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ABSTRACT
In a typical content-based image retrieval (CBIR) system,
query results are a set of images sorted by feature similar-
ities with respect to the query. However, images with high
feature similarities to the query may be very different from
the query in terms of semantics. This is known as the se-
mantic gap. We introduce a novel image retrieval scheme,
CLUster-based rEtrieval of images by unsupervised learning
(CLUE), which tackles the semantic gap problem based on a
hypothesis: semantically similar images tend to be clustered
in some feature space. CLUE attempts to capture semantic
concepts by learning the way that images of the same se-
mantics are similar and retrieving image clusters instead of
a set of ordered images. Clustering in CLUE is dynamic. In
particular, clusters formed depend on which images are re-
trieved in response to the query. Therefore, the clusters give
the algorithm as well as the users semantic relevant clues as
to where to navigate. CLUE is a general approach that
can be combined with any real-valued symmetric similarity
measure (metric or nonmetric). Thus it may be embedded
in many current CBIR systems. Experimental results based
on a database of about 60, 000 images from COREL demon-
strate improved performance.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: clustering;
query formulation; retrieval models; search process.

General Terms
Algorithms, Design, Experimentation, Human Factors.
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Content-based image retrieval, image classification, unsu-
pervised learning, spectral graph clustering.
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1. INTRODUCTION
The steady growth of the Internet, the falling price of stor-

age devices, and an increasing pool of available computing
power make it necessary and possible to manipulate very
large repository of digital information efficiently. Gener-
ally speaking, content-based image retrieval (CBIR) aims at
developing techniques that support effective searching and
browsing of large image digital libraries based on automati-
cally derived image features. Although CBIR is still imma-
ture, there has been abundance of prior work. Due to space
limitations, we only review work most related to ours, which
by no means represents the comprehensive list.

1.1 Previous Work
In the past decade, many general-purpose image retrieval

systems have been developed. Examples include QBIC Sys-
tem [6], Photobook System [16], Blobworld System [3], Vi-
rage System [9], VisualSEEK and WebSEEK Systems [20],
the PicHunter System [5], NeTra System [14], MARS Sys-
tem [15], and SIMPLIcity Systems [22].

A typical CBIR system views the query image and images
in the database (target images) as a collection of features,
and ranks the relevance between the query image and any
target images in proportion to feature similarities. Nonethe-
less, the meaning of an image is rarely self-evident. Images
with high feature similarities to the query image may be very
different from the query in terms of the interpretation made
by a user (user semantics or, in short, semantics). This is
referred to as the semantic gap, which reflects the discrep-
ancy between the relatively limited descriptive power of low
level imagery features and the richness of user semantics.

Depending on the degree of user involvement in the re-
trieval process, generally, two classes of approaches have
been proposed to reduce the semantic gap: relevance feed-
back and image database preprocessing using statistical clas-
sification. A relevance-feedback-based approach allows a
user to interact with the retrieval algorithm by providing
the information of which images he or she thinks are rel-
evant to the query [5, 17]. Based on the user feedbacks,
the model of similarity measure is dynamically updated to
give a better approximation of the perception subjectivity.
Empirical results demonstrate the effectiveness of relevance
feedback for certain applications. Nonetheless such a sys-
tem may add burden to a user especially when more infor-
mation is required than just Boolean feedback (relevant or
non-relevant).

Statistical classification methods group images into se-
mantically meaningful categories using low level visual fea-



tures so that semantically-adaptive searching methods ap-
plicable to each category can be applied [18, 21, 22, 12]. For
example, SemQuery system [18] categorizes images into dif-
ferent set of clusters based on their heterogeneous features.
Vailaya et al. [21] organize vacation images into a hierar-
chical structure. At the top level, images are classified as
indoor or outdoor. Outdoor images are then classified as
city or landscape that is further divided into sunset, forest,
and mountain classes. The SIMPLIcity system [22] classi-
fies images into graph, textured photograph, or non-textured
photograph, and thus narrows down the searching space in
a database. ALIP system [12] uses categorized images to
train hundreds of two-dimensional multiresolution hidden
Markov models each corresponding to a semantic category.
Although these classification methods are successful in their
specific domains of application, the simple ontology built
upon them could not incorporate the rich semantics of a
sizable image database. There has been work on attaching
words to images by associating the regions of an image with
object names based on region-term co-occurrence [2]. But as
noted by the authors in [2], the algorithm relies on seman-
tically meaningful segmentation. And semantically precise
image segmentation by an algorithm is still an open problem
in computer vision [19, 23].

1.2 Motivation
Figure 1 shows a query image and the top 29 target im-

ages returned by a CBIR system described in [4] where the
query image is on the upper-left corner. From left to right
and top to bottom, the target images are ranked accord-
ing to decreasing values of similarity measure. In essence,
this can be viewed as a one-dimensional visualization of the
image database in the “neighborhood” of the query image
using a similarity measure. If the query image and major-
ity of the images in the “vicinity” have the same semantics,
then we would expect good results. But target images with
high feature similarities to the query image may be quite
different from the query image in terms of semantics due to
the semantic gap. For the example in Figure 1, the target
images belong to several semantic classes where the domi-
nant ones include horses (11 out of 29), flowers (7 out of 29),
golf player (4 out of 29), and vehicle (2 out of 29).

However, the majority of top matches in Figure 1 belong
to a quite small number of distinct semantic classes, which
suggests a hypothesis that, in the “vicinity” of the query im-
age, images of the same semantics are more similar to each
other than to images of different semantics. Or, in other
words, images tend to be semantically clustered. Therefore,
a retrieval method, which is capable of capturing this struc-
tural relationship, may render semantically more meaningful
results to the user than merely a list of images sorted by a
similarity measure. Similar hypothesis has been well studied
in document (or text) retrieval [1] where strong supporting
evidence has been presented [10].

This motivates us to tackle the semantic gap problem from
the perspective of unsupervised learning. In this paper, we
propose an algorithm, CLUster-based rEtrieval of images
by unsupervised learning (CLUE), to retrieve image clus-
ters instead of a set of ordered images: the query image and
neighboring target images, which are selected according to a
similarity measure, are clustered by an unsupervised learn-
ing method and returned to the user. In this way, relations
among retrieved images are taken into consideration through

clustering and may provide extra information for ranking
and presentation. CLUE has the following characteristics:

• It is a cluster-based image retrieval scheme that can
be used as an alternative to retrieving a set of ordered
images. The image clusters are obtained from an unsu-
pervised learning process based on not only the feature
similarity of images to the query, but also how images
are similar to each other. In this sense, CLUE aims to
capture the underlying concepts about how images of
the same semantics are alike and present to the users
semantic relevant clues as to where to navigate.

• It is a similarity-driven approach that can be built
upon virtually any symmetric real-valued image simi-
larity measure. Consequently, our approach could be
combined with many other image retrieval schemes in-
cluding the relevance feedback approach with dynam-
ically updated models of similarity measure.

• It provides a dynamic and local visualization of the im-
age database using a clustering technique. The clusters
are created depending on which images are retrieved
in response to the query. Consequently, the clusters
have the potential to be closely adapted to character-
istics of a query image. Moreover, by constraining the
collection of retrieved images to the neighborhood of
the query image, clusters generated by CLUE provides
a local approximation of the semantic structure of the
whole image database. Although the overall semantic
structure of the database could be very complex and
extremely difficult to identify by a computer program,
locally it may be well described by a simple approxi-
mation such as clusters. This is in contrast to current
image database statistical classification methods [18,
21, 22], in which the semantic categories are derived for
the whole database in a preprocessing stage, and there-
fore are global, static, and independent of the query.

1.3 Outline of the Paper
The remainder of the paper is organized as follows. Sec-

tion 2 describes the general methodology of CLUE. Section 3
provides the experimental results. We conclude in Section 4,
together with a discussion of future work.

2. RETRIEVAL OF IMAGE CLUSTERS

2.1 System Overview
For the purpose of simplifying the explanations, we call a

CBIR system using CLUE a Content-Based Image Clusters
Retrieval (CBICR) system. From a data-flow viewpoint, a
general CBICR system can be characterized by the diagram
in Figure 2. The retrieval process starts with feature extrac-
tion for a query image. The features for target images (im-
ages in the database) are usually precomputed and stored
as feature files. Using these features together with an im-
age similarity measure, the resemblance between the query
image and target images are evaluated and sorted. Next, a
collection of target images that are “close” to the query im-
age are selected as the neighborhood of the query image. A
clustering algorithm is then applied to these target images.
Finally, the system displays the image clusters and adjusts
the similarity model according to user feedback (if relevance
feedback is included).



Figure 1: A query image and its top 29 matches returned by the CBIR system at http://wang.ist.psu.edu/IMAGE
(UFM). The query image is on the upper-left corner. The ID number of the query image is 6275.
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Figure 2: A diagram of a general CBICR system.
The arrows with dotted lines may not exist for some
CBICR systems.

The major difference between CBICR and CBIR systems
lies in the two processing stages, selecting neighboring target
images and image clustering, which are the major compo-
nents of CLUE. A typical CBIR system bypasses these two
stages and directly outputs the sorted results to the display
and feedback stage. Figure 2 suggests that CLUE can be
designed independent of the rest of the components because
the only information needed by CLUE is the sorted similari-
ties. This implies that CLUE may be embedded in a typical
CBIR system regardless of the image features being used,
the sorting method, and whether there is feedback or not.
As a result, in the following subsections, we focus on the dis-
cussion of general methodology of CLUE, and assume that
a similarity measure is given.

2.2 Neighboring Target Images Selection
To mathematically define the neighborhood of a point,

we need to first choose a measure of distance. As to images,
the distance can be defined by either a similarity measure
(a larger value indicates a smaller distance) or a dissimilar-
ity measure (a smaller value indicates a smaller distance).
Because simple algebraic operations can convert a similar-
ity measure into a dissimilarity measure, without loss of
generality, we assume that the distance between two im-
ages is determined by a symmetric dissimilarity measure,
d(i, j) = d(j, i) ≥ 0, and name d(i, j) the distance between
images i and j to simplify the notation.

Next we propose two simple methods to select a collection
of neighboring target images for a query image i:

1. Fixed radius method (FRM) takes all target images

within some fixed radius ε with respect to i. For a
given query image, the number of neighboring target
images is determined by ε.

2. Nearest neighbors method (NNM) first chooses k near-
est neighbors of i as seeds. The r nearest neighbors
for each seed are then found. Finally, the neighboring
target images are selected to be all the distinct target
images among seeds and their r nearest neighbors.

If the distance is metric, both methods will generate sim-
ilar results under proper parameters (ε, k, and r). However,
for non-metric distances, especially when the triangle in-
equality is not satisfied, the set of target images selected
by two methods could be quite different regardless of the
parameters. This is due to the violation of the triangle in-
equality: the distance between two images could be huge
even if both of them are very close to a query image. The
NNM is used in this work. Compared with the FRM, our
empirical results show that, with proper choices of k and
r, the NNM tends to generate more structured collection of
target images under a non-metric distance. On the other
hand, the computational cost of the NNM is higher than
that of the FRM because of the extra time to find near-
est neighbors for all k seeds. The time complexity can be
reduced at the price of extra storage space.

2.3 Weighted Graph Representation and Spec-
tral Graph Partitioning

Data representation is typically the first step to solve any
clustering problem. In the field of computer vision, two
types of representations are widely used. One is called the
geometric representation, in which data items are mapped
to some real normed vector space. The other is the graph
representation. It emphasizes the pairwise relationship, but
is usually short of geometric interpretation. When work-
ing with images, the geometric representation has a major
limitation: it requires that the images be mapped to points
in some real normed vector space. Overall, this is a very
restrictive constraint. For example, in region-based algo-
rithms [4, 13, 22], an image is often viewed as a collection of
regions. The number of regions may vary among images. Al-
though regions can be mapped to certain real normed vector
space, it is in general impossible to do so for images unless
the distance between images is metric, in which case em-
bedding becomes feasible. Nevertheless, many distances for
images are non-metric for reasons given in [11].

Therefore, this paper adopts a graph representation of



neighboring target images. A set of n images is represented
by a weighted undirected graph G = (V,E): the nodes
V = {1, 2, . . . , n} represent images, the edges E = {(i, j) :
i, j ∈ V} are formed between every pair of nodes, and the
non-negative weight wij of an edge (i, j), indicating the sim-
ilarity between two nodes, is a function of the distance (or
similarity) between nodes (images) i and j. Given a distance

d(i, j) between images i and j, we define wij = e
− d(i,j)2

s2

where s is a scaling parameter that needs to be tuned to
get suitable locality property. The weights can be organized
into a matrix W, named the affinity matrix, with the ij-th
entry given by wij . Although it is a relatively simple weight-
ing scheme, our experimental results (Section 3) have shown
its effectiveness. The same scheme has been used in [8, 19].
Supports for exponential decay from psychological studies
are also provided by [8].

Under a graph representation, clustering can be naturally
formulated as a graph partitioning problem. Among many
graph-theoretic algorithms, this paper uses the normalized
cut (Ncut) algorithm [19] for image clustering. Roughly
speaking, Ncut method attempts to organize nodes into groups
so that the within-group similarity is high, and/or the between-
groups similarity is low. Compared with many other spectral
graph partitioning methods, such as average cut and aver-
age association, the Ncut method is empirically shown to
be relatively robust in image segmentation [19]. The Ncut
method can be recursively applied to get more than two
clusters. But this leads to the questions: 1) which subgraph
should be divided? and 2) when should the process stop?
In this paper, we use a simple heuristic. Each time the sub-
graph with the maximum number of nodes is partitioned
(random selection for tie breaking). The process terminates
when the bound on the number of clusters is reached or the
Ncut value exceeds some threshold T .

2.4 Finding Representative Images
Ultimately, the system needs to present the image clusters

to the user. Unlike a typical CBIR system, which displays
certain numbers of top matched target images to the user,
a CBICR system should be able to provide an intuitive vi-
sualization of the clustered structure in addition to all the
retrieved target images. For this reason, we propose a two-
level display scheme. At the first level, the system shows
a collection of representative images of all the clusters (one
for each cluster). At the second level, the system displays
all target images within the cluster specified by a user.

Nonetheless two questions still remain: 1) how to organize
these clusters? and 2) how to find a representative image for
each cluster? The organization of clusters will be described
in Section 2.5. For the second question, we define a repre-
sentative image of a cluster to be the image that is most
similar to all images in the cluster. This statement can be
mathematically illustrated as follows. Given a graph rep-
resentation of images G = (V,E) with affinity matrix W,
let the collection of image clusters {C1,C2, · · · ,Cm} be a
partition of V. The representative node (image) of Ci is

arg max
j∈Ci

�

t∈Ci

wjt . (1)

Basically, for each cluster, we pick the image that has the
maximum sum of within cluster similarities.

2.5 Organization of Clusters
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Figure 3: A tree generated by four Ncuts on V.
The numbers denote the size of the corresponding
clusters.

The recursive Ncut partition is essentially a hierarchical
divisive clustering process that produces a tree. For exam-
ple, Figure 3 shows a tree generated by four recursive Ncuts.
The first Ncut divides V into C1 and C2. Since C2 has more
nodes than C1, the second Ncut partitions C2 into C3 and
C4. Next, C3 is further divided because it is larger than C1

and C4. The fourth Ncut is applied to C1, and gives the
final five clusters (or leaves): C4, C5, C6, C7, and C8.

The above example suggests trees as a natural organi-
zation of clusters. Nonetheless, the tree organization here
may be misleading to a user because there is no guarantee
of any correspondence between the tree and the semantic
structure of images. Furthermore, organizing image clusters
into a tree structure will significantly complicate the user
interface. So, in this work, we employ a simple linear or-
ganization of clusters called traversal ordering: arrange the
leaves in the order of a binary tree traversal (left child goes
first). The order of two clusters produced by an Ncut itera-
tion is decided by an arbitration rule: 1) let C1 and C2 be
two clusters generated by an Ncut on C, and d1 (d2) be the
minimal distance between the query image and all images
in C1 (C2); 2) if d1 < d2 then C1 is the left child of C,
otherwise, C2 is the left child. Under the traversal order-
ing and arbitration rule, the query image is in the leftmost
leaf (C7 in Figure 3) since a cluster containing the query
image will have a minimum distance (d1 or d2) of 0, and
thus will always be assigned to the left child. For the sake
of consistency, images within each cluster are also organized
in ascending order of distances to a query image.

3. EXPERIMENTS

3.1 User Interface
Our experimental CBICR system uses the same feature

extraction scheme and UFM similarity measure as those
in [4]. The system is implemented with a general-purpose
image database (from COREL), which includes about 60, 000
images. The system has a very simple CGI-based query in-
terface. It provides a Random option that will give a user
a random set of images from the image database to start
with. In addition, users can either enter the ID of an im-
age as the query or submit any image on the Internet as
a query by entering the URL of the image. Once a query
image is received, the system displays a list of thumbnails



each of which represents an image cluster. The thumbnails
are found according to (1), and sorted using the algorithm
described in Section 2.5. A user can view all images in the
associated cluster by clicking a thumbnail.

3.2 Query Examples
To qualitatively evaluate the performance of the system

over the 60, 000-image COREL database, we randomly pick
five query images with different semantics, namely, birds,
car, food, historical buildings, and soccer game. For each
query example, we examine the precision of the query results
depending on the relevance of the image semantics. Here
only images in the first cluster, in which the query image
resides, are considered. This is because images in the first
cluster can be viewed as sharing the same similarity-induced
semantics as that of the query image according to the clus-
ters organization described in Section 2.5. Performance is-
sues about the rest clusters will be covered in Section 3.3.
Since CLUE is built upon UFM similarity measure, query
results of a typical CBIR system, SIMPLIcity system using
UFM similarity measure [4] (we call the system UFM to sim-
plify notation), are also included for comparison. We admit
that the relevance of image semantics depends on standpoint
of a user. Therefore, our relevance criteria, specified in Fig-
ure 4, may be quite different from those used by a user of the
system. Due to space limitations, only the top 11 matches
to each query are shown in Figure 4. We also provide the
number of relevant images in the first cluster (for CLUE) or
among top 31 matches (for UFM).

Compared with UFM, CLUE provides semantically more
precise results for the queries given in Figure 4. This is rea-
sonable since CLUE utilizes more information about image
similarities than UFM does. CLUE groups images into clus-
ters based on pairwise distances so that the within-cluster
similarity is high; and between-clusters similarity is low.
The results seem to indicate that, to some extent, CLUE
can group together semantically similar images.

3.3 Systematic Evaluation
To provide a more objective evaluation and comparison,

CLUE is tested on a subset of the COREL database, formed
by 10 image categories, each containing 100 images. The
categories are Africa, Beach, Buildings, Buses, Dinosaurs,
Elephants, Flowers, Horses, Mountains, and Food with cor-
responding Category IDs denoted by integers from 1 to 10,
respectively. Within this database, it is known whether two
images are of the same semantics. Therefore we can quan-
titatively evaluate and compare the performance of CLUE
in terms of the goodness of image clustering and retrieval
accuracy. In particular, the goodness of image clustering
is measured via the distribution of images semantics in the
cluster, and a retrieved image is considered a correct match
if and only if it is the same category as the query image.
These assumptions are reasonable since the 10 categories
were chosen so that each depicts a distinct semantic topic.

3.3.1 Goodness of Image Clustering
Ideally, CLUE would be able to generate image clusters

each of which contains images of similar or even identical
semantics. The confusion matrix is one way to measure
clustering performance. However, to compute the confu-
sion matrix, the number of clusters needs to be equal to the
number of distinct semantics, which is unknown in practice.

Table 1: Statistics of the average number of clusters
mi and the average cluster size vi, and the correct
categorization rate Ct.

ID. Category Name Mean mi Mean vi± STDV Ct

1. Africa 7.77 14.0 ± 3.80 0.75
2. Beach 7.96 13.6 ± 2.11 0.55
3. Buildings 7.89 11.8 ± 3.81 0.69
4. Buses 7.88 8.61 ± 3.49 0.88
5. Dinosaurs 7.96 6.51 ± 0.68 1.00
6. Elephants 7.52 14.6 ± 3.94 0.64
7. Flowers 8.00 8.84 ± 1.79 0.95
8. Horses 8.00 9.98 ± 2.95 0.97
9. Mountains 7.84 14.0 ± 2.70 0.51

10. Food 7.79 12.2 ± 2.48 0.78

Although we can force CLUE to always generate 10 clusters
in this particular experiment, the experiment setup would
then be quite different to a real application. So we use purity
and entropy to measure the goodness of image clustering.

Assume we are given a set of n images belonging to c
distinctive categories (or semantics) denoted by 1, · · · , c (in
this experiment c ≤ 10 depending on the collection of images
generated by NNM) while the images are grouped into m
clusters Cj , j = 1, · · · , m. Purity for Cj is defined as

p(Cj) =
1

|Cj | max
k=1,··· ,c

|Cj,k| (2)

where Cj,k consists of images in Cj that belong to category
k, and |Cj | represents the size of the set. Each cluster may
contain images of different semantics. Purity gives the ratio
of the dominant semantic class size in the cluster to the
cluster size itself. The value of purity is always in the interval
[ 1
c
, 1] with a larger value means that the cluster is a “purer”

subset of the dominant semantic class. Entropy is another
cluster quality measure, which is defined as follows:

h(Cj) = − 1

log c

c�

k=1

|Cj,k|
|Cj | log

|Cj,k|
|Cj | . (3)

Since entropy considers the distribution of semantic classes
in a cluster, it is a more comprehensive measure than purity.
Note that we have normalized entropy so that the value
is between 0 and 1. Contrary to the purity measure, an
entropy value near 0 means the cluster is comprised mainly
of 1 category, while an entropy value close to 1 implies that
the cluster contains a uniform mixture of all categories.

The following are some additional notations used in the
performance evaluation. For a query image i: 1) mi denotes
the number of retrieved clusters; 2) vi is the average size of
the retrieved clusters; 3) P (i) is the average purity of the
retrieved clusters, i.e., P (i) = 1

mi

�mi
j=1 p(Cj) where p(Cj)

is computed according to (2); and 4) H(i) is the average
entropy of the retrieved clusters, i.e., H(i) = 1

mi

�mi
j=1 h(Cj)

where h(Cj) is computed according to (3).
Every image in the 1000-image database is tested as a

query. For query images within one semantic category, the
following statistics are computed: the mean of mi, the mean
and standard deviation (STDV) of vi, the mean of P (i),
and the mean of H(i). In addition, we calculate PNNM

and HNNM for each query, which are respectively the purity
and entropy of the whole collection of images generated by
NNM, and the mean of PNNM and HNNM for query images



CLUE Results UFM Results

(a) 6 matches out of 11; 12 out of 29 3 matches out of 11; 9 out of 31

(b) 8 matches out of 11; 15 out of 26 4 matches out of 11; 7 out of 31

(c) 8 matches out of 11; 19 out of 25 4 matches out of 11; 11 out of 31

(d) 10 matches out of 11; 22 out of 25 8 matches out of 11; 22 out of 31

(e) 10 matches out of 11; 13 out of 18 4 matches out of 11; 7 out of 31

Figure 4: Comparison of CLUE and UFM. The query image is the upper-left corner image of each block of
images. The underlined numbers below the images are the ID numbers of the images in the database. For
the images in the left column, the other number is the cluster ID (the image with a border around it is the
representative image for the cluster). For images in the right column, the other two numbers are the value
of UFM measure between the query image and the matched image, and the number of regions in the image.
(a) birds, (b) car, (c) food, (d) historical buildings, and (e) soccer game.

within one semantic category. The results are summarized
in Table 1 (second and third columns) and Figure 5. The
third column of Table 1 shows that the size of clusters does
not vary greatly within a category. This is because of the
heuristic used in recursive Ncut: always dividing the largest
cluster. It should be observed from Figure 5 that CLUE pro-
vides good quality clusters in the neighborhood of a query

image. Compared with the purity and entropy of collections
of images generated by NNM, the quality of the clusters gen-
erated by recursive Ncut is on average much improved for
all categories except Category 5, for which NNM generates
quite pure collections leaving little room for improvement.

3.3.2 Retrieval Accuracy
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Figure 5: Purity and entropy of clusters. For mean P (i) and mean PNNM , larger numbers indicate purer
clusters. For mean H(i) and mean HNNM , smaller numbers denote better cluster quality.

For image retrieval, purity and entropy by themselves may
not provide a comprehensive estimate of the system per-
formance even though they measure the quality of image
clusters. Because what could happen is a collection of se-
mantically pure image clusters but none of them sharing the
same semantics with the query image. Therefore one needs
to consider the semantic relationship between these image
clusters and the query image. For this purpose, we introduce
the correct categorization rate and average precision.

We call a query image being correctly categorized if the
query category dominates the query image cluster. The cor-
rect categorization rate, Ct, for image category t is defined
as the percentile of images in category t that are correctly
categorized when used as queries. It indicates how likely
the dominant semantics of the first cluster coincides with
the query semantics. The fourth column of Table 1 lists es-
timations of Ct for 10 categories used in our experiments.
Note that randomly assigning a dominant category to the
query image cluster will give a Ct of value around 0.1.

From the standpoint of a system user, Ct may not be the
most important performance index. Even if the first clus-
ter, in which the query image resides, does not contain any
images that are semantically similar to the query image, the
user can still look into the rest clusters. So we use precision
to measure how likely an user would find images belonging to
the query category within a certain number of top matches.
Here the precision is computed as the percentile of images
belonging to the category of query image in the first 100
retrieved images. The recall equals precision for this special
case since each category has 100 images. The r parameter
in the NNM is set to be 30 to ensure that the number of
neighboring images generated is greater than 100. As men-
tioned in Section 2.5, the linear organization of clusters may
be viewed as a structured sorting of clusters in ascending
order of distances to a query image. Therefore the top 100
retrieved images are found according to the order of clus-
ters. The average precision for a category t is then defined
as the mean of precisions for query images in category t.
Figure 6 compares the average precisions given by CLUE
with those obtained by UFM. Clearly, CLUE performs bet-
ter than UFM for 9 out of 10 categories (they tie on the
remaining one category). The overall average precisions for
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Figure 6: Comparing CLUE with UFM on the av-
erage precision.

10 categories are 0.538 for CLUE and 0.477 for UFM.

3.4 Speed
CLUE has been implemented on a Pentium III 700MHz

PC running Linux operation system. To compare the speed
of CLUE with UFM [4], which is implemented and tested
on the same computer, 100 random queries are issued to
the demonstration web sites. CLUE takes on average 0.8
second per query for similarity measure evaluation, sorting,
and clustering, while UFM takes 0.7 second to evaluate sim-
ilarities and sort the results. The size of the database is
60, 000 for both tests. Although CLUE is slower than UFM
because of the extra computational cost for NNM and recur-
sive Ncut, the execution time is still well within the tolerance
of real-time image retrieval.

4. CONCLUSIONS AND FUTURE WORK
This paper introduces CLUE, a novel image retrieval scheme,

based on a rather simple assumption: semantically similar
images tend to be clustered in some feature space. CLUE at-



tempts to retrieve semantically coherent image clusters from
unsupervised learning of how images of the same semantics
are alike. The empirical results suggest that this assumption
seems to be reasonable when target images close to the query
image are under consideration. CLUE is a general approach
in the sense that it can be combined with any real-valued
symmetric image similarity measure (metric or non-metric).
Thus it may be embedded in many current CBIR systems.
The application of CLUE to a database of 60, 000 general-
purpose images demonstrates that CLUE can provide se-
mantically more meaningful results to a system user than
an existing CBIR system using the same similarity mea-
sure. Numerical evaluations show good cluster quality and
improved retrieval accuracy.

CLUE has several limitations.

• The current heuristic used in the recursive Ncut al-
ways bipartitions the largest cluster. This is a low-
complexity rule. But it may divide a large and pure
cluster into several clusters even when there exists a
smaller and semantically more diverse cluster.

• The current method of finding a representative image
for a cluster does not always give a semantically accu-
rate result. For the example in Figure 4(a), one would
expect the representative image to be a bird image.
But the system picks an image of sheep.

• If the number of neighboring target images is large,
sparsity of the affinity matrix becomes crucial to re-
trieval speed. The current weighting scheme does not
lead to a sparse affinity matrix.

One possible future direction is to integrate CLUE with
keyword-based image retrieval approaches. Other graph the-
oretic clustering techniques need to be tested for possible
performance improvement. CLUE may be combined with
nonlinear dimensionality reduction techniques. CLUE may
also be useful for image understanding. As future work, we
intend to apply CLUE to search, browse, and learn concepts
from digital imagery for Asian art and cultural heritages.
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