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ABSTRACT

Today’s digital libraries (DLs) archive vast amounts of in-
formation in the form of text, videos, images, data measure-
ments, etc. User access to DL content can rely on similarity
between metadata elements, or similarity between the data
itself (content-based similarity). We consider the problem of
exploratory search in large DLs of time-oriented data. We
propose a novel approach for overview-first exploration of
data collections based on user-selected metadata properties.
In a 2D layout representing entities of the selected property
are laid out based on their similarity with respect to the un-
derlying data content. The display is enhanced by compact
summarizations of underlying data elements, and forms the
basis for exploratory navigation of users in the data space.
The approach is proposed as an interface for visual explo-
ration, leading the user to discover interesting relationships
between data items relying on content-based similarity be-
tween data items and their respective metadata labels. We
apply the method on real data sets from the earth observa-
tion community, showing its applicability and usefulness.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.3 [Information Storage and Re-
trieval]: Digital Libraries; J.2 [Physical Sciences and
Engineering]: Earth and atmospheric sciences
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1. INTRODUCTION
Digital Libraries (DLs) organize, preserve, and make avail-

able to users all kinds of information. Often, textual and
multimedia documents such as images, video, or audio are
among the document types supported by DL systems. Re-
cently, also scientific research data has come into focus as
an important type of information that should be treated by
DL efforts. New technologies for data collection are lead-
ing to data production at high rates, giving rise to large
amounts of relevant data which users may be interested
in. Examples, among many others, include the scientific
domains of earth and space observation, where repositories
such as PANGAEA [26] and SLOAN [31] host large amounts
of relevant data, respectively. Jim Gray’s Fourth Paradigm
[15] suggests that the scientific discovery process as a whole
could benefit tremendously if research data could be consis-
tently collected, shared, and made available by means of a
research data infrastructure.

To date, the data storage facilities in DLs have increased
substantially, and the storage of large data becomes less an
issue than appropriate forms of user access. Data in existing
scientific data repositories are typically accessed by users
according to metadata properties of the data items, e.g.,
time or location of observation, or the name of the creator
of the respective data item. User access based on the actual
content of the data, however, remains a difficult problem as
the concept of data is very diverse, and appropriate search
methods depend on the type of data and user intents.

The visual analysis has the goal to make big amounts
of data and information processing transparent in a way
that combines the strengths of humans and computers. Ac-
tual approaches unify automated data analysis with visual-
interactive data exploration [18]. Exploratory search [38]
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Figure 1: Graphical layout of metadata property ‘Location’ enriched by data content summaries based on
temperature measurements. Hot temperature measurements to the left (red), measurements from polar
regions to the right (blue), cluster of moderate temperatures at the center (yellow, green).

addresses the problem of users not having a well-defined in-
formation need that could be translated into a formal query.
Appropriate overview and navigation facilities allow users
to obtain a better understanding of the overall data space,
before narrowing down the search to more specific queries.
Facetted search approaches have proven to be very useful in
the exploratory search process. They group documents ac-
cording to categories of metadata, such as ‘Author’, ‘Year’,
or ‘Location’. The appropriate representation of relation-
ships and patterns in data can lead to the discovery of ex-
pected and unexpected relationships [42] potentially relevant
for the users’ information need.

We propose a new approach for exploratory search in time-
oriented research data. It reflects both metadata and the
actual data content. A visual-interactive display is designed
which allows users to navigate the metadata search space,
discover relationships between data items, and access indi-
vidual data records. Based on the notion of metadata prop-
erties, users are enabled to select a specific metadata field
of interest. The similarity between instances of the selected
metadata property (we call them metadata entities) is au-
tomatically computed based on the content of the under-
lying data items. A similarity-preserving 2D layout of the
metadata entities, based on a force-directed network lay-
out method, is then generated. This layout can be freely
navigated by the user to explore interesting relationships
between entities. The visual exploration is supported by
showing, for each entity, a content summary of the repre-
sented data items based on the clusters within the data.

Our approach is applied to a repository of time-series data
from the earth environment domain. We show the principal
applicability of the method and recommend it as an ap-
proach for visual and exploratory search in this kind of data
domain. Examples of the many useful application scenarios
made possible by our approach include finding answers to
questions such as “which data creator found the earth ob-
servation measurements most similar to mine?” or “which
measurement stations produce the most similar measure-
ment series?”. In a case study, we show the practical applica-
bility of our search and exploration display by incorporating
scientific researchers from the earth observation field.

2. RELATED WORK

2.1 Scientific Research Data in the Digital Li-
brary Context

In modern information infrastructures, DLs are a key com-
ponent. DLs provide and manage facilities for accessing in-
formation and data resource, and allow distributed access
to large user communities. DL systems have developed over
the years to a ‘digital library universe’ with a great variety
of user roles, resources, technology and relationships, and
yield many advantages in modern information infrastructure
[22, 40]. Many DL systems provide mechanisms to search
in well-defined metadata. Emerging nominatives for meta-
data properties are the Dublin Core standard [27]. Many
other domain-focused metadata standards exist. For exam-
ple, in research data, the DataCite metadata kernel [33] is
proposed. Open data libraries cover a number of data and
application domains like crystallography [13], earth obser-
vation [26], or chemistry [39]. A clear trend indicates that
the number and size of public data repositories will continue
to grow. Respective challenges in the DL area include the
question how to integrate and access that data to support
scholarly work flows.

DLs are fundamental components of E-science [15, 32],
and the necessity of treating scientific research data by li-
brary services is generally recognized [17]. Moreover, signif-
icant challenges like handling complex data in the sense of
(a) ‘big data’ and (b) heterogeneous data exist [19, 18]. Fur-
thermore, a challenge with scientific research data retains:
how to organize and access various kinds of scientific data
content? In Section 2.3 we will identify the problem of creat-
ing content summary solutions in the scientific research data
context. Hull et al. expect future DL tools with metadata
and data content to be less isolated and rigid [17]. Based on
our experience and a review of DL publications distributed
among various scientific data domains, it is of invaluable
importance to work closely together with researchers to ap-
propriately meet the two-way requirements on target DL
analysis systems. This need for multidisciplinary collabora-
tion is stated in biological sciences [32], neuroscience [10],
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E-Science [16] and other application areas [6, 13]. Making
effective use of data sets based on a combined metadata-
based and content-based approach is promising [3]. Like
stated by Foster et al., understanding the scientific workflow
and providing effective information tools has the potential
to eventually realize massive benefit to science [17].

2.2 Similarity relations generated by meta-
data and content-based approaches

When are two entities related or similar? This is the
driving question in related work about metadata-based and
content-based approaches.

In metadata-based approaches, annotations primarily
serve as a measure for similarity. If two annotations are
similar, the annotated entities are considered similar [27].
Such metadata approaches rely heavily on the quality of
the metadata – and accordingly on the curation process.
Another metadata-based approach relies on usage statis-
tics. Such approaches are most popular in collaborative
filtering systems, where the assumed relatedness (or simi-
larity) of two entities is increased, whenever they are being
bought together, looked at the same time, have the same
co-citation patterns etc. [5]. Hybrid algorithms employing
both – content-based and collaborative filtering techniques
– have also been successfully used [34]. A third approach
comprises ontology-driven techniques and systems. Here,
a strict ontology is imposed for a given domain. Under
such constraints, retrieval with a focus on semantics be-
comes viable. Such approaches already started to enable
new semantic applications in a wide span of areas such as
bioinformatics, financial services, web services, business in-
telligence, DLs and national security [19]. Two of the most
prominent examples include DBPedia [2], which enables se-
mantic search of wikipedia knowledge, and Wolfram Alpha
[41] which even allows for semantic searches with natural
language querying.

Measuring content-based similarity is subject to research
in many areas. These include multimedia information re-
trieval tasks [23], like 2D shape analysis, 3D object retrieval
and content-based image retrieval [11], as well as informa-
tion retrieval in time-series data [21]. This process usually
involves (a) some kind of descriptor that represents data
under concern, and (b) a distance measure between two de-
scriptors that represent the dissimilarity of the data object.
One prominent descriptor-scheme is the computation of fea-
ture vectors. For computing the distance between two fea-
ture vectors, a vast amount of distance functions is available
[9]. Given a descriptor and a distance measure, users are al-
lowed to search for data objects not only by similarity of the
annotation, but also by similarity of content. Such queries
often consist of query-by-example or query-by-sketch [14].

A key difference between content-based and metadata-
based similarity notions is that the former can be computed
fully automatically, but often suffer from limited discrimi-
nation capability and in general, the semantic gap problem
[29]. Metadata-based approaches in the best case can pro-
vide better discrimination and semantic description, yet are
often depending on manual annotation and quality control.
Most retrieval and exploration systems consider either the
content-based or the metadata-based similarity notions for
supporting user queries or computing visual layouts for ex-
plorative search and browsing. Our work is novel in that
we integrate both similarity notions in a joint approach.

Specifically, we compute content-based similarity between
data items, using it to visually map metadata properties of
the data, for explorative analysis and correlation.

2.3 Visualization of Search and Exploration
Spaces

There exist two classes of techniques for visualizing data
entities on a 2D display reflecting their interdependencies
and thereby generating a visual entity map. These are
projection-based and graph-based layouts. The projection-
based approaches map high-dimensional data spaces to
spaces of lower dimensionality. In our case, the high-
dimensional time-series data is projected to a space of
lower dimensionality in order to visualize it in 2D. Exam-
ples for projection-based approaches include principal com-
ponent analysis (PCA), multi-dimensional scaling (MDS)
or self-organizing map (SOM) [12] layouts. All of these
techniques are topology-preserving. Their goal is to pre-
serve the pairwise distances between its entities, which is
the main requirement for our 2D map. As a drawback of
these projection-based layouts, their output is neglecting
the overfitting problem on the display space. Entities of
similar content will overlap in the visualization, which is a
drawback for the user’s exploration task.

As a second possibility, data entities and their pairwise
similarities can be interpreted as complete graphs. Hence,
the visual map can be generated via a graph-based layout.
For the preservation of the edge lengths especially force-
based graph layouts are suitable. An overview of graph lay-
outs is given in [37]. In our approach, we apply the Weighted
Edge-Repulsion LinLog model, an extension of the Edge-
Repulsion LinLog model [24], to layout our metadata en-
tity graph. Besides their topology-preserving characteristic,
it addresses the overfitting problem by applying repulsive
forces on overlapping entities.

There also exist metadata visualization approaches in
the field of DL. In [35], powergraphs are used to visual-
ize clustered co-author relationships from a bibliographical
database. The experimental library software INVISQUE
[42] uses an index card metaphor to realize a visual inter-
active exploration of library content. While approaches in
providing ‘content summary solutions’ for generic data types
like audio or image, or other multimedia data exist for years
[28, 1], concepts for organizing scientific data by its content
in the DL workflow are scarce. In [30], content summaries
are provided via a k-means clustering approach. As another
example, Bernard et al. [3] generate content summaries
based on scientific research data via a self-organzing maps
approach. A solution for visualizing icon-based cluster con-
tent summaries combined with graph layouts can be found
in [8] from the information visualization research field.

In the information visualization field, mapping of data
variables on the display space is often performed by means
of visual attributes like color, transparency, object size, or
object position. The use of color needs predefined color
palettes, so called color maps. In our approach we ap-
ply color on the basis of a so called visual catalog to vi-
sually discriminate between distinct variations of data con-
tent. Therefore, a variety of two dimensional color maps
can be applied [7]. We follow the idea of Vesanto et al. [36]
where the output of the self-organizing map algorithm is
color-coded.
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Figure 2: Visualization of time-oriented research
data content. Daily temperature curves (black) with
a similar visual appearance are shown, while abso-
lute values differ (left: around 20◦C, right: below
-20◦C). PAA descriptor of the curves (red) denotes
the basis of our content-based similarity concept.

3. APPROACH
In this section we present our method for visual search

and exploration of metadata properties. In current DL sys-
tems metadata often refers to nominal entities (authors, geo-
annotation, sources, etc.) As a consequence, potential rela-
tions between different entities must be neglected in a meta-
data search: Only the library objects matching the name
defined in the query can be considered as a valid result. For
example, searching for a specific author will result in a list
of all library objects composed by the author. Relations be-
tween different metadata entities (e.g., different authors) are
neglected.

In the following Section 3.1 we propose a similarity mea-
sure in order to describe the relations between different
metadata entities. This measure is computed based on the
data content associated to the metadata property. In our
use case, the content consists of time-oriented measurements
taken by the author. The result of these content-based sim-
ilarity computation is a distance matrix describing all pair-
wise similarities between the metadata entities. In Section
3.2, this distance matrix is visualized for a first comparison
of different metadata entities regarding their content. In
Section 3.3, we provide visual access to the metadata entity
relations via a 2D layout. Here, authors that created similar
measurements appear close to each other. In Section 3.4
we detail on our visual catalog which allows for a global
overview of the data content. Moreover, we employ this
visual catalog metaphor as a visual representation to enrich
each of our metadata entity glyphs with associated data
content information, see Section 3.5.

3.1 Content-based Metadata Similarity Mea-
sures

In our approach, we cluster entities based on similar
metadata annotations like ‘Author’ or geo-spatial ‘Loca-
tion’. Given such a clustering, we wish to compute the
content-based similarity between these semantic entities. In
the application we consider here, the content of each entity
consists of time-oriented climate measurements series.

A simple, yet powerful technique to describe sequential
data is the so-called Piecewise Aggregate Approximation
(PAA) [20] (see Figure 2). It is suitable for our purposes
of describing time-series. The basic idea is to split a se-
quence of length n into m segments and compute the mean
value of all data-points in each segment. Such a block-wise
average can be computed extremely fast, only n (sequence

Figure 3: Content-based similarity for two given
metadata entities: Measurement data of ‘Scientist
A’ is compared with measurement data of ‘Scien-
tist B’ to compute a content-based distance between
these two (semantic) entities.

length) additions and m (number of segments) divisions are
required.

To measure content-based similarity we chose the Eu-
clidean distance, because the PAA descriptor tries to ap-
proximate the original time-series as closely as possible. This
avoids deviating any further from the true Euclidean dis-
tance of two given time-series.

However given two sets of descriptors and a distance mea-
sure, there are still several possibilties to assess the simi-
larity. We can (a) compute the average of each pair-wise
distance; (b) average the descriptors for each set and then
compute the distance; (c) determine the median descriptor
for each set and compute their distances.

We chose option (b), because we believe this to be the
best trade-off between the discriminativeness of (a) and the
outlier robustness of (c) (see Figure 3).

Please note that the choice of data descriptor and dis-
tance function is a user-parameter in general. As long as
the descriptor computation result is a vector and the dis-
tance measure is a true metric, the particular concept of
content-based similarity is interchangeable.

3.2 DistanceMatrixView: Visualizing Pair-
wise Distances of Metadata Entities

The similarity measures presented in Section 3.1 are used
to identify relations between different metadata entities. A
matrix consisting of all pairwise similarities between the
metadata entities of a certain metadata property (e.g. ‘Au-
thor’) can be interpreted as a distance matrix. In Figure 4
we present a triangular distance matrix visualization, that
supports the visual exploration of these similarities. Each
diamond-shaped box represents the relation between two
metadata entities. The color describes the similarity value
from similar (white) to dissimilar (blue). We provide two
possible scenarios for the user to interact with the visual-
ization. First, similar or dissimilar metadata entities can be
detected by clicking on bright or dark blue diamonds. The
corresponding metadata entities are highlighted in the list
(see Figure 4). With this interaction mode, extreme simi-
larity values can be explored. Secondly, a user may want to
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Figure 4: DistanceMatrixView: Visualization of a
similarity matrix regarding metadata property ‘Au-
thor’. Similarities are computed based on short-
wave downward radiation measurements, which are
prominent measures in climate research, especially
for giving statements about cloud occurences. High-
lighting of lowest similarity between the measure-
ments of the two authors ‘Andreas Herber’ and ‘Mo-
hamed Mimouni’.

identify the similarities to one specific metadata entity. By
selecting this entity in the list, the corresponding diamonds
are highlighted. This helps the user to analyze the simi-
larities of one specific metadata entity to the other entities
(e.g, see Figure 7). The distance matrix visualization allows
the user to visually explore the metadata space implying its
inner relations regarding a specific metadata property (e.g.
‘Author’). Please note, that the user can freely choose which
metadata property to explore. Our concept can be applied
to any metadata property provided in the data set. The
properties only define the grouping of the data content.

3.3 MetaMap: Visual Mapping of Metadata
Entities

Another method to support exploratory search in the
metadata space is to display the metadata entities to be
explored in a 2D map. One requirement to the resulting
visualization is (a) that similar entities are depicted close
to each other while dissimilar entities should have a greater
visual distance. That way, the user can explore similar
metadata entities in the vicinity of an entity of attention.
Moreover, (b) the visualization has to arrange the icons
representing the metadata entities with a minimum of over-
plotting, since the nearest neighbors of a metadata entity
are most relevant for the exploration task.

From the visual mapping presented in the related work
(see Section 2.3) the force-based graph layouts prove to ful-
fill both requirements for the visual mapping. Therefore,
the metadata entities and their pairwise similarities are in-
terpreted as nodes and edges respectively.

In our approach, we apply the Weighted Edge-repulsion
LinLog model to layout our metadata entity graph. It is
topology-preserving, and therefore, meeting requirement
(a). Moreover, it addresses the overfitting problem, require-
ment (b).

In the following the metadata entity map is enriched by
visual content summaries.

Figure 5: Visual layout of metadata entities rep-
resented by their content summary icons. Topol-
ogy preservation (e.g., lowest similarity between au-
thors ‘Andreas Herber’ and ‘Mohamed Mimouni’)
and minimization of overlapping is shown.

3.4 Visual Catalog to Summarize the Data
Content

So far, we introduced the computation of similarity mea-
sures for metadata entities based on their underlying data
content, and two possible ways for visualizing the metadata
entities and their similarity values. In both visualizations
(presented in Section 3.2 and 3.3) the associated data con-
tent that is used to compute the metadata similarities is
not visualized. Now, we present a visualization method for
giving the user a ‘global overview’ of the underlying data
content. In our use case, the data content consists of time-
oriented measurement curves, each with the duration of one
day. We make these daily patterns visually accessible via a
visual catalog metaphor. This visual catalog has to (a) rep-
resent the underlying curve patterns, and (b) arrange them
in an intuitive order showing similar curve patterns close to
each other.

In our approach, we use a SOM algorithm to generate a
visual catalog. The resulting visual catalog (see Figure 6
(left)) consists of a n ×m grid of cells, each representing a
cluster of curve patterns. Within each cell, a representative
curve pattern and the number of curves contained in the
cluster is depicted. The cells are automatically arranged
in a way, that similar curve clusters appear close to each
other. With these characteristics our visual catalog meets
both requirements, visual overview and topology preserva-
tion. Please note, that the grid should not be interpreted as
a coordinate system with a semantic meaning for both coor-
dinate axes. The visual catalog is just a topology-preserving
arrangement of clusters.

As a last step for generating our visual catalog, a color
map is applied to the SOM grid. The purpose of this color
map is to increase the recognition value of special areas,
which is relevant for the content summaries in Section 3.5.
Please note, that the color map does not depend on the data
content. It is just applied to the grid structure of the visual
catalog. This is important to visually discreminate differ-
ent areas of the visual catalog. The color map can freely
be chosen and adapted to specific use case scenarios. For
example, in the application part of this paper (see Section
4), we choose a color map that supports the notion of warm
(red) and cold (blue) temperatures.
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Figure 6: Left: Visual catalog of daily curve progressions generated by a SOM algorithm. Underlying data
consists of shortwave downward global radiation measurements. Each cluster cell shows a representing curve
pattern, the number of associated curves is depicted at the upper right, respectively. Independent of the
actual data, a color map is applied to the 10×10 grid. Right: Content summary visualization representing the
measurements of author ‘Gert König-Langlo’. Transparency is applied to highlight associated measurements.
Global color and visual content representation show the mean curve progression and cluster cell affiliation.

3.5 Enriching our Metadata Entity Glyphs
with Visual Content Mappings

In the last section we introduced a visual catalog to give
an overview of the data content, consisting of daily curve
progressions. Now, we will combine the metadata map (see
Section 3.3) with the visual catalog to obtain an integrated
visualization depicting both metadata and content.

Therefore, each metadata entity in the metadata map is
represented via visual content representations, we call them
content summaries. A content summary consists of the vi-
sual catalog, presented in Section 3.4, with a color map ad-
justed to the corresponding metadata entity (see Figure 6
(right)). For example, each ‘Author XY’ has a certain num-
ber of associated measurement curves. These measurement
curves are highlighted in the visual catalog to obtain a con-
tent summary for the respective author. That means that
areas in the visual catalog with a low number of occurences
regarding the associated measurement curves are visualized
with a higher transparency on the color map.

With this method for each metadata entity a content
summary represented by a visual catalog reflecting the oc-
curences of measurement curves is calculated (see Figure 6
right). Now, these content summaries are visualized in the
metadata map introduced in Section 3.3 (see Figure 5).

With this visualization the user can directly identify which
metadata entities are similar and how their similarity can
be interpreted regarding the data content. As an additional
feature, the content summary border is depicted with the
color most representative with respect to the visual catalog.
With this method we provide a content summary solution
that supports the user in the visual exploration task.

4. APPLICATION
In our case study we apply our visual search and explo-

ration designs to a real-world example. On the basis of a
scientific research data set, we aspire two aspects: (1) prove
the functionality of our approach, and (2) explore interesting
characteristics in the search space. The challenge in dealing
with scientific research data in the DL context is on the one
hand (a) to satisfy the expert user expectations and on the
other hand (b) to come up with illustrative use cases to at-

tract interested but non-expert user groups. In compliance
with this need, we designed our case study in close collabora-
tion with experts from the Alfred Wegener Institute (AWI)
for Polar and Marine Research in Bremerhaven, Germany.

4.1 Data Set and Application Domain
Our incorporated data set [4] is acquired from the open

data repository PANGAEA, operated by the AWI. PAN-
GAEA archives and publishes georeferenced scientific earth
observation data in the research areas of water, ice, sedi-
ment and atmosphere. Our data set focuses on atmospheric
weather measurements, gathered in the scope of the Base-
line Surface Radiation Network (BSRN)[25], a PANGAEA
compartment. In general, data of BSRN concerns the devel-
opment of radiation and meteorological measurements over
time, expressed by up to 100 physical parameters, recorded
up to a temporal resolution of one measurement per minute.
Common physical units include atmospheric pressure, rela-
tive air humidity, temperature and a variety of radiation-
based measurements like shortwave downward radiation and
longwave upward radiation.

4.1.1 Definition of Data Content

We decided to use temperature neasurements as our data
content for two reasons. Temperature measurements are es-
pecially qualified to satisfy the public interest of non expert
users (see Section 4.2, case study A) and the critical ex-
amination view of expert users (see Section 4.3, case study
B). In consultation with researchers from AWI, we decided
to choose a temperature measurement set of 22 BSRN sta-
tions recorded within the year 2006. Considering tempera-
ture measurements of a whole year is especially important
to get a complete impression of all thermal behaviors to be
expected within the most typical climatic time period - one
year. Another important time period in considering climatic
examinations concerns the duration of single days. Different
regions on earth evoke entirely different measurement curves
within the duration of one day. Scientists call this the phe-
nomena of diverse diurnal variations. To comply with this
requirement, we define temperature measurements of a sin-
gle day, taken at one distinct measurement station on earth
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Figure 7: The DistanceMatrixView shows pairwise
content-based distances of metadata property ‘Lo-
cation’. ‘Antarctica’ (selected) is dissimilar to all
other metadata entities.

as one data element (see Figure 2 for two exemplary daily
curve progressions). In other words, the outcome of a daily
temperature measurement is one ‘pattern’ that is applied as
our content-based similarity modality and thus, the basis of
our visual catalog that gives an overview of all (daily) tem-
perature patterns measured in the data set (see Figures 8
and 9). Altogether we process 7677 daily patterns, since the
22 available BSRN stations produce 365 daily curve pro-
gressions each. About 400 patterns have been sorted out
based on failed data consistency checks (e.g., missing values
detection).

We want to point out that it only takes one mouse click
to switch the entire data content to other available physical
units. The same holds for the aggregation of measurement
patterns, the similarity definition and the selection of meta-
data entities to be visually explored.

4.1.2 Selection of a Metadata Property

PANGAEA data files are divided in a clearly arranged
metadata header and a data table with columns of mea-
surements with distinct physical units. The interpretation
of the metadata headers provides sufficiently enough meta-
data properties to comply the DataCite metadata standard
we use in our platform. Besides mandatory DataCite at-
tributes (‘Identifier’, ‘Creator’, ‘Title’, ‘Publisher’, ‘Publi-
cation Year’) and further optional DataCite metadata prop-
erties, we extract PANGAEA-specific metadata properties,
like ‘Location’ or ‘Coverage’. We decided to choose ‘Loca-
tion’ as our focused metadata property, because the location
of measurement stations on earth gives a good characteriza-
tion of various climates to be expected. BSRN stations are
distributed all over the world. Due to the heterogeneity of
measured climates, we expect interesting exploration results
within the defined search and exploration space.

4.2 Case Study A: Metadata Property ‘Loca-
tion’ Explored by Absolute Temperature
Measurements

Our first case study describes temperature measurements
from 2006, taken from 22 BSRN stations all over the world.
We choose the metadata property ‘Location’ as our meta-
data exploration space. Comparing absolute temperature
values it can be expected that measurement stations geo-
graphically located close to each other score a high similar-

Figure 8: Left: Visual catalog of all daily temper-
ature curves. Highest temperature values are dis-
covered at the left (red, orange, brown), moderate
values at the lower right (green, cyan), lowest tem-
peratures at the upper right (blue). Right: Enlarge-
ments of four discriminative cells for closer exami-
nation.

ity. This scenario is qualified for expert and non-expert user
groups in particular, since every user has a notion about
temperature behavior of different locations on earth.

First, we will explore the result of our content-based sim-
ilarity concept. The distance matrix (Figure 7) shows all
metadata entities in alphabetical order. Remember that
white diamonds denote high similarities, while blue dia-
monds show low similarities between two distinct metadata
entities. We highlight ‘Antarctica’, which has considerably
dissimilar temperature values to effectively all other loca-
tions in the data set, the highlighted row of ‘Antarctica’
comes along with the bluest color values in the entire ex-
ploration space. We record this statement and receive the
validation of the researchers from AWI: Antarctica pro-
duces temperature measurements about 30◦C colder than
any other BSRN station. In contrast, the most similar meta-
data entities are ‘Switzerland’ and ‘Germany’, which is ge-
ographically comprehensible. Other similar entity pairs are
the ‘Cosmonaut Sea’ and ‘Alaska’, or ‘Papua New Guinea’
and ‘Australia’. Together with the researchers, we conclude
that these pairs of locations are geographically grouped
close together or rather on the same latitude. Due to the
fact that ‘Antarctica’ is completely analyzed, we exclude
this entity from the data set for more detailed exploration
purposes.

Next, we calculate the visual catalog (see Figure 8) to get
an overview over all daily measurement patterns of the data
set. We choose our colormap in a way that red and orange
color values denote high temperature measurements (left),
moderate temperatures are color-coded in green and cyan
(lower right) and coldest daily measurements are represented
by blue cells (upper right). Furthermore, temperature pro-
gressions with higher peaks tend to be located at the lower
half of the visual catalog (yellow, green, cyan). The overall
temperature interval ranges from -29.2◦C) to a maximum of
33◦C.

With this obtained overview over the data content,
we proceed our exploratory case study by examining the
MetaMap (Figure 1). Together with the researchers, we dis-
covered several groups of measurement stations with similar
characteristics.

Result 1: At the upper left, the stations ‘Papua New
Guinea’, ‘North Pacific’, ‘Nauru’ and ‘Australia’ are marked
red. Most of these temperature measurements are located in
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Figure 9: Visual catalog of all relative daily tem-
perature curves. Progressions with an early max-
imum displayed at upper left (cyan), curves with
daily maximum in the afternoon on the right (yel-
low, orange, red), diverse curve progressions with
missing temperature peaks in the mid day at the
lower left (blue).

the upper left of the visual catalog and also coded with red
color values. This group of metadata entities comprises the
hottest temperatures in the entire data set. We infer that
these stations are located in tropical or desert-like climates.

Result 2: Another group of stations is located at the center
of our layout, marked with yellow, green and cyan color.
Most of the stations are located in moderate climates on
earth like Europe (‘Netherlands’, ‘Germany’, ‘Switzerland’,
‘France’).

Result 3: Finally we want to explore the group at the
upper right of our layout, denoted with blue and purple col-
ors. This group comprises the coldest measurements in the
data set, all content summaries of the entity glyphs con-
tain measurements taken from the blue and purple region
of the visual catalog (see Figure 8), denoting low tempera-
tures (mostly below 0◦C). On inspection, the locations ‘NY-

Ålesund’, ‘Alaska’, ‘Cosmonaut Sea’ and ‘Dronning Maud
Land’ provide the lowest temperature values in the data set,
which is evidence for the validity of both our similarity con-
cept and our topology-preserving MetaMap.

4.3 Case Study B: Metadata Property ‘Loca-
tion’ Explored by Relative Temperature
Measurements

With our second, more scientific case study, we follow a
request of researchers at the AWI. We explore the metadata
property ‘Location’, based on relative temperature curve
progressions. Consider that the analysis of patterns can ei-
ther be performed on absolute (temperature) values (like in
case study A) or on relative curve progressions. The progres-
sion of each temperature curve within one day disregarding
the absolute temperature values is of utmost importance for
our present notion of similarity. To illustrate the benefit of
relative curve analysis, the reader is referred to stock mar-
ket analysis tasks, where stocks of similar branches often
develop in a similar manner, even if their absolute values
are entirely different. One reason might be that all concern-
ing stocks are dependent on similar impacts.

Back to our case study, we firstly consider the visual cata-
log in Figure 9. We identify daily temperature progressions
with a maximum before noon on the upper left (cyan) and
curves with their peaks in the afternoon on the right (yel-
low, orange, red). In the upper left, the visual catalog shares
curves with indefinite behavior (blue, purple). Many tem-

Figure 10: The DistanceMatrixView displays
‘France’ and ‘Germany’ as the most similar meta-
data entities in the data set (white diamond).

perature progressions have maxima in the evening or even
at night. Even though researchers from AWI describe this
behavior as ordinary in arctic regions, we were surprised
about this outcome of the visual catalog. Finally, we dis-
cover curves with clear daily maxima in the middle of the
day to be located at the right of the visual catalog.

Next we investigate the DistanceMatrixView in Figure
10. We select the whitest diamond with the minimum pair-
wise distance and consider ‘France’ and ‘Germany’ as the
most similar metadata entity pair in the data set. Further-
more we point out ‘France’ and ‘Switzerland’, ‘North Pacific
Ocean’ and ‘Bermuda’, ‘Switzerland’ and ‘Germany’, as well
as ‘Switzerland’ and ‘Japan’ to have above average degrees
of similarity. A great many of the most dissimilar locations
in the data set are addressed by the entities ‘Antarctica’
and ‘North Atlantic Ocean’. We regard these findings as
important and to deserve further exploration.

Together with the researchers from AWI, we explore our
MetaMap of all locations in the data set based on the sim-
ilarity measure of relative daily temperature curves. In the
following, we detail the results of our explorations:

Result 1: The biggest group of locations is arranged at
the lower right regions of the MetaMap (orange, brown).
Measurements taken from the corresponding stations have
sufficiently distinctive temperature peaks in the middle of
the day, typically after noon. This attitude is obtained by
moderate and continental climates. Locations from Cen-
tral Europe and measurements taken from ‘Oklahoma’ and
‘Canada’ prove this hypothesis.

Result 2: A second cluster is found at the upper of the
MetaMap (cyan). It is particularly noticeable that mea-
surements within the distinct content summaries arise from
the green and cyan colored regions of our visual catalog,
where curves with a daily maximum before noon are dis-
covered. The measurement stations are predominantly lo-
cated at tropical, maritime places on earth - known to be
influenced by gathering clouds at noon and rainstorms in
the afternoon, which explains aggregated daily temperature
maxima even before noon. The location ‘Colorado’ is de-
picted as an outlier. We inquired the researchers and found
out that the measurement station is located on more than
1500 meters above sea level in a rainy climate region, which
explains the cluster affiliation.

Result 3: A third group of metadata entities is recog-
nized on the lower left (blue), all measurement stations are
located at arctic regions. The crossover to the orange clus-
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Figure 11: MetaMap of all ’Locations’ in the data set. Predominantly maritime and tropical regions are
arranged at the top (cyan), locations of moderate and continental climates are located at the bottom (orange,
brown). At the lower left, a group of arctic locations is shown (blue).

ter is built by ‘Cosmonaut Sea’ and ‘Alaska’, which is also
geographically comprehensible. Arctic climates are charac-
terized by temperature behaviors apart from solar zenith an-
gles, typically without a major temperature peak at noon.
This behavior can be stated by the blue measurements in the
content summaries denoting rather heterogeneous tempera-
ture progressions in the visual catalog. Note that the sta-
tion ‘Antarctica’ even has no average temperature deviation
within the whole day, which makes the station significantly
dissimilar to all other locations in the data set.

5. CONCLUSIONS
We presented an approach for exploratory search in time-

oriented research data. The approach is based on user-
selectable metadata properties for which visual layouts are
presented that reflect similarity of the underlying metadata
entities. Our approach is novel in that it derives a notion
of similarity from the content of the data, and allows explo-
ration of the data based on metadata properties. It allows
users to examine relevant relationships between entities and
is a basis for subsequent drill-down queries. The approach
is particularly useful for navigating in large data spaces for
which users have no a-priori knowledge.

This work is only a first approach in our idea to provide
users with a more encompassing access to research data both
from the metadata and content perspectives. Future work
includes extending the approach to further domain-specific
similarity notions in time-series data, considering, e.g., sim-
ilarity based on time-series motif analysis or correlation be-
tween measurements. Also, we currently neglect similarity
between metadata properties themselves. For example, simi-
larity between geospatial distance of measurement locations
or similarity between authors according to their scientific
institution could be considered. To this end, comparative
exploration of groups of data according to content and meta-
data should be considered. The 2D layout could be enhanced
by additional visual representations of data properties, such
as the scientific methodology applied for obtaining measure-
ments. Finally, validation of the approach by expanded do-
main user studies should be performed in the future.
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analyzing and organizing music archives. In ECDL,
pages 402–414. Springer, 2001.

[29] S. Rueger. Multimedia Information Retrieval. Morgan
and Claypool Publishers, 2010.

[30] M. Scherer, J. Bernard, and T. Schreck. Retrieval and
exploratory search in multivariate research data
repositories using regressional features. In JCDL,
pages 363–372. ACM, 2011.

[31] Sloan Digital Sky Survey. http://www.sdss.org/.

[32] L. D. Stein. Towards a cyberinfrastructure for the
biological sciences: progress, visions and challenges.
Nature Reviews Genetics, 9(9):678–688, 2008.

[33] The DataCite consortium. DataCite: Helping you to
find, access, and reuse data. http://datacite.org/.

[34] R. Torres, S. M. McNee, M. Abel, J. A. Konstan, and
J. Riedl. Enhancing digital libraries with techlens+. In
Proceedings of the 4th ACM/IEEE-CS joint conference
on Digital libraries, JCDL ’04, pages 228–236, New
York, NY, USA, 2004. ACM.

[35] G. Tsatsaronis, I. Varlamis, S. Torge, M. Reimann,
K. Nørv̊ag, M. Schroeder, and M. Zschunke. How to
become a group leader? or modeling author types
based on graph mining. TPDL, pages 15–26, 2011.

[36] J. Vesanto. SOM-based data visualization methods.
Intelligent Data Analysis, 3(2):111–126, 1999.

[37] T. von Landesberger, A. Kuijper, T. Schreck,
J. Kohlhammer, J. vanWijk, J.-D. Fekete, and
D. Fellner. Visual analysis of large graphs:
State-of-the-art and future research challenges. 2011.

[38] White and Roth. Exploratory Search - Beyond the
query-response paradigm. Morgan and Claypool, 2009.

[39] A. J. Williams. A perspective of publicly
accessible/open-access chemistry databases. Drug
discovery today, 13(11-12):495–501, 2008.

[40] I. H. Witten, R. J. Mcnab, S. J. Boddie, and
D. Bainbridge. Greenstone: A comprehensive
open-source digital library software system. In
International Conference on Digital Libraries. ACM,
2000.

[41] Wolfram Alpha. Wolfram|Alpha: Computational
Knowledge Engine. http://www.wolframalpha.com/.

[42] B. Wong, S. Choudhury, C. Rooney, R. Chen, and
K. Xu. Invisque: technology and methodologies for
interactive information visualization and analytics in
large library collections. TPDL, pages 227–235, 2011.

148




