating power of
properties. This is essential as the balance between
stability against variations and retained discriminat-
ing power determines the effectiveness of a property.

4. Similarity and learning. Similarity is an interpretation
of the image based on the difference between two
elements or groups of elements. For each of the
feature types, a different similarity measure is
needed. For similarity between feature sets, special
attention has gone to establishing similarity between
histograms due to their computational efficiency and
retrieval effectiveness. Where most attention has
gone to color histograms, it is expected that
histograms of local geometric properties and texture
will follow. Being such a unique computational
concept, the histogram is receiving considerable
attention from the database community for upgrad-
ing the performance on very large data sets. This is
advantageous in the applicability of applying retrie-
val on very broad domains. To compensate for the
complete loss of spatial information, new ways were
recently explored as described above.

Similarity of hierarchically ordered descriptions
deserves considerable attentionas it is onemechanism
to circumvent the problems with segmentation while
maintaining some of the semantically meaningful
relationships in the image. Part of the difficulty here is
to provide matching of partial disturbances in the
hierarchical order and the influence of sensor-related
variances in the description.

We make a pledge for the importance of human-
based similarity rather than general similarity. Also,
the connection between image semantics, image
data, and query context will have to be made clearer
in the future. Similarity-induced semantics and the
associated techniques for similarity adaptation (e.g.,

relevance feedback) are a first important step, but
more sophisticated techniques, possibly drawing
from machine learning, are necessary.

Learning is quickly gaining attention as a means
to build explicit models for each semantic term.
Learning is made possible today by the availability
of large data sets and powerful machines and allows
one to form categories from captions, from partially
labeled sets, or even from unlabeled sets. Learning is
likely to be successful for large, labeled data sets on
narrow domains first, which may be relaxed to
broader domains and less standardized conditions
as the available data sets will grow even more.
Obviously, learning from labeled data sets is likely
to be more successful than unsupervised learning
first. New computational techniques, however,
where only part of the data is labeled or the data is
labeled by a caption rather than categories, open
new possibilities. It is our view that, in order to bring
semantics to the user, learning is inevitable.

5. Interaction. We consider the emphasis on interaction
in image retrieval as one of the major departures
from the computer vision tradition, as was already
cited in the 1992 workshop [81]. Interaction was first
picked up by frontrunners, such as NEC laboratories
in Japan and the MIT Media Lab, to name a few.
Now, interaction and feedback have moved into the
focus of attention. Putting the user in control and
visualization of the content has always been a
leading principle in information retrieval research.
It is expected that more and more techniques from
traditional information retrieval will be employed or
reinvented in content-based image retrieval. Text
retrieval and image retrieval share the need for
visualizing the information content in a meaningful
way as well as the need to accept a semantic
response of the user rather than just providing
access to the raw data.

User interaction in image retrieval has, however,
some different characteristics from text retrieval.
There is no sensory gap and the semantic gap from
keywords to full text in text retrieval is of a different
nature. No translation is needed from keywords to
pictorial elements. In addition to the standard query
types, six essentially different image based types
have been identified in this paper. Each require their
own user interface tools and interaction patterns.
Due to the semantic gap, visualization of the query
space in image retrieval is of great importance for
the user to navigate the complex query space. While,
currently, two- or three-dimensional display spaces
are mostly employed in query by association, target
search and category search are likely to follow. In all
cases, an influx of computer graphics and virtual
reality is foreseen in the near future.

As there is no interactivity if the response time is
frequently over a second, the interacting user poses
high demands on the computational support. Index-
ing a data set for interactive use is a major challenge
as the system cannot completely anticipate the user's
actions. Still, in the course of the interaction, the
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whole query space, i.e., the active image set, the
features, the similarity, and the interpretations, can
all change dynamically.

6. The need for databases. When data sets grow in size
and when larger data sets define more interesting
problems, both scientifically as well as for the public,
the computational aspects can no longer be ignored.

The connection between content-based image
retrieval and database research is likely to increase
in the future. Already, the most promising efforts are
interdisciplinary, but, so far, problems like the
definition of suitable query languages, efficient
search in high dimensional feature space, search in
the presence of changing similarity measures are
largely unsolved.

It is regrettable that little work cutting across the
computer vision and database disciplines has been
done so far, with a few notable exceptions. When
truly large data sets come into view, with hundreds
of thousands of images, databases can no longer be
ignored as an essential component of a content-
based retrieval system. In addition, when interactive
performance is essential, storage and indexing must
be organized in advance. Such large data sets will
have an effect on the choice of features as the
expressive power, computational cost, and hierarch-
ical accessibility determine their effectiveness. For
very large data sets, a view on content integrated
with computation and indexing cannot be ignored.
When speaking about ªindexingº in computer
vision, the emphasis is still on what to index,
whereas the emphasis from the database side is on
how to index. The difference has become smaller
recently, but we believe most work is still to be done.
Furthermore, in dealing with large feature vector
sizes, the expansion of query definitions and query
expansions in a useful manner for a variety of user
aims is still mostly unanswered.

For efficiency, more work on complete sets of
feature calculations from compressed images is
needed.

7. The problem of evaluation. It is clear that the evaluation
of system performance is essential to sort out the
good and the not-so-good methods. Up to this point
in time, a fair comparison of methods under similar
circumstances has been virtually absent. This is due
to the infancy of content-based retrieval, but also to
objective difficulties. Where interaction is a neces-
sary component in most systems, it is difficult to
separate out the influence of the data set in the
performance. Also, it may be the case that some
queries may match the expressive power of the
system, whereas others, similar at first glance, may
be much harder. Searching for a sunset may boil
down to searching for a large orange disc at about
the center of the image. Searching for a lamp, which
may seem similar to the general audience, is a much
harder problem as there is a whole variety of designs
behind a lamp. The success of the system heavily
depends on the toolset of the system relative to the
query. In addition, it is logical that a large data set is
composed of several smaller data sets to get a

sufficiently big size. Then, the difficulty is the
internal coherence of the large data set with respect
to the coherence of its constituents. When a data set
is composed of smaller data sets holding interior
decorations, prairie landscapes, ships, and pigeons,
it is clear that the essential difficulty of retrieval is
within each set rather than among them and the
essential size of the data set is still one quarter. There
is no easy answer here other than the composition of
generally agreed upon data sets or the use of very
very large data sets. In all cases, the vitality of the
content-based approach calls for a significant growth
of the attention to evaluation in the future.

A reference standard against which new algo-
rithms could be evaluated has helped the field of text
recognition enormously, see http://trec.nist.gov. A
comprehensive and publicly available collection of
images, sorted by class and retrieval purposes,
together with a protocol to standardize experimental
practices, will be instrumental in the next phase of
content-based retrieval. We hope that a program for
such a repository will be initiated under the auspices
of a funding agency.

At any rate, evaluation will likely play an
increasingly significant role. Image databases, with
their strong interactional component, present very
different problems from the present ones which will
require borrowing concepts from the psychological
and social sciences.

8. The semantic gap and other sources. A critical point in
the advancement of content-based retrieval is the
semantic gap, where the meaning of an image is
rarely self-evident.

Use of content-based retrieval for browsing will
not be within the grasp of the general public as
humans are accustomed to relying on the immediate
semantic imprint the moment they see an image and
they expect a computer to do the same. The aim of
content-based retrieval systems must be to provide
maximum support in bridging the semantic gap
between the simplicity of available visual features
and the richness of the user semantics.

One way to resolve the semantic gap comes from
sources outside the image by integrating other
sources of information about the image in the query.
Information about an image can come from a
number of different sources: the image content,
labels attached to the image, images embedded in a
text, and so on. We still have very primitive ways of
integrating this information in order to optimize
access to images. Among these, the integration of
natural language processing and computer vision
deserves attention.
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