
Dartmouth College Dartmouth College 

Dartmouth Digital Commons Dartmouth Digital Commons 

Computer Science Technical Reports Computer Science 

3-1-1995 

Content-based image retrieval: color and edges Content-based image retrieval: color and edges 

Robert S. Gray 
Dartmouth College 

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr 

 Part of the Computer Sciences Commons 

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation 
Gray, Robert S., "Content-based image retrieval: color and edges" (1995). Computer Science Technical 
Report PCS-TR95-252. https://digitalcommons.dartmouth.edu/cs_tr/113 

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital 
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized 
administrator of Dartmouth Digital Commons. For more information, please contact 
dartmouthdigitalcommons@groups.dartmouth.edu. 

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/113?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


Content-based Image Retrieval: Color and Edges

Robert S. Gray

Department of Computer Science

Dartmouth College

Hanover, NH 03755

E-mail: robert.s.gray@dartmouth.edu

Abstract

One of the tools that will be essential for future electronic publishing is a powerful image retrieval

system. The author should be able to search an image database for images that convey the desired

information or mood; a reader should be able to search a corpus of published work for images that are

relevant to his or her needs. Most commercial image retrieval systems associate keywords or text with each

image and require the user to enter a keyword or textual description of the desired image. This text-based

approach has numerous drawbacks { associating keywords or text with each image is a tedious task; some

image features may not be mentioned in the textual description; some features are \nearly impossible to

describe with text"; and some features can be described in widely di�erent ways [Na93a]. In an e�ort

to overcome these problems and improve retrieval performance, researchers have focused more and more

on content-based image retrieval in which retrieval is accomplished by comparing image features directly

rather than textual descriptions of the image features. Features that are commonly used in content-based

retrieval include color, shape, texture and edges. In this paper we describe a simple content-based system

that retrieves color images on the basis of their color distributions and edge characteristics. The system

uses two retrieval techniques that have been described in the literature { i.e. histogram intersection to

compare color distributions and sketch comparison to compare edge characteristics. The performance of

the system is evaluated and various extensions to the existing techniques are proposed.

1 Introduction

One of the tools that will be essential for future electronic publishing is a powerful image retrieval system.

The author should be able to search an image database for images that convey the desired information or

mood; the reader should be able to search a corpus of published work for images that are relevant to his

or her needs. Most commercial image retrieval systems associate keywords or text with each image in the

corpus and require the user to enter a keyword or textual description of the desired image. Standard text

retrieval techniques are then used to identify the relevant images. Unfortunately this text-based approach to

image retrieval has numerous drawbacks [Na93a]. Associating keywords or text with each image is a tedious

and time-consuming task since it must be done manually or at best semi-automatically; image processing

technology is not advanced enough to allow the automatic construction of textual image descriptions except

in well-de�ned and tightly focused domains. Some image features may not be mentioned in the textual

description due to design decision or indexer error; these image features do not exist from the standpoint of

the retrieval system and any query that mentions them will fail. Some features are \nearly impossible to

describe with text" [Na93a]; for example many textures and shapes defy easy description. Finally di�erent

indexers { or even the same indexer { may describe the same feature with di�erent terms or di�erent features

with the same term; these are the standard text retrieval problems of synonymy and polysemy.

In an e�ort to overcome the problems of the text-based approach and improve retrieval performance, re-

searchers have focused more and more on content-based image retrieval in which retrieval is accomplished

by comparing image features directly rather than textual descriptions of the image features. It is hoped

that content-based techniques can provide the basis for powerful \query by example" retrieval systems. For

example the user might provide a sample picture and request similar pictures, a picture of an object and

request pictures that contain the object, a set of colors and request images that contain those colors, and

so on. Features that are commonly used in content-based image retrieval include color, shape, texture and

edges.

1Partially supported by AFOSR contract F49620-93-1-0266 and AFOSR/DARPA 89-0536

1



Images

Color extraction

Query
processing

formulation
GUI for query

edge maps

Edge extraction

Histograms and

Figure 1: The architecture of the image retrieval system { the main modules are edge extraction, color

extraction, query processing and user interface.

In this paper we describe a simple content-based system that retrieves color images on the basis of their color

distributions and edge characteristics. The system is fully automatic as no manual intervention is required

during the indexing process. Full automation { along with e�ective retrieval performance { is the primary

goal of the system since a manual or semi-automatic indexing process is error-prone and time-intensive. The

system does not develop any novel retrieval techniques but instead uses existing techniques that have been

described in the literature { i.e histogram intersection [SB91, Swa93] is used to compare color distributions

and sketch comparison [HK92, KKOH92] is used to compare edge characteristics. It is hoped that the

system will highlight potential avenues of research and serve as a testbed for future work. To this end,

the performance of the system is evaluated and various extensions to the existing retrieval techniques are

proposed. The next section describes the implementation of the system. The remaining sections discuss the

weaknesses of the current implementation and methods for addressing these weaknesses.

2 Implementation

The system is implemented as four modules { edge extraction, color extraction, query processing and user

interface. The color and edge extraction modules construct a set of histograms and an edge map for each

image. No manual intervention is required during the extraction process. The query processing module uses

histogram intersection [SB91, Swa93] to compare histograms and sketch comparison [KKOH92, HK92] to

compare edge maps. The user interface provides a graphical front end. The four modules are shown in �gure

1 and described below.

2.1 Edge extraction

The edge extraction module originally used the edge detection algorithm from [KKOH92, HK92] which

identi�es the edges in an RGB image that are clearly perceptive to a human viewer. First the RGB image

is reduced to thumbnail size and median �ltered. Then four gradients { one for each major orientation {

are calculated for each pixel in the thumbnail. The gradient masks are shown in �gure 2. Each gradient is

scaled by the reciprocal of the local intensity power j Iij j which is de�ned as

j Iij j=

8<
:
1

9

i+1X
r=i�1

j+1X
s=j�1

p2rs

9=
;

1

2

2



1 1 1

0 00

-1 -1 -1

1

1

1

0

0

0

-1

-1

-1 -1

01

1

0

1

0

-1

-1

1

1

0-1

0

-1

1

0

-1

Figure 2: The gradient masks that are used in the edge detection algorithm { the �rst gradient detects

horizontal edges; the second gradient detects vertical edges; the third gradient detects diagonal edges that

slope downward to the right; the fourth gradient detects diagonal edges that slope upward to the right.

where (i,j) is the pixel for which we are calculating the gradient and prs is the vector of RGB intensity values

at pixel (r,s). This scaling factor is a simple application of the Weber-Fechner law to the RGB color space.

The Weber-Fechner law states that the \contrast sensitivity of the human eye is proportional to the log-scale

of the intensity value" [HK92]).

The overall gradient for each pixel is taken to be whichever of the four gradients has the maximum absolute

value. These maximal gradients are used to identify the edge pixels. First the algorithm calculates the

average and standard deviation of the gradient magnitudes over the entire thumbnail image. All pixels for

which the gradient magnitude is greater than the average plus one standard deviation are marked as global

edge candidates. Then the algorithm �lters the set of global edge candidates by examining the local context

of each candidate. It calculates the average and standard deviation of the gradient magnitudes over a small

window centered on the global edge candidate and keeps the candidate only if its gradient magnitude is

greater than the local average plus one local standard deviation. An edge map is then constructed in which

the pixel is on if it is one of the �nal edge candidates and o� otherwise. The goal of this technique is to

extract only those edges that are clearly perceptive within the image as a whole and within their local section

of the image. The resulting edge map should be generally similar to a human's impression of the image

[HK92].

The algorithm was applied to a test collection of forty-eight outdoor scenes that are sold as part of the

Microsoft Scenes screen saver; one of the scenes is shown in �gure 3. The results were generally poor as the

algorithmmissed many clearly perceptive edges. This suggested that the local intensity scaling factor was an

insu�cient transformation of the RGB color space and motivated a switch from the RGB color space to the

CIE-LUV color space. The CIE-LUV color space has the advantage that the distance between two points in

the space is approximately proportionally to the perceptual distance between the two corresponding colors

(as expressed by human viewers) [FVDFH91]. The conversion from the RGB color space to the CIE-LUV

color space is straightforward except for the necessity of choosing a prototypical red, green and blue. Details

of the conversion can be found in [FVDFH91]. Our revised edge detection algorithm �rst converts the

RGB image to a CIE-LUV image and then uses the detection algorithm as described above except that the

gradients are no longer scaled by the local intensity power.

The revised algorithm performed much better although edge map quality remained poor for a signi�cant mi-

nority of the images. Figure 4 shows a few of the test images and their corresponding edge maps. Evaluation

of edge map quality is necessarily subjective, but broadly speaking 45 percent (22 out of 48) of the maps

contained every important edge (plus a small amount of noise); another 45 percent (22 out of 48) contained

some important edges and some unimportant edges; and the remaining 10 percent (4 out of 48) contained

no important edges. The main problem with the images that fall into the latter two categories is that many

of their important edges are clearly perceptive only when texture or domain knowledge is considered. The

edge detection algorithm considers color only.

The edge detection algorithm has parameters that can be used to control the size of the edge maps, the

size of the median �ltering window, and the size of the local window used to �lter global edge candidates.

We used a 64 x 64 edge maps, a 3 x 3 window for median �ltering, and a 7 x 7 local window for �ltering

3



Figure 3: A sample image from the image database { this image is used as the query in �gures 6 and 8. The

sky is deep blue with white clouds; the mountain is gray; the pine tress are dark green and the two meadows

are light green. Note the complexity of the image. The only sharp boundary is the pro�le of the mountain.

edge

22 of 48
(45%)

22 of 48
(45%)

4 of 48
(10%)

important

important
edges

important
edges

Some

No

Every

Figure 4: The performance of the edge detection algorithm { the edge maps are grouped into three broad

categories depending on how many important edges they captured: every important edge (plus a small

amount of noise); some important edges and some unimportant edges; and no important edges. The number

of edge abstracts that fall into each category is shown at the right.

4



Figure 5: The GUI that allows the user to specify queries interactively

the global edge candidates. These values were used in [HK92]. Modi�ed values did not produce signi�cant

improvements in retrieval performance or edge map quality.

2.2 Color extraction

The color extraction module divides each image into non-overlapping subareas as in [CLP94] and then

constructs a three-axis histogram for the overall image and for each subarea. The module can produce

either RGB or CIE-LUV histograms and provides parameters to control the number of histogram buckets

along each color axis as well as the number and position of the subareas. We used CIE-LUV histograms,

had 8 histogram buckets along each color axis and divided the image into four equal-sized subareas, one for

each quadrant of the image. These choices provide reasonable retrieval performance. CIE-LUV histograms

are computationally more expensive than RGB histograms but provide a more useful view of the color

distribution since the distance between two histogram buckets is approximately proportional to the perceptual

distance between the colors mapped into those buckets. This is the same advantage that motivated the switch

to the CIE-LUV color space when performing edge detection.

2.3 Query processing

The query processing module accepts a single set of image histograms and a single edge map as a query.

Then it identi�es those images that have similar histograms and edge maps. The module computes color

and edge similarity scores for each image and takes a weighted average of the two scores to get an overall

similarity score.

The system uses histogram intersection [SB91, Swa93] to compute the color similarity score. For each image

the color extractionmodule constructs one histogram for the overall image and one histogram for each subarea

as described above. The query processing accepts a set of histograms as input { one histogram for the overall

query and one for each subarea { and compares these histograms against each set of image histograms. The

5



module either compares the overall histograms using histogram intersection or compares each pair of subarea

histograms using histogram intersection and then takes a weighted average of the subarea similarity scores.

Histogram intersection de�nes the similarity between an image histogram I and a query histogram Q as

S(I;Q) =

Pn

j=1min(Ij ; Qj)Pn

j=1Qj

where n is the number of buckets in the histograms, Ij is the number of pixels in bucket j of the image

histogram , and Qj is the number of pixels in bucket j of the query histogram. Histogram intersection was

originally developed to identify which images contain a given object (a prototypical image of the object is

provided as a query). Thus the purpose of the min in the similarity measure is to �lter out the background

pixels in each image, leaving only those pixels that might belong to the object. Histogram intersection has

been shown to be insensitive to \change in image resolution, histogram size, occlusion, depth and viewpoint"

[Swa93] and has provided excellent performance when �nding images that contain a given object [SB91].

This result should hold when the technique is used to determine the similarity between two equal sized

images.

The system uses a slightly modi�ed version of sketch comparison [HK92, KKOH92] to compute the edge

similarity score. The edge extraction module constructs an edge map for each image as described above. The

query processing module accepts an edge map as input and compares this map against each of the image

maps. First the query edge map is divided into small non-overlapping blocks. Each query block is correlated

with a small neighborhood of blocks in the image edge map. The neighborhood is centered on the image

block that exactly corresponds to the query block. The correlation between a query and image block is

de�ned as a sum of weights where there is one weight for each of six possible cases { query edge lined up

with image edge; query edge lined up with an image blank; query edge lined up with a position that is o� the

image; query blank lined up with an image edge; query blank lined up with an image blank; and query blank

lined up with a position that is o� the image. Computing this correlation is simply a matter of performing a

pixel-by-pixel comparison of the query and image blocks. The maximum correlation over all image blocks in

the local neighborhood is taken to be the correlation score for the query block. In other words the algorithm

tries various shifts of the query block and chooses the shift that provides the best match. Thus there is some

exibility in the matching process; the query module can retrieve images that have edges similar to those

of the query but in slightly di�erent positions. The correlation scores for the query blocks are summed and

divided by the maximum possible sum for that particular query to get the edge similarity score.

The color and edge similarity scores are real numbers between 0 and 1 where 1 indicates maximum similarity

and 0 indicates maximumdissimilarity. The �nal similarity score is between 0 and 1 since it is just a weighted

average of the edge and color scores. Once the system has calculated the overall similarity score for each

image, it sorts the images in order of decreasing similarity for presentation to the user.

The various weights are parameters that can be speci�ed at query time. We weighted the edge and color

similarity scores equally; weighted each subarea equally; and used query edge/image edge, query edge/image

blank, query edge/o� image, query blank/image edge, query blank/image blank and query blank/o� image

weights of 10, -3, -1, -3, 1 and -1 respectively. These weights take into account the fact that a match between

two edges is far more important that a match between two blanks. In addition the sketch comparison

algorithm uses 8 x 8 blocks and de�nes the local neighborhood of image blocks to be all blocks that are 4 or

fewer pixels away from the center block.

2.4 Graphical user interface

Users can interactively \draw" their own queries using the GUI shown in �gure 5. The drawing area is

essentially two logical drawing areas laid on top of each other { one drawing area is for color and the other

is for edges. The edge drawing area is on top of the color drawing area so edges are never hidden behind

colors. In the �gure the user has drawn the outline of a mountain in the edge drawing area and has �lled the

top half of the color drawing area with blue in order to indicate sky. Once the user has �nished the query,

the color drawing is histogrammed, the edge drawing is turned into an edge map, and the histograms and

6



edge map become the input to the query module. The query module returns a ranked list of images which

is presented to the user as an ordered list of image �lenames (our initial focus has been on the retrieval

algorithms rather than GUI development).

2.5 Implementation notes

The total system currently consists of approximately 6000 lines of C++ code written and compiled on DEC

workstations (although it should be trivially portable to other architectures). More than 1500 of these lines

are for the graphical user interface. A complete code listing is available upon request.

3 Preliminary evaluation

A preliminary evaluation suggests several problems with the retrieval techniques. The system was evaluated

with a database of forty-eight outdoor scenes that are sold as part of the Microsoft Scenes screen saver; one

of the scenes is shown in �gure 3. These are the same scenes that were used to evaluate the edge detection

algorithm. Figures 6{9 show the results of four speci�c queries that were made against this image database.

Two queries involve only color and two queries involve only edges; queries that involve both color and edges

seemed premature in light of the retrieval problems that were identi�ed. In general the results of these four

queries are typical of the retrieval behavior exhibited by the system. The results and associated problems

are discussed below. Methods for addressing the problems are discussed in the next section.

Figure 6 shows the result of submitting an image to the retrieval system and requesting images that have a

similar color distribution. The query image is the �rst image in the test collection and is shown in �gure 3.

In this case we compared the query to each image on a subarea basis and averaged the subarea similarity

scores to get the overall color similarity score. The similarity score for each subarea was calculated with

histogram intersection as discussed in the implementation section. The retrieval results are reasonably good

in that seven of the top ten images have a composition similar to that of the query image { green grass

or trees at the bottom, blue sky at the top and in most instances a mountainous region in the center. In

addition there were no relevant images ranked below the top ten. However three of the images clearly do not

belong. The image with ranking 0.32 has no blue sky or gray mountain { it scores highly because it has lots

of green at the bottom and several regions of small gray rocks at the top. The images with ranking 0.44 and

0.28 have no blue sky or gray mountain { they score highly because they have lots of green at the bottom.

This query illustrates the �rst two problems with our color retrieval mechanism. First there is no way of

specifying that the absence of a certain color from a region means that the image is irrelevant. For example

we would like to to specify that the absence of blue sky means that the image is irrelevant. This can not

be accomplished merely by increasing the weight of the two subareas at the top of the image since then we

might retrieve images that have blue sky but no green grass. Rather we need to indicate that a negative

result in one subarea overrides even the most positive result in another subarea. Second the algorithm does

not provide e�ective localization { i.e. it does not take into account that a color might need to appear in

a speci�c location within a subarea { especially since the subareas are large with respect to the image. For

example the gray mountain in the query image matches well against several widely separated regions of gray

rock in one of the highly ranked irrelevant images.

Figure 7 shows the result of submitting a hand-drawn color image to the system. The user has drawn a

monocolor blue region at the top and a monocolor green region at the bottom in an e�ort to retrieve images

that have blue sky at the top and green grass or trees at the bottom. As before we compared subareas and

averaged the subarea similarity scores to get the overall similarity score. The results are poor. Only six

images have a nonzero similarity score and only one of these six can be considered relevant to the query (and

this relevant image has the lowest score).

The �rst �ve images illustrate the same problem discussed above. There is no way to specify that the absence

of a certain color from a certain region means complete irrelevance. Thus we retrieve the images with ranks

0.06, 0.11 and 0.24 which contain green at the bottom but no blue at the top and the images with ranks

7



Query

Results

1.00 0.44 0.37 0.32 0.30

0.30 0.30 0.29 0.28 0.27

Figure 6: Here we are using the image shown in �gure 3 as a color query { i.e. we want to �nd all images that

have a similar color distribution. The ten highest-ranked images are shown. As expected the highest-ranked

image is the query image itself.

8



Query

Results

0.35 0.24 0.15 0.11 0.06

0.06

Figure 7: Here we are using a hand-drawn image as a color query. The query consists of a monocolor blue

region at the top and a monocolor green region at the bottom { it is hoped that this query will retrieve

images that have blue sky at the top and green grass or trees at the bottom. The six highest-ranked images

are shown. All other images had a rank of zero.

9



0.35 and 0.15 which contain blue at the top but no green at the bottom. However a more critical problem is

that only one relevant image received nonzero similarity score. The other relevant images { even the most

relevant image which has an unbroken green �eld at the bottom, blue sky at the top and a at horizon {

had similarity scores of zero. The problem is that the histogram intersection algorithm performs exact color

match. Only a single blue and a single green are used in the query; all images that do not contain the exact

same shades of blue and green have an empty intersection with the query and therefore a similarity score of

zero. Furthermore an image that contains twenty di�erent shades of green will have a small similarity score

when compared against an image that contains only of one those shades even if each image contains the

same amount of green. This problem did not arise with the previous query since that query was an image

taken directly from the database and contained enough di�erent shades of blue, green and gray to ensure

at least some match with all relevant images. However the problem can arise when using certain real-world

images as queries and is critical when using hand-drawn images as queries.

Figures 8 and 9 are best considered together. Figure 8 shows the result of submitting the �rst image in the

test collection and requesting images that have similar edge characteristics. The results are poor in the sense

that there are relatively high ranks on irrelevant images and that there is little discrimination on the basis

of rank between relevant and irrelevant images. Figures 9 shows the results of submitting a hand-drawn

query of a mountain top in an e�ort to retrieve images that contain mountains (particularly a desired target

image that contains an almost identical mountain top). In this case the weights in the sketch comparison

algorithmwere adjusted such that blank regions of the query were treated as \don't care" regions. Otherwise

the query retrieves images that contain mainly blank space. The target image was successfully retrieved but

again there are relatively high ranks on irrelevant images and there is little rank discrimination between

relevant and irrelevant images. In addition the relevant images that score highly { aside from the target

image { score highly by chance. The query edge pixels line up with image edge pixels that correspond to

foliage boundaries, cloud boundaries and so on.

There are three problems. The �rst problem is that the test collection is small. The results are partially an

artifact of the fact that there are only a few images relevant to each query. However this problem is minor

in comparison to the other two. The second problem is that many edge maps contain extraneous edges

that are perceptually prominent on the basis of color but spurious when one considers domain knowledge.

In addition some edge maps miss important edges that are prominent on the basis of texture or domain

knowledge but not on the basis of color. Fifty-�ve percent of the edge maps contain some unimportant edges

or miss some important ones (see the implementation section). For example the edge map for an image

of trees through fog essentially contains edges that trace each individual leaf cluster and no other edges.

It would be more reasonable to have an edge that followed each tree truck. Unfortunately the tree trunks

are far less prominent than the leaf clusters on the basis of color alone since the trunks blend into the fog.

[HK92] and [KKOH92] have cleaner edge maps due to the nature of their images. They use a collection of

paintings { primarily landscapes and portraits { that tend to have far sharper color boundaries than our

outdoor photographs.

The third problem is the most critical and has a drastic e�ect on retrieval performance. The sketch com-

parison algorithm divides the query and image edge maps into blocks and then compares the blocks on a

pixel by pixel basis under various shifts. This pixel-by-pixel approach leads to nonintuitive results as shown

in �gure 10. The edge maps shown in the �gure were constructed by hand but are representative of some

of the actual edge maps for the test collection. Parts (a), (b) and (c) of the �gure are representative of the

edge maps for hillsides. Part (d) is representative of the edge map for a rosebush. Parts (e) and (f) are

representative of edge maps for the tops of pine trees. The similarity scores clearly do not indicate the true

similarity between the edge maps. The problem is that the sketch comparison algorithm ignores higher level

features such as edge orientation, shape and connectedness. Instead it simply counts the number of edge

pixels that can be aligned by shifting query blocks around on top of the image (more precisely the similarity

score is proportional to the number of edge pixels that can be aligned). The result is that often one edge

in the query scores highly when matched against several disconnected edges in the image or an edge in the

query scores poorly against a highly similar edge in the image since they are just di�erent enough that only a

few edge pixels line up. The method appears to perform well enough for retrieval of a known or remembered

target image on the basis of a well-drawn sketch or for retrieval of similar images in a larger database than

10



0.68 0.68 0.68 0.68 0.67

Results

1.00 0.72 0.69 0.690.69

Query

Figure 8: Here we are using the image shown in �gure 3 as an edge query { i.e. we want to �nd all images that

have a similar pattern of edges. The ten highest-ranked images are shown. As expected the highest-ranked

image is the query image itself.

11



Query Desired image

Results

0.89 0.89 0.85 0.83 0.82

0.82 0.81 0.80 0.79 0.78

Figure 9: Here we are using a hand-drawn query as an edge query. It is hoped that this query will retrieve

images that have mountain peaks in the center (particularly the indicated \desired" image which the author

was looking at when he drew the query). The ten highest-ranked images are shown.

12



(f)

(a) (b) (c)

(d) (e)

Figure 10: The fundamental weakness of the edge-based retrieval technique is that it performs a pixel by

pixel comparison of the edge maps { therefore it reports that b is equally similar to a and c (in each case

two edge pixels line up under the best possible shift) and that e is more similar to d than to f (thirteen edge

pixels line up between d and e under the best possible shift but only eight edge pixels line up between e and

f).

ours. These are the situations that were considered in [HK92] and [KKOH92] where sketch comparison was

observed to provide reasonable performance. However it clearly does not provide reasonable performance in

the case of arbitrary queries against arbitrary image databases.

4 Future work

4.1 Color

4.1.1 Weighting

The color retrieval technique has several weaknesses that were discussed in the evaluation. First there is

no way for the user to specify that the absence of a color from a certain region means that the image is

irrelevant. There are many similar situations. For example there is no way to specify that a region must

contain either blue or green. The underlying problem is that the color similarity score is just a weighted

average of the subarea similarity scores which means that the searcher has only the coarsest level of control

over query behavior. This problem can be partially solved without abandoning the subarea scheme. The

overall similarity score should be a nonlinear function of the subarea similarity scores so that the score for a

particular subarea can have any desired e�ect on the overall score. In addition each subarea similarity score

should be a nonlinear function of one or more histogram intersections.

4.1.2 Localization

Unfortunately there remains an inherent weakness in the subarea scheme. The subareas are large relative to

the image size and the system compares subareas by comparing just their histograms. Therefore a subarea

13



with a pine tree on the left will score highly when matched against a subarea with a pine tree on the right.

More critically a subarea that contains a single large gray area will score highly when matched against a

subarea that contains several small gray areas. The problem is that the retrieval mechanism provides no

color localization below the subarea level. The obvious solution is to signi�cantly increase the number of

subareas. This causes a drastic increase in computational and storage requirements. A better solution is

to leave the number of subareas unchanged and have the system perform a direct comparison of the image

and query if there is su�cient similarity between the histograms. Either approach allows the user to specify

that a color should appear as a connected region with a speci�c shape and position. However we should

not limit ourselves to saying that location is always important. For each query the user should be able to

specify that the location of certain colors is unimportant or unimportant to a certain degree { i.e. this color

should appear somewhere within this region of the image { without losing the ability to specify that a color

should form a connected region with a speci�c shape. Neither of the approaches can e�ciently support this

behavior. The only recourse is to run multiple queries where each query is a transformation of the given

query. This is computationally intractable for large databases or complicated queries.

To handle the problem of color localization { and the problem of specifying on a color by color basis whether

location matters { many researchers use segments rather than subareas or a combination of segments and

subareas [CLP94, Na93b, GZCS94]. Each image is divided into segments such that each segment contains

approximately a single uniform color or a single object. The color distribution of each segment is represented

as a weighted centroid or as a histogram. The query is speci�ed as a set of colored segments and the query

segments are matched against the image segments { features such as segment size, location and shape are

compared in addition to segment color. Dividing an image into object-based segments can not be done

automatically with current image processing technology so it is more attractive to segment the image into

regions of uniform color. In either case the system should be prepared to match a single query segment

against multiple image segments or vice versa since the user might specify the query segments at a �ner or

coarser grain than the image segments. In addition to handling localization, the use of segments will make

it easier to provide the �ne-grained query control that was discussed in the weighting subsection since query

behavior can be speci�ed on a segment by segment basis { e.g. this segment can occur anywhere within

this region while this segment is at a �xed location; this segment must be present in order for the image

to be relevant; the size of this segment can vary; the shape of this segment can be anything from a thin

oval to a full circle; these two segments can be anywhere but must be adjacent and so on. Some of these

are simply instances of the localization problem while others involve other segment features beside location;

the subarea-based approach can handle them only by submitting multiple queries which is computationally

unattractive. We plan to move to move to a segment-based scheme in order to provide localization and

�ne-grained query control.

4.1.3 Exact color match

The third problem with the color retrieval is that histogram intersection performs an exact color match. It

must be modi�ed to allow inexact color match so that one shade of green will match similar shades of green.

This is relatively simple in the case of histogram intersection. Rather than intersect a query bucket with

an image bucket, the algorithm would intersect the query bucket with a neighborhood of image buckets.

Di�erent weights would be used for di�erent buckets and care must be taken to not double-count pixels

during the intersection process. Note that reducing the number of histogram buckets along each color axis

would not have the same e�ect. It would lead to inexact color match for colors mapped into the center of

buckets but not for colors mapped to the edge; in addition the user would not be able to specify inexact

color match on one query and exact color match on the next.

4.1.4 E�ciency

E�ciency of histogram intersection is not a large concern at this point although response time will be poor

for large databases. In this case there is a much more e�cient version of histogram intersection called

incremental histogram intersection that intersects the buckets in order of decreasing pixel count and stops

14



if it determines that the similarity between the histograms can not possibly be more than some threshold

[SB91]. However e�ciency of the segment comparison algorithm { of which histogram intersection is just a

part { will be critical when we move to segment-based retrieval. Reasonable e�ciency will require an excellent

representation for segment features as well as a hierarchical or cluster-based retrieval scheme. It should not

be hard to implement a hierarchical scheme. For example comparing the overall query histogram with the

overall image histograms can immediately eliminate most of the database from consideration. Cluster-based

retrieval will be more di�cult since we must choose the color features used in the clustering process carefully.

For example, if we cluster the images according to dominant color and then request images that contain a

small region of blue in one corner, we have gained nothing; we must search the entire database.

4.1.5 Summary

We plan to move to a segmented-based scheme in order to provide localization and �ne-grained query

control. Histogram intersection needs to be modi�ed to allow inexact color match. Eventually we will need

to incorporate a hierarchical or cluster-based scheme for the sake of search e�ciency. In addition we would

like to evaluate other color retrieval schemes that have been presented in the literature. For example [CLP94]

uses the color pair technique and has achieved good results in a small database; QBIC uses a matrix-based

technique that takes the product of a di�erence histogram and a set of perceptual color distances, but

unfortunately there is no analysis of retrieval performance [Na93b]; [GZCS94] reduces an entire histogram

to a single integer key by �rst transforming the histogram into a hyper-polygon and then taking a weighted

sum of the angles and edge lengths, but again there is no analysis of retrieval performance. The technique

of [GZCS94] will be exceptionally useful if it provides reasonable retrieval performance since then the �rst

few levels of a hierarchical or cluster-based retrieval scheme would involve comparison of integer pairs rather

than histogram pairs.

4.2 Edges

4.2.1 Edge detection

The edge detection algorithm does not construct good edge maps for every image as discussed in implemen-

tation and evaluation sections. There are two main problems with the edge maps. First the edge maps for

some images contain \extraneous" edges that carry no useful information for retrieval purposes even though

they are perceptually prominent in the image. Some of these extraneous edges arise due to \color noise" {

i.e. a small group of pixels whose color is sharply di�erent than all their neighbors. More aggressive median

�ltering and a thinning procedure to strip out the shortest edges [KKOH92, HK92] will eliminate some of

these extraneous edges. In addition we should experiment with the gradient threshold to see if a higher

threshold will give better results { e.g. keep only those edge pixels whose gradient strength is greater than

the average plus two standard deviations. However preliminary experimentation suggests that increasing the

threshold will eliminate not only some of the extraneous edges but portions of good edges. A multi-resolution

edge detection scheme might lead to some improvement but the improvement is liable to be small in relation

to the computational e�ort.

None of the techniques above will come close to solving the whole problem since many of the extraneous

edges are as perceptually prominent as the valid edges and are relatively long. However �ve heuristics are

immediately apparent. Edges that cross a large portion of the image { such as the horizon { tend to be

far more important than edges that wind around and around in a small portion of the image { such as the

boundary of a complex cluster of leaves. Longer edges { such as the pro�le of a mountain { tend to be

far more important than shorter edges { such as the pro�le of a small boulder in front of the mountain.

Edges that surround a large region { such as a large boulder { tend to be far more important than edges

that surround a small region { such as a cluster of a few owers. Short o�shoots of long edges tend to

be unimportant. Lots of short edges concentrated in a small region tend to be unimportant. In order to

apply these heuristics we need to determine edge lengths and edge geometries. Extracting the lengths and

geometries requires grouping the edge pixels into edges. This could involve an edge tracing algorithm applied

15



to either the original image or to an intermediate edge map. It might also be reasonable to segment the

original image on the basis of color or texture or both and use the segment boundaries as the edges. A �nal

thought is to use a reinforcement scheme in which edge points reinforce all connected edge points in some

fashion; then a much higher threshold can be used when selecting the �nal edges. The reinforcement scheme

could be combined easily with the edge tracing scheme.

Any of the heuristics are likely to eliminate valid edges as well as extraneous edges if applied too stringently

so experimentation will be necessary to determine the appropriate balance between eliminating extraneous

edges and keeping good edges. None of these heuristics will achieve good edge detection for every image

since some edges are extraneous to humans only because humans know what objects are shown in the image.

However the heuristics should improve the edge maps for many images.

The second problem is that good edges or portions of good edges are missing from some edge maps. An

edge tracing algorithm could jump over and �ll in small gaps. A reinforcement algorithm might reinforce

all adjacent neighbors of strong edge points. If we have obtained a higher level representation of edges {

i.e. perhaps the edges are represented as paths rather than pixel maps { through tracing or segmentation,

we might connect all edges whose endpoints are su�ciently close and whose ends have su�ciently similar

orientations. Considering texture in addition to color will capture some additional important edges. Again

none of these approaches will provide good detection for every image since some edges are important only

when one considers which objects are shown in the image.

Before implementing and comparing these approaches, it would be useful to determine how much performance

improvement can be realized through cleaner edge abstracts. Thus we plan to manually outline the edges

in a small test collection and run retrieval experiments against that collection. This manual outlining is

unattractive as a permanent solution since it violates the goal of automatic indexing, but it will allow us

to obtain a rough measure of the maximum performance improvement before we invest substantial coding

e�ort.

4.2.2 Sketch comparison

The sketch comparison algorithm is the weak point in the retrieval scheme. Sketch comparison calculates

the similarity between two edge maps with a pixel by pixel comparison of the edge abstracts. The similarity

score is proportional only to the number of edge pixels that can be made to line up under small shifts. This

leads to incorrect results in many common situations as shown in �gure 10. There are two contradictory

problems. First, although blocks of pixels are allowed to shift in search of the best match, the pixels within

the block are �xed so it is often possible to line up only a few pixels of two highly similar edges. Second it

is possible for a single edge in one image to match multiple portions of distinct edges in another image. The

contradiction lies in the fact that increasing the mobility of blocks and pixels during the matching process

eases the �rst problem but makes the second far worse; restricting their mobility has the opposite e�ect.

It appears that the pixel-by-pixel comparison approach must be abandoned in order to support arbitrary,

possibly poorly drawn queries in heterogeneous databases. An intermediate step is to keep the pixel-oriented

edge maps but to make the query edge-oriented { e.g. the query edges are represented as a set of paths

rather than as an array of pixels. It is easy to obtain this set of paths when the user hand-draws the query; it

is more di�cult when the query is a sample image from the database since it requires the use of edge tracing

or segmentation techniques as mentioned above. The similarity score for a given edge in the query could

be a function of the number of edge pixels that it covers in the image, whether those pixels are connected

or disconnected, and how much the query edge needs to deform in order to move into position over the

pixels. This concept is similar to the idea of \active snakes" which are often used in interactive outlining

applications [Na93b]. A more drastic step would to be to make the edge maps edge-based as well. Then

the problem of comparing a query to an image would become a problem of comparing the feature values

corresponding to the various edges. Possible edge features are location, orientation, length, turning rate and

so on. This would again require a more complicated edge detection algorithm but we might be using such

an algorithm anyways for the purpose of cleaning extraneous edges out of the edge abstracts. In addition an

entirely edge-based approach will make it easier to provide �ne-grained query control { e.g. this edge can

appear anywhere within this region of the image, this edge must be in this position but can have either of

16



two orientations and so on. The segment-based approach to color retrieval has the same advantage.

4.2.3 E�ciency

The remaining problem with sketch comparison is e�ciency. The algorithm is faster than one might expect.

However the pixel-by-pixel technique involves a quarter of a million pixel comparisons just to compute the

similarity between two 64 x 64 edge abstracts if the algorithm uses 8 x 8 blocks and allows a maximum

shift of 4 pixels in any direction. The e�ciency should improve somewhat with a careful implementation of

the \active snake" or feature-based schemes mentioned above. However it seems clear that a hierarchical

or clustering retrieval scheme will be needed as we move towards larger databases. We are attempting to

determine which features of the edges will be useful in forming hierarchies or clusters. At a minimum images

could be grouped according to which image regions contained no edges. However much more sophisticated

schemes are possible.

4.2.4 Summary

We plan to move towards a path-based representation of the edge maps rather than a pixel-based represen-

tation in order to improve retrieval performance and provide �ne-grained query control. In addition we are

experimenting with various heuristics for �ltering extraneous edges out of the edge maps and capturing more

valid edges. Finally it is essential that we develop a hierarchical or cluster-based retrieval scheme.

4.3 System evaluation

The preliminary evaluation used a test collection of only forty-eight images. We must move to a larger

test collection in order to perform a detailed evaluation of the system and of the extensions that have

been proposed. A larger test collection is particularly essential for examining the time requirements of

the retrieval mechanisms. We are currently building a large image corpus that can be used for this and

other image retrieval work. However the small test collection should not be abandoned since it is useful for

exploring the situation in which there are only a few relevant images per query and in which images tend to

be highly distinct from each other.

In addition we need to explore how well the system performs with databases of gray-scale or black and white

images since many archival image collections have no color. Any color retrieval mechanism will provide far

less discriminatory power since it will be histogramming only a range of grays or only two colors (in which

case the histogram is reduced to a measure of image density). However edges { and other features such as

texture and shape { should work well with colorless databases.

Finally we need to evaluate the graphical user interface (GUI) in terms of the ease with which the user can

construct an appropriate query. This issue will become more acute as we incorporate additional features

such as texture and shape into the system since the user must be able to easily combine multiple features

into a single query. In addition the user must be able to easily specify the characteristics of and the

relationships between the various parts of the query. The current interface is simplistic and will need

substantial reengineering to achieve these goals.

4.4 Text, texture and shape

Color and edges are only two of a wide range of image features that can be used in a content-based retrieval

system. One common feature that is used in content-based retrieval is texture. [SC94] uses quad-tree

segmentation to divide an image into blocks of approximately uniform texture. Feature vectors for the

textures are computed from mean and variance measures produced by a QMF wavelet decomposition. The

user queries the image database by selecting a desired texture from a set of prototypical textures. The

database is searched for images that contain blocks of the desired texture. The approach works well on a

collection of synthetic images but has not yet been tested on real-world images [SC94].

17



The QBIC project [Na93b, Na93a] allows texture-based retrieval although it uses di�erent features. Coarse-

ness measures the scale of the texture and is computed with moving windows of several sizes; contrast

describes the \vividness" of the texture and is calculated from the gray-level histogram; and directionality

measures whether the image has a \favored" direction and is computed from the gradient directions in the

image [Na93b]. The author notes that many other texture features were either too expensive to compute

or ill-suited to heterogeneous collections of images [Na93b]. The user queries the database by providing a

swatch of the desired texture which is then matched against the images. Unfortunately the authors do not

provide an analysis of retrieval performance.

A second common feature is the shape of the objects in the images. In the QBIC project [Na93b] a com-

bination of area, circularity, eccentricity, major axis orientation and moment invariants are used as shape

features. In [GZCS94] only circularity and major axis orientation are used. In QBIC the user draws the

desired shape. Then the system computes the features of the query shape and matches the query features

against the features of each shape in the images. In [GZCS94] the user does not draw the shape but rather

speci�es the values of the two shape parameters directly. Unfortunately both systems require that the images

be segmented along object boundaries in order to identify the shapes that a user is likely to use when re-

trieving images. QBIC resorts to a manual approach in which a human manually outlines the desired shapes

using an interactive \shrink-wrap" utility [Na93b]. In [GZCS94] the images are segmented automatically on

the basis of color but a postprocessing step is required to recover from over-segmentation; the postprocessing

step is not described but is probably manual. Both authors provide no analysis of retrieval performance.

Texture and shape will be incorporated into our retrieval system as soon as some of the weaknesses of the

color and edge retrieval mechanisms have been addressed. Shape will be more di�cult to incorporate since

it appears to rely on segmenting images along object boundaries. However it may be possible { although

nontrivial { to develop a representation that allows a single query shape to match against multiple image

shapes and vice versa. This would maintain our goal of automatic indexing and retrieval since an image

would not need to be segmented along object boundaries (current image processing technology can not

accurately divide an arbitrary image along object boundaries).

The use of additional image features such as texture and shape will improve retrieval performance. However

text should not be ignored since many images must have text associated with them anyways (e.g. captions

for images in a book) and many queries are impossible to answer without examining this text. For example

�nding all photographs taken in Paris is impossible without looking at the photograph captions. Allowing

the user to search any available text will be a critical addition to the retrieval system despite the errors and

inconsistencies in normal text. A simple text retrieval mechanism will be incorporated soon.

5 Conclusion

This paper has presented a content-based image retrieval system. The system retrieves color images on

the basis of their color and edge characteristics. Two existing retrieval techniques { histogram intersection

and sketch comparison { are used to compare color distributions and edge maps. The performance of the

system shows some promise { particularly with respect to color { but falls far short of the performance that

is required for practical electronic publishing. Various methods to address the weaknesses of the retrieval

techniques have been mentioned { most notablely moving towards a segment-based scheme for color matching

and towards a path-based scheme for edge matching { and will be explored in future work. In addition many

other image features can be used for content-based retrieval. Texture and shape are the two most common

and will eventually be incorporated into the system. A simple text retrieval mechanism will also be added.

6 Acknowledgements

Many thanks to Jing Feng and Professor Fillia Makedon for useful discussions; to my advisor, Professor

George Cybenko, for his encouragement and support; and, as always, to Jennifer and Stephen Gray for

reminding me that there is life outside graduate school.

18



References

[CLP94] Tat-Seng Chua, Swee-Kiew Lim, and Hung-Keng Pung. Content-based retrieval of images. In

Multimedia 94, pages 211{218, San Francisco, Cal�ornia, 1994. ACM.

[FVDFH91] James D. Foley, Andries Van Dam, Steven K. Feiner, and John F. Hughes. Computer Graphics:

Principles and Practice. Addison-Wesley, Reading, Massachusetts, second edition, 1991.

[GZCS94] Yihong Gong, Hongjiang Zhang, H. C. Chuan, and M. Sakauchi. An image database system

with content capturing and fast image indexing abilities. In Proceedings of the International

Conference on Multimedia Computing and Systems, pages 121{130, Boston, Massachusetts,

1994. IEEE.

[HK92] Kyoji Hirata and Toshikazu Kato. Query by visual example. In Advances in Database Technology

EDBT 1992, Third International Conference on Extending Database Technology, pages 56{71,

Vienna, Austria, 1992. Springer-Verlag.

[KKOH92] Toshikazu Kato, Takio Kurita, Nobuyaki Otsu, and Kyoji Hirata. A sketch retrieval method for

full color image databases. In International Conference on Pattern Recognition (ICPR), pages

530{533, The Hague, The Netherlands, 1992. IAPR.

[Na93a] Wayne Niblack and all. The QBIC project: Querying images by content using color, texture

and shape. SPIE, 1908:173{187, 1993.

[Na93b] Wayne Niblack and all. The QBIC project: Querying images by content using color, texture and

shape. Research Report RJ 9203 (81511), IBM Research Divison, Almaden Research Center,

San Jose, California, 1993.

[SB91] Michael J. Swain and Dana H. Ballard. Color indexing. International Journal of Computer

Vision, 7(1):11{32, 1991.

[SC94] John R. Smith and Shih-Fu Chang. Quad-tree segmentation for texture-based image query. In

Multimedia 94, pages 279{286, San Francisco, Cal�ornia, 1994. ACM.

[Swa93] Michael J. Swain. Interactive indexing into image databases. SPIE, 1908:95{103, 1993.

19


	Content-based image retrieval: color and edges
	Dartmouth Digital Commons Citation

	project.dvi

