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Abstract Medical imaging is fundamental to modern healthcare,
and its widespread use has resulted in the creation of image
databases, as well as picture archiving and communication
systems. These repositories now contain images from a diverse
range of modalities, multidimensional (three-dimensional or
time-varying) images, as well as co-aligned multimodality
images. These image collections offer the opportunity for
evidence-based diagnosis, teaching, and research; for these
applications, there is a requirement for appropriate methods to
search the collections for images that have characteristics sim-
ilar to the case(s) of interest. Content-based image retrieval
(CBIR) is an image search technique that complements the
conventional text-based retrieval of images by using visual
features, such as color, texture, and shape, as search criteria.
Medical CBIR is an established field of study that is beginning
to realize promise when applied to multidimensional and
multimodality medical data. In this paper, we present a review
of state-of-the-art medical CBIR approaches in five main cat-
egories: two-dimensional image retrieval, retrieval of images
with three or more dimensions, the use of nonimage data to
enhance the retrieval, multimodality image retrieval, and re-
trieval from diverse datasets. We use these categories as a

framework for discussing the state of the art, focusing on the
characteristics and modalities of the information used during
medical image retrieval.
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Introduction

Imaging is a fundamental component of modern medicine and
is used widely for diagnosis [1], treatment planning [2], and
assessing response to treatment [3]. The question of image
similarity has important applications in the medical domain
because diagnostic decision-making has traditionally involved
using evidence from a patient’s data (image and nonimage)
coupled with the physician’s prior experiences of similar cases
[4]. A recent study [5] has shown that clinical staff selected
these similar cases primarily based upon visual properties. It
has been suggested that the reliance on imaging for various
clinical workflows means that access to relevant stored data
will allow for more informed and effective treatment [6].

Digitization and the development of picture archiving and
communication systems (PACS) [7] have enabled the storage
of medical images in large digital repositories, which can be
accessed by clinical staff over a network. PACS allows
physicians to consider a patient’s image history by allowing
them to find all images related to a particular patient

Large PACS repositories also provide new opportunities
for image-based diagnosis, teaching, and research based on
interpatient comparisons [8–11]. This requires searching the
repository for images that have similar characteristics to the
image of the patient under consideration. However, the search
capabilities provided by PACS are based on textual keywords,
including patient name, identifiers, and image device. Text
descriptions limit the search capabilities of PACS and mean
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that users must read through clinical reports or already know
the keywords of the images to be retrieved [12, 13]. While a
text-based PACS search is useful when clinical staff already
know the identifiers and characteristics of the images they
wish to find, the search is limited for interpatient comparative
studies because it does not consider the visual properties of the
images in the repository. Further, the massive volume of im-
aging data stored in modern clinical environments means that
PACS image retrieval is not viable on the basis of manually
assigned labels, e.g., clinical keywords and annotated regions.
An example of the problem is given by the volume of images
acquired by the Radiology Department at the University
Hospital of Geneva [10].

Modern hospitals acquire a diverse ranging of imaging
data. Higher-resolution devices allow physicians to detect
small lesions, such as small tumors and fractures [14]. Other
devices produce multidimensional images (three or more di-
mensions) that provide additional three-dimensional (3D) spa-
tial or temporal information. It is also common to use different
imaging modalities to provide complementary information
about a particular patient. The first multimodality imaging
technique to be routinely used in clinical environments was
combined positron emission tomography and computed to-
mography (PET-CT), which enables improved cancer diagno-
sis, localization, and staging compared to its single modality
counterparts [15]. Image search using existing PACS tech-
niques is unfeasible due to the high amount of information
encoded by these modern medical images; manual annotation
is impractical, not to mention uneconomical. Furthermore,
manual annotation is a subjective task with a high dependence
on the skill, training, experience, and alertness of the expert
performing the annotation [16].

Content-based image retrieval (CBIR) is an image search
technique that does not rely upon manually assigned anno-
tations. Instead, CBIR uses quantifiable (objectively calcu-
lated) features as the search criteria [16]. These features can
be automatically or semiautomatically extracted directly
from the images, thereby eliminating uneconomical and
subjective manual labeling. In this paper, we review CBIR
developments that have enabled medical image access for
clinical applications. There are detailed, previous reviews in
this field [8, 9, 17–19] but they have mainly catalogued the
different methods (image features and algorithms) that were
applied for medical CBIR. Our review takes a different ap-
proach. We describe CBIR methods based on clinical imaging
data that are modern, multidimensional, and acquired from
multimodality devices.

Our approach is as follows. We have surveyed different
applications and approaches to medical CBIR and classified
these into five groups: (1) two-dimensional (2D) image
retrieval, (2) retrieval of images with three or more dimen-
sions, (3) the use of nonimage data to enhance the retrieval,
(4) retrieval from diverse datasets, and (5) the retrieval of

multiple images (patient cases and multimodality images).
We use these groups as a framework for discussing the state
of the art, focusing on the characteristics and modalities of
the information used during medical image retrieval.

An Overview of Content-Based Image Retrieval

CBIR is an image search technique designed to find images
that are most similar to a given query. It complements text-
based retrieval by using quantifiable and objective image
features as the search criteria [16]. Essentially, CBIRmeasures
the similarity of two images based on the similarity of the
properties of their visual components, which can include the
color, texture, shape, and spatial arrangement of regions of
interest (ROIs). The nonreliance of CBIR on labels makes it
ideal for large repositories where it is not feasible to manually
assign keywords and other annotations. The objective features
used by CBIR mean that it is also possible to show what
images are similar and to explain why they are similar in an
objective, nonqualitative manner. The what is essentially the
set of retrieved images; the why is the difference in specific
image features between the query and the retrieved results.

The major challenges for CBIR include the application-
specific definition of similarity (based on users’ criterion),
extraction of image features that are relevant to this definition
of similarity, and organizing these features into indices for fast
retrieval from large repositories [16, 20–22]. The choice of
features is a critical task when designing a CBIR system
because it is closely related to the definition of similarity.
Features fall into several categories. General purpose features
can be extracted from almost all images but are not necessarily
appropriate for all applications, e.g., color is inappropriate for
grayscale ultrasound images. Application-specific features are
tuned to a particular problem and describe characteristics
unique to a particular problem domain; they are semantic
features intended to encode a specific meaning [16]. Global
features capture the overall characteristics of an image but fail
to identify important visual characteristics if these character-
istics occur in only a relatively small part of an image. Local
features describe the characteristics of a small set of pixels
(possibly even one pixel), i.e., they represent the details. In
recent years, there has been a shift towards using local features
largely driven by the belief that most images are too complex
to be described in a general manner; however, the combination
of local and global features remains an area of investigation
for practical computer vision applications [22].

An underlying assumption of most CBIR systems is that
the chosen image features used are sufficient to describe the
image accurately. The choice of image features must, there-
fore, be made to minimize two major limitations: the sensory
gap and the semantic gap [16]. The sensory gap is the
difference between the object in the world and the features
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derived from the image. It arises when an image is noisy,
has low illumination, or includes objects that are partially
occluded by other objects. The sensory gap is further
compounded when 2D images of physical 3D objects are
considered; some information is lost as the choice of view-
point means an object may occlude part of itself. The semantic
gap is the conflict between the intent of the user and the
images retrieved by the algorithm. It occurs because CBIR
systems are unable to interpret images; they do not understand
the “meaning” in the images in the same way that a human
does. Retrieval is performed on the basis of image features not
image interpretations.

The similarity of image features can be measured in a
number of ways. When the features are represented as a
vector, distance metrics such as the Euclidean distance can
be used. The notion of elastic deformation can be used to
define similarity when subtle geometric differences between
images are important. Graph matching enables the compar-
ison of images based upon a combination of image features
and the arrangement of objects in the images (or the rela-
tionships between them). Finally, statistical classifiers can be
trained to categorize the query image into known classes.
Classifier-based approaches constitute an attempt to over-
come the semantic gap through training a similarity measure
on known labeled data. A detailed discussion of various
similarity measures can be found in [19].

The large volume of modern image repositories and high
feature dimensionality of images has also contributed to chal-
lenges in efficient real-time retrieval. In many cases, it is no
longer viable to compare a query to every element of the
dataset. Efficient indexing schemes are necessary to store
and partition the dataset so the data can be accessed and

traversed quickly, without needing to visit or process irrele-
vant data. Alternatively, the search space can be pruned by
using only a subset of the features or applying weights to
features [22]. The large datasets also mean that exact search
paradigms, which look for images in the dataset that exactly
satisfy all query criterion, may no longer be viable. This has
led to the rise of approximate search schemes, which rank the
images in the dataset according to how well they satisfy each
search criterion [16]. Perhaps the most well-known approxi-
mate scheme is k-nearest neighbor search, which retrieves the
kmost similar (highly ranked) images asmeasured by distance
from the query in the feature space.

It is possible that some images retrieved by approximate
search paradigms will fail to meet the expectations of the
users. Precision and recall are two quality measures defined
to calculate the accuracy of an approximate search paradigm.
Precision refers to the proportion of retrieved images that are
relevant, i.e., the proportion of all retrieved images that the
user was expecting. Recall is the proportion of all relevant
images that were retrieved, i.e., the proportion of similar
images in the dataset that were actually retrieved. The ideal
case would be a retrieval system that achieves 100 % preci-
sion and 100 % recall. The reality is that most current
algorithms fail to find all similar images, and many of the
retrieved images contain dissimilar images (false positives).

Figure 1 shows a generic CBIR framework, which can be
adapted for specific applications. The dashed arrows indicate
the offline process that constructs the search index, while the
solid arrows indicate the online query process. The dashed
line divides the offline and online processes. During the
offline processes, features are extracted from each of the
images from the dataset. These features are then indexed for
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Fig. 1 A generic CBIR framework. The dashed arrows show the
offline creation of the feature index from the image repository. The
solid arrows show the online query process. The dashed line divides the

offline and online processes. Note that feature extraction participates in
both the offline and online processes
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searching. During online processing, the same feature extrac-
tion process is performed on the query image. The query
image’s features are then compared to the features of indexed
images using a defined similaritymeasurement algorithm. The
measurements can then be used to rank the images in order of
similarity or can be used to classify the images as “similar” or
“not similar.” This ranking is then displayed to the user. In
many cases, the user can provide feedback in the form of
weights or similarity indication to further refine the search
results. The feedback and retrieval process is repeated until the
user is satisfied with the retrieved results. The papers [16] and
[20–22] in the reference list provide detailed overviews of
general CBIR frameworks and components.

Early examples of CBIR use include IBM’s Query By
Image Content (QBIC)1 system [23], which was used to
search for famous artworks; others include the Virage frame-
work [24] and Photobook [25]. More recently, Google Search
by Image2 used the points, colors, lines, and textures in images
uploaded by users to find similar images [26]. These recent
developments mean that CBIR is a technology that is avail-
able to the masses.

In recent years, a paradigm shift has changed the focus of
CBIR research towards application-oriented, domain-specific
technologies that would have greater impact on daily life [22].
Due to advances in acquisition technologies, ongoing CBIR
research has moved towards images with more dimensions,
with an aim towards increasing image understanding. Modern
medical imaging is one such domain, where the retrieval of
multidimensional and multimodal images from repositories of
diverse data has potential applications in diagnosis, training,
and research [8]. The content of medical images is complex:
there is a high variability in the detail of anatomical structures
across patients; misalignment of structures can occur in volu-
metric and multimodality images; some imaging modalities
suffer from low signal-to-noise ratios; and occlusion of struc-
tures is a common occurrence. In addition, there can be large
variability among patients with the same health condition
[27]. It is essential that the characteristics of particular medical
images are taken into account when designing CBIR systems
for them. The following section presents a summary of the
state of the art in medical CBIR.

Content-Based Image Retrieval in Medicine

PACS and other hospital information systems store a large
variety of information, ranging from patient demographics
and clinical measurements (age, weight, and blood pressure)
to free text reports, test results, and images. The image types
include 2D modalities, such as images of cell pathologies

and plain X-rays, and volumetric images including CT, PET,
and magnetic resonance (MR). Recent advances have intro-
duced multimodality devices, e.g., PET-CT [28, 29] and
PET-MR [30] scanners, which are capable of acquiring two
co-aligned modalities during the same imaging session.
Figure 2 shows a subset of the different types of medical
images.

Several studies have already reported on the potential clin-
ical benefits of CBIR in clinical applications. The ASSERT
CBIR system used for high-resolution CT (HRCT) lung im-
ages [31] showed an improvement in the accuracy of the
diagnosis made by physicians [32]. Another study for liver
CT concluded that CBIR could provide real-time decision
support [33]. CBIR was also shown to have benefits when
used as part of a radiology teaching system [34].

In the following section, we begin our review by presenting
a summary of CBIR research for 2D medical images and
examine how these technologies have evolved and been ap-
plied to images with higher dimensions, e.g., volumetric CT
scans, and images with a temporal dimension, e.g., dynamic
PET. The integration of image with nonimage data will then
be presented. We will also examine how studies have dealt
with the challenge of retrieving images from datasets contain-
ing images from a diverse range of modalities. Finally, we will
discuss how multiple images from different modalities have
enhanced medical CBIR capabilities. Table 1 provides a brief
summary of the studies that we will examine in this review
and the types of data used during retrieval. Readers should
refer to the relevant article for further details, e.g., figures
showing the retrieval outcomes.

2D Image Retrieval

The majority of CBIR research on 2D medical images has
focused on radiographic images, such as plain X-rays and
mammograms. Our focus in this section is on techniques that
mainly use traditional features, e.g., shape and texture. These
techniques are representative of how standard techniques in
nonmedical CBIR [16] have been adapted to the medical
domain.

The Image Retrieval in Medical Applications (IRMA)3

project has been a sustained effort in the CBIR of X-ray
images for medical diagnosis systems. The IRMA approach
is divided into seven interdependent steps [35]: (1) categori-
zation based on global features, (2) registration using geome-
try and contrast, (3) local feature extraction, (4) category-
dependent and query-dependent feature selection, (5)
multiscale indexing, (6) identification of semantic knowledge,
and (7) retrieval on the basis of the previous steps. The IRMA
method classifies images into anatomical areas, modalities,

1 QBIC: http://wwwqbic.almaden.ibm.com/.
2 Click the camera icon in the search bar on http://images.google.com/.

3 IRMA Homepage (English): http://www.irma-project.org/index_en.
php.
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and viewpoints and provides a generic framework [36] that
allows the derivation of flexible implementations that are
optimized for specific applications.

Other approaches for radiograph retrieval have tried to
group features into semantically meaningful patterns. In one
such study [37], multiscale statistical features were extracted
from images by a 2D discrete wavelet transform. These
features were then clustered into small patterns; images were
represented as complex patterns consisting of sets of these
smaller patterns. Experimental results revealed that the meth-
od had significantly higher precision and recall compared to
two conventional approaches: local and global gray-level
histograms.

A number of papers [38–44] have described investigations
into every component of CBIR for spine X-ray retrieval,

including feature extraction [39, 40, 43], indexing [44], sim-
ilarity measurement [41, 44], and visualization and refinement
[42]. The initial methods of matching whole vertebrae shapes
[39, 40] had a major drawback: in 2D X-rays, regions of the
vertebrae that were not of pathologic interest could obscure
differences between critical regions. Xu et al. [41] proposed
partial shape matching as a way to deal with occlusion when
comparing incomplete or distorted shapes. An application-
specific feature, the nine-point landmark model used by radi-
ologists and bone morphometrists in marking pathologies,
was localized to improve the computational performance of
their algorithm for partial shape matching. In experiments,
their method achieved a precision >85 %. While the users
could apply weights to angles, lengths, and the cost to merge
points on the model, it was difficult to determine the effect
these weights had on the retrieval results, i.e., there was no
feedback in regards to what each weight did to the shape.

This was resolved in a later study by Hsu et al. [42]; a web-
based spine X-ray retrieval system allowed a user to alter the
appearance of a shape and to assign weights to points on the
shape to emphasize their importance. The integration of rele-
vance feedback further improved the performance of the al-
gorithm. Originally, 68 % of the retrieved images were rele-
vant (what the user expected); three iterations of feedback
increased this by a further 22 %. Assigning weights to parts
of the shape allowed the user to specify why the images were
similar. Furthermore, the web-based shape retrieval algorithm
was shown to also work with uterine cervix images; the
system was able to distinguish between three tissue types with
an accuracy of 64 % [45, 46].

Table 1 Studies divided by data types

Type of data Studies

2D images Radiographs: [35–37]; spine X-rays: [38–44];
cervicographs: [45, 46]; mammograms:
[47–49], [50, 51]a; retinopathy: [49], [50, 51]a

3D+ images CT: [31, 32, 52], [33]a; MRI: [53–55]; dynamic
PET: [56, 57]a; PET-CT: [58–69]

Nonimage
data

Text: [56, 57, 70–76]b, [77, 78]; annotation
or ontology: [33, 79, 80]b; others: [50, 51]b

Multiple
images

ImageCLEF: [81–85]; pathology: [86]; general
[87, 88]; PET-CT: [58–69]

a Also used nonimage data
b Also used image data

Fig. 2 A subset of the medical
images available in many
hospitals. Clockwise from the top
left, they are axial CT slice, axial
PET slice, axial fused PET-CT
slice, coronal MR slice, and chest
X-ray
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The spine retrieval framework was further enhanced with
the introduction of several domain-specific features: the
geometric and spatial relationships between adjacent verte-
brae [43]. Combining these features with a voting consensus
algorithm improved retrieval accuracy by about 8 %. To
improve the speed of the retrieval, Qian et al. [44] indexed
the images by embedding the shapes in a Euclidean space.
This index resulted in a significantly faster retrieval time of
0.29 s compared to 319.42 s. In addition, the embedded
Euclidean distance measure was a very good approximation
of the Procrustes distance used previously; the first 5 re-
trieved images were identical in both cases over 100 queries.

Korn et al. [47] proposed a tumor shape retrieval algo-
rithm for mammography images. In particular, the study
introduced application-specific features to model the “jag-
gedness” of the periphery of tumors; tumors were represent-
ed by a pattern spectrum consisting of shape characteristics
with high discriminatory power, such as shape smoothness
and area in different scales. This was done to differentiate
benign and malignant masses, which are more likely to have
higher fractal dimensions. Experiments on a simulated
dataset revealed that the proposed application-specific ap-
proach achieved 80 % precision at 100 % recall. Their use of
pruning to reduce the search space resulted in computational
performance that was up to 27 times better than sequential
scans of the entire dataset.

Yang et al. [48] used a boosting framework to learn a
distance metric that preserved both semantic and visual
similarity during medical image retrieval. Initially, sets of
binary features for data representation were learned from a
labeled training set. To preserve visual similarity, sets of
visual pairs (pairs of similar images) were used alongside
the binary features for training the distance function. The
proposed approach had higher retrieval accuracy than other
retrieval methods on mammograms and comparable accura-
cy to the best approach on the X-ray images from the medical
dataset of the Cross Language Evaluation Forum’s imaging
track (ImageCLEF)4. By learning dataset-specific features
and distance functions, the retrieval framework performed
more consistently than other state-of-the-art approaches
across different datasets.

3D+ Image Retrieval

In recent years, many retrieval algorithms have been adapted
for use in 3D medical image retrieval. A common approach is
to transform a 3D image retrieval algorithm into a different
problem. One such example is to select key slices from the
volume to reduce a complex 3D retrieval to a 2D image
retrieval problem. Other techniques involve representing 3D
features in domains where the dimensionality of the image is

not a factor, e.g., graph representations. This section described
how such techniques have been adapted for images with more
than two dimensions.

The most well-known example of 3D image retrieval is
perhaps the ASSERT system [31], which retrieved volumet-
ric HRCT images on the basis of key slices selected from the
volumes. The system retrieved images with the same type of
lung pathology (e.g., emphysema, cysts, metastases, etc.),
preferably within the same lung lobe as the query. During the
query process, a physician would mark a pathology-bearing
region in the HRCT lung slice; gray-level texture features, as
well as other statistics, were then extracted from these re-
gions. Relational information about the lung lobes was also
captured. In experiments, the ASSERT system achieved a
retrieval precision of 76.3 % when matching the type of
disease; this dropped to 47.3 % when the lobular location
of the pathology was also considered. During clinical eval-
uation [32], physicians used the ASSERT system to retrieve
and display four diagnosed cases that were similar to an
unknown case; this was shown to improve the accuracy of
their diagnosis.

An improvement to the ASSERT system involved a two-
stage unsupervised feature selection method to “customize”
the query [52]. During the first stage, the features that best
discriminated different classes of images were used to classify
the query into the most appropriate pathology class. In the
second stage, the features that best discriminated between
images within a class were used to identify the “subclass” of
the query, i.e., to find the most similar images within the class.
The customized query approach had an effective retrieval
precision of 73.2 % compared to 38.9 % using a single vector
of all the features. The study showed that finding images on
the basis of class was suboptimal; there was a need to also find
the most similar images within a particular class.

Local structure information in ROIs was used for the
retrieval of brain MR slices [53]. Two feature sets for the
representation of structural information were compared. The
first, local binary patterns (LBPs), treated every local ROI
equally. The other, Kanade–Lucas–Tomasi (KLT) feature
points, gave greater emphasis to the more salient regions.
The results revealed interesting insights about the trade-offs
inherent in structure-based retrieval. LBPs were very domi-
nant when spatial information was included, and its accuracy
was consistently higher than its rivals in experiments involv-
ing pathological cases or other anomalies. The experiments
also showed that accuracy was degraded when KLT points
were not matched.

Petrakis [54] proposed a graph-based methodology for
retrieving MR images. Each image was represented by an
attributed graph; vertices represented ROIs, while edges rep-
resented relationships between ROIs. Their results showed
that a similarity measure based on the concept of graph edit
distance achieved the best retrieval precision, at the cost of4 ImageCLEF Homepage: http://www.imageclef.org/.
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computational efficiency. Alajlan et al. [55] proposed a tree
representation that achieved improved computational perfor-
mance by only indexing relationships between ROIs that were
included (completely surrounded) within other ROIs.

Dynamic PET images consist of a sequence of PET image
frames acquired over time. Cai et al. [56] proposed a CBIR
system that utilized the temporal features in these images.
They exploited the activity of pixels or voxels across different
time frames by basing their retrieval on the similarity of tissue
time–activity curves (TTACs) [89]. Cai et al. [56] allowed
three query input methods: textual attributes, definition of a
query TTAC, and a combination of these features. Kim et al.
[57] extended this retrieval to four dimensions (three spatial
and one temporal) by registering 3D brain images to an
anatomical atlas and defining the structures to search using
the atlas’ labels.

Retrieval Enhancement Using Nonimage Data

The majority of image search in clinical environments is
performed using nonimage data. The wealth of nonimage
information stored in hospitals (clinical reports and patient
demographics) means that these data could enhance the image
retrieval process. In this section, we focus on studies that
present the use of nonimage data to add semantic information
to image features as a means of reducing the semantic gap.

Text information is a common complement to image fea-
tures in general [90], as well as medical CBIR research.
Several examples of studies including nonimage data have
been described [56, 57]. Textual information has also been
used to complement several studies that were part of the
ImageCLEFmedical challenge or used the same data [70–76].

An initial approach to using text as the input query mech-
anism for image data together was presented by Chu
et al. [77]. The spatial properties of ROIs and the relation-
ships between them were indexed in a conceptual model
consisting of two layers. The first layer abstracted individual
objects from images, while the second layer modeled hierar-
chical, spatial, temporal, and evolutionary relations. The rela-
tionships represented the users’ conceptual and semantic un-
derstanding of organs and diseases. Users constructed text
queries using an SQL-like language; each query specified
ROI properties, e.g., organ size, as well as relationships be-
tween ROIs. This retrieval approach was expanded in [78]
with the introduction of a visual method for query construc-
tion and by the inclusion of a hierarchy for grouping related
image features.

Rahman et al. [75] presented a technique that used the
correlation between text and visual components to expand
the query. Their comparison of text, visual, and combined
approaches revealed that the text retrieval had a higher mean
average precision than the purely visual method, while the
combined method outperformed both text and visual features

alone. This outcome was also visible in a comparison of
different retrieval algorithms in [76] but could be explained
by the nature of the dataset that was used. The medical
images in the ImageCLEF dataset were highly annotated
and this made text-based retrieval inherently easier than
purely visual approaches.

A comparison of text, images, and combined text and
image features was conducted by Névéol et al. [79], using a
dataset that was not as well annotated. The text features were
extracted from the caption of the images in the document, as
well as paragraphs referring to those images. The experiments
consisted of an indexing task that produced a single IRMA
annotation for an image and a retrieval task that matched
images to a query. The results showed that image analysis
was better than text for both indexing and retrieval, though
there were a few circumstances where indexing performed
better with text data. The results also revealed that caption text
provided more suitable information than the paragraph text.
While combined image and text data seemed beneficial for
indexing, the retrieval accuracy was not significantly higher
than that of using images alone.

A preliminary clinical study [33] evaluated different fea-
tures for the retrieval of liver lesions in CT images. In
particular, the study compared texture, boundary features,
and semantic descriptors. Twenty-six unique descriptors,
from a set of 161 terms from the RadLex terminology [80],
were manually assigned by trained radiologists to the 30
lesions in the dataset; each lesion was given between 8 and
11 descriptors. The semantic descriptors were a feature that
explained why images were clinically similar. The similarity of
a pair of lesions was defined as the inverse of a weighted sum
of differences of their respective feature vectors. Evaluation
identified that the semantic descriptors outperformed the other
features in precision and recall. However, the highest accuracy
was obtained when a combination of all the features was used
for retrieval.

Quellec et al. [50] used unsupervised classification to index
heterogeneous information (in the form of wavelets [49] and
semantic text data) on decision trees. A committee was used to
ensure that individual attributes (either text or image features)
were not weighted too highly. A boosting algorithm was
applied to reduce the tendency of decision trees to be biased
towards larger classes. The proposed algorithm achieved an
average precision at five retrieved items of about 79 % on a
retinopathy dataset and of about 87 % on a mammography
dataset. Without boosting, the results were lower, with 74 %
for retinopathy and 84 % for mammography. The approach
was robust to missing data, with a precision of about 60 % for
the retinopathy data when <40 % of the attributes were avail-
able in the query images.

Similarly, in [51], wavelets were fused with contextual
semantic data for case retrieval. A Bayesian network was used
to estimate the probability of unknown variables, i.e., missing
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features. Information from all features was then used to esti-
mate a correspondence between a query case and a reference
case in the dataset, again using the conditional probabilities of
a Bayesian network. An uncertainty component modeled the
confidence of this correspondence. The highest precision was
achieved when using all features, though the Bayesianmethod
alone outperformed Bayesian plus confidence information on
a mammography dataset. On the retinopathy dataset, the
highest precision was achieved by the Bayesian plus confi-
dence component.

Retrieval from Diverse Datasets

The diverse nature of medical imaging means that CBIR
capabilities must have the capacity to differentiate between
modalities when searching for images. This problem has
been taken up by the medical image retrieval challenge at
ImageCLEF. Participants submit retrieval algorithms that are
evaluated on a large diverse medical image repository [91].
Overviews of submissions to the ImageCLEF medical imag-
ing task can be found in [81–83]. A major focus of the works
included is modality classification or annotation of regions,
allowing effective retrieval on a subset of the diverse
repository.

In 2006, Liu et al. [84] proposed two methods for solving
this retrieval challenge. The first method used global features
such as the average gray levels in blocks, the mean and
variance of wavelet coefficients in blocks, spatial geometric
properties (area, contour, centroid, etc.) of binary ROIs, color
histograms, and band correlograms. The second method di-
vided the image into patches and used clusters of high dimen-
sional patterns within these patches as features. Using
multiclass support vector machines (SVMs), they were able
to achieve a mean average precision of about 68%when using
visual features.

Tian et al. [92] used a feature set consisting of LBPs and
the MPEG-7 edge histogram to compare the effect of dimen-
sionality reduction using principle component analysis
(PCA); the classification was performed using multiclass
SVMs. The accuracy of the dimensionally reduced feature
set (80.5 % at 68 features) was not very different from the
accuracy using all features (83.5 % at 602 features). The
highest accuracy was achieved by the feature set falling
between these two extremes (83.8 % at 330 features).

Rahman et al. [85] proposed a method for the automatic
categorization of images by modality and prefiltering of the
search space. The authors reduced the semantic gap by asso-
ciating low-level global image features with high-level seman-
tic categories using supervised and unsupervised learning via
multiclass SVMs and fuzzy c-means clustering. The retrieval
efficiency was increased by using PCA to reduce the feature
dimension, while the learned categorization and filtering re-
duced the search space. Experiments on the ImageCLEF

medical dataset showed that prefiltering resulted in higher
precision and recall than executing queries on the entire
dataset.

In a similar approach, the associations between features in
MPEG-7 format and anatomical concepts in the University of
Washington Digital Anatomist reference ontology were used
to annotate new, unlabeled images [87]. The most similar
images, based upon feature distance, were retrieved from the
dataset on the basis of feature similarity. The semantic annota-
tion for the unlabeled image was derived from the annotations
of the similar images. Experiments on the Visible Human
dataset [93] demonstrated that their retrieval and annotation
framework achieved an accuracy of about 93.5 %.

Retrieval of Multiple Images and Modalities

The storage of patient histories in PACS and the emergence
of multimodality imaging devices have introduced chal-
lenges for the retrieval of multiple related images. The most
important challenge is using complementary information
from different images to perform the retrieval. The works
described in this section address this challenge by grouping
images by the information they provide or by using relation-
ships between features from different images.

A recent study [86] proposed the use of multiple query
images to augment the retrieval process. These images were
of the same modality: microscopic images of cells. Texture
and color features were used in a two-tier retrieval approach.
In the first tier, SVMs were used to classify the major disease
type (similar to the approach used by [52]). The second tier
was further subdivided into two levels: the first level found
the most similar images, while the second tier ranked indi-
vidual slides using a nearest neighbor approach for slide-
level similarity. The slide-level similarity was weighted
according to the distribution of the disease subtypes
appearing on the slide and the frequency of that subtype
across the entire dataset. The method achieved a classifica-
tion accuracy of 93 and 86 % on two separate disease types.

Zhou et al. [88] presented a case-based retrieval algorithm
for images with fractures. The algorithm combined multi-
image queries consisting of data from different imaging
modalities to search a repository of diverse images. The
cases in the repository included X-ray, CT, MR, angiogra-
phy, and scintigraphy images. The cases were represented by
a bag of visual keywords and a local scale-invariant feature
transform [94] descriptor. Retrieval was achieved by calcu-
lating the similarity of every image in the query case with
every image in the dataset to find the set of most similar
images (for a particular image in the query case). The list of
all similar images was then reduced to a list of unique cases in
the dataset. Three feature selection strategies were evaluated,
and it was demonstrated that feature selection based on case
offered the best performance and stability.
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The studies described earlier in this section operated on
multiple images or multiple modalities but were not designed
to retrieve multimodality images that were acquired on a
combined scanner. Devices such as the PET-CT and PET-
MR scanners produce co-aligned images from two different
modalities. The co-alignment of the different modalities
offers opportunities for searches based on complementary
features in the different modalities and spatial relationships
between regions in either modality.

While clinical utilization of co-aligned PET-CT has
grown rapidly [95, 96], few studies have investigated PET-
CT CBIR [58–69]. Kim et al. [58] presented a PET-CT
retrieval framework that enabled a user to search for images
with tumors (extracted from PET) that were contained within
a particular lung (extracted from CT) using overlapping
pixels. The study introduced the capability to search for
tumors by their location or size. Song et al. [59] presented a
PET-CT retrieval method using Gabor texture features fromCT
lung fields and the SUV normalized PET image. Experiments
showed that the method had higher precision than approaches
that used traditional histograms and Haralick texture features.
A scheme for matching tumors and abnormal lymph nodes by
pairwise mapping across images was presented in [62]. A
weight learning approach using regression for feature selection
was presented in [64]. While the algorithms were restricted to
thoracic images, they showed promise for adaptation to whole
body images.

Kumar et al. [65] proposed a graph-based approach to
PET-CT image retrieval by indexing PET-CT features on
attributed relational graphs [97]; graph vertices represented
organs extracted from CT and tumors extracted from PET.
The graph-based methodology exploited the co-alignment of
the two modalities to extract spatial relationship features [54]
between tumors and organs; these were represented as graph
edges. This allowed their graph representation to model
tumor localization information, relative to a patient’s anato-
my. Retrieval was achieved by using graph matching to
compare the query graph to graphs of images in the dataset.
The approach was extended to volumetric ROIs instead of
key slices, thereby enabling retrieval based upon 3D spatial
features [66]. They also demonstrated that constraining tu-
mors to the nearest anatomical structures by pruning the
graph improved the retrieval process on simulated images
[67]. Furthermore, they exploited their graph-based retrieval
algorithm to explain why the retrieved images were similar to
the query by designing user interfaces that enabled the inter-
pretation of the retrieved 2D PET-CT key slices [68] and 3D
PET-CT volumes [69].

Figure 3 shows the PET-CT graph representation pro-
posed by Kumar et al. [65, 66]. Each graph vertex represents
an anatomical structure or a tumor. The graph vertices are
essentially feature vectors that characterize the properties of
the regions they represent. The graph edges represent

relationships between regions. Of particular interest are the
intermodality relationships between tumor and organs. The
representation can be expanded with the addition of new
vertex and edge attributes to represent more image features
and with the addition of extra vertices and edges to represent
more complex images.

Summary and Future Directions

A number of approaches in the literature have been validated
for different image modalities and clinical applications
(breast cancer, spinal conditions, etc.). The multiplicity of
2D CBIR research has led to many 2D approaches being
applied to images with higher dimensions, e.g., the represen-
tation of volumetric images through the use of key slices.

The ImageCLEF medical retrieval task has encouraged
research into retrieval from diverse datasets. The CBIR tech-
nologies developed as part of the task are well positioned to
tackle the challenges in clinical environments where a vari-
ety of image modalities are acquired. In particular, the
ImageCLEF task has led to the development of methodolo-
gies for classifying image modalities based on features. In
past years, most of the images in the ImageCLEF medical
dataset were inherently 2D or 2D constructions of multidi-
mensional data. The dataset is expanding to include volu-
metric, dynamic, and multimodality images to inspire further
research into the retrieval of such data.

The use of nonimage features to complement image
features has been widely investigated because all patients
have some associated textual data, such as clinical reports
and measurements. It has been demonstrated that combin-
ing visual features together with text data improves the
accuracy of the search, but further research is necessary to
make the contribution of this combination statistically sig-
nificant [79].

In this review, we have presented the evolution of CBIR
towards the retrieval of multidimensional and multimodality
images. While great progress has been made, there are still
several challenges to be solved. In the following subsections,
we detail specific areas for future research that should be
pursued to improve CBIR capabilities for multidimensional
and multimodality medical image retrieval from repositories
containing a diverse collection of data.

Visualization and User Interfaces

There has been limited investigation into visualization
methods for CBIR systems, with most studies focusing on
improving retrieval accuracy and speed. However, image re-
trieval tasks are often carried out for a particular purpose. In
medicine, these purposes can include image-based reasoning,
image-based training, or research. As such, an effective
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method of showing the images to the user is a critical aspect of
CBIR systems.

Existing research works that address these problems are
often 2D or key slice CBIR systems, such as [98] for
nonmedical images. The introduction of multidimensional
and multimodality data introduces new visualization chal-
lenges. CBIR systems need to have the capacity to display
multiple volumes or time series (one for each retrieved
image), as well as fusion information in the case of
multimodality images. The systems need to optimize hard-
ware use, especially when volume rendering is being used. In
addition, Tory and Moller [99] presented a number of human

factors that also need to be considered to enable the inter-
pretation of visualized data by users. The visualization
should exploit the retrieval process to demonstrate why the
retrieved images are relevant.

The development of effective user interfaces is an area of
increasing interest, especially if the CBIR systems are to be
trialed in clinical environments. User interface guidelines for
search applications should be followed to ensure that users are
able to easily integrate the CBIR system into their clinical
workflow [100]. Context-aware multimodal search interfaces,
such as [101], should be pursued to give users the flexibility to
overcome the sensory and semantic gaps.

Fig. 3 The graph representation
used by Kumar et al. [64, 65] for
PET-CT retrieval. a, c The CT
and PET images acquired by the
scanner, respectively; b the
graph representing the
relationships between the ROIs,
including intermodality
relationships between PET
tumors and CT organs
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Feature Selection

The curse of dimensionality has always been an issue for
medical CBIR algorithms and remains relevant as algorithms
are developed for modern medical images. Feature extrac-
tion and selection algorithms will need to form a core com-
ponent of retrieval technologies to ensure that indexing and
retrieval can be performed in an efficient manner. Methods
that extract multidimensional local features from every pixel
are no longer feasible for volume and types of images rou-
tinely acquired in modern hospitals.

Furthermore, the increasing clinical utilization of multi-
modality images offers the opportunity to derive comple-
mentary information from different modalities, the fusion of
which will provide extra multidimensional features that may
not be available from a single image type. Future studies
should make full use of these features by defining similarity
in terms of features from both modalities. In addition, useful
indexing features can potentially be extracted from the rela-
tionships between ROIs in different modalities. Feature selec-
tion algorithms will need to examine the balance between
features from individual modalities, as well as relationship
features between modalities.

Multidimensional Image Processing

Multidimensional images are now acquired as a routine part of
clinical workflows. However, despite the prevalence of volu-
metric images (CT, PET, MR, etc.) and time-varying images
(4D CT, dynamic PET, and MR), some medical CBIR algo-
rithms adopt key slices to represent the entire set of multidi-
mensional image data.While this has proven effective in some
scenarios, it is highly dependent on the selection of appropri-
ate key slices; manual selection is subjective. In applications
where key slices are still viable, subjective selection can be
avoided by using a selection algorithm trained by unsupervised
learning, as in [102]. In other cases, the use of key slices may
not be possible as it may sacrifice spatial information, such as
clinically relevant information (a fracture, multiple tumors, etc.)
that is spread across multiple sites and slices. Multiple key
slices, as in [63, 102], become less viable in cases where the
disease potentially spreads throughout the body, e.g., cancer. As
such, it is important that future medical CBIR studies do not
rely on key slices and are optimized to operate directly on the
richmultidimensional image data acquired in modern hospitals.

The direct use of multidimensional images will require the
integration of image processing techniques (compression, seg-
mentation, registration, etc.) that are designed for such images.
The trend towards using local features in generic CBIR [22]
indicates that the development of accurate segmentation algo-
rithms will become critical for the development of ROI-based
CBIR solutions. The efficiency of some existing algorithms
will also need to be optimized for real-time operation. As an

example, a recent adaptive local multi-atlas segmentation al-
gorithm [103] requires about 30min to segment the heart from
chest CT scans with a mean accuracy of about 87 %; such
processing times are not feasible for rapid data access.

Registration will be important for the retrieval of
multimodality images. In particular, registration will be nec-
essary for the extraction of relational features, segmentation
tumors given anatomical priors, and fused visualization.
Fortunately, hybrid multimodality PET-CT and PET-MR
scanners inherently provide co-alignment information that
can be used for these purposes.

Standardized Datasets for Evaluation

Most medical CBIR research is evaluated on private datasets
that are collected for specific studies or purposes, e.g., re-
trieval of lung cancer images. These datasets are described in
the studies where they are used. Such datasets have the
advantage of enabling CBIR that is optimized for particular
clinical applications or objectives. It also has the potential to
improve outcomes by reducing the number of variables that
the algorithm must consider, e.g., by having fixed image
acquisition protocols, devices, resolutions, etc. Researchers
can thus solve a specific problem before generalizing their
algorithms for a wider array of circumstances.

However, the use of private datasets makes it difficult to
compare different CBIR algorithms across different studies.
To alleviate this problem, there has been a push for the
creation and use of large and varied publicly available
datasets with standardized gold standards or ground truth.
We list several such datasets in this section.

The ImageCLEF medical image dataset [91] contained
over 66,000 images between 2005 and 2007. The collection
was derived from numerous sources and contained radiolo-
gy, pathology, endoscopic, and nuclear medicine images. In
2013, the ImageCLEF medical image task5 contained over
300,000 images including MR CT, PET, ultrasound, and
combined modalities in one image.

The PEIR Digital Library [104]6 is a public access pathol-
ogy image database for medical education. Text descriptions
have been added to the images in this collection as its original
purpose was for the creation of teaching materials. These text
descriptions can form the ground truth from which retrieval
algorithms can be evaluated.

The National Health and Nutrition Examination Surveys
(NHANES)7were a family of surveys conducted over 30 years
to monitor a number of health trends in the USA [105]. The
dataset includes spine X-ray images (as used in [41]), as well

5 ImageCLEF medical image task: http://www.imageclef.org/2013/
medical.
6 PEIR Digital Library: http://peir.path.uab.edu/.
7 NHANES: http://www.cdc.gov/nchs/nhanes.htm.
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as hand and knee X-rays. However, only a part of this dataset
is publicly available.

The Cancer Imaging Archive (TCIA) [106]8 is a set of
several image collections, each of which was built for a
particular purpose, such as the Lung Imaging Database
Consortium (LIDC) [107] of chest CTand X-rays. The images
in the TCIA collection include various different image mo-
dalities, numerous subjects, and various forms of supporting
data.

To enable retrieval on large collections, the VISCERAL
project [108] is a new initiative where a major aim is to
provide 10 TB of medical image data for research and
validation. In particular, the project intends to hold chal-
lenges that exploit the knowledge stored in repositories for
the development of diagnostic tools. The VISCERAL
dataset will contain two annotation standards: a gold corpus
annotated by domain experts and a silver corpus annotated
by deriving a consensus among research systems developed
by challenge participants.

Clinical Adoption

There is a dearth of clinical examples of CBIR utility despite
many years of CBIR research. This is partially due to the
focus of most medical CBIR research: solving technical
challenges (optimizing feature selection, similarity measure-
ment) as opposed to fulfilling a clinical goal. In addition, the
majority of CBIR research is evaluated purely in nonclinical
environments; collaboration between physicians and com-
puter scientists is generally limited to sharing data [10].
Clinical evaluation of CBIR will allow the examination of
the benefits and drawbacks of current algorithms and will
enable greater clinical relevance in future CBIR investigations.

The use of medical literature to guide CBIR design is
another avenue that requires investigation. Disease staging
and classification schemes in cancer [109, 110] provide
contextual information that can be used to optimize medical
CBIR systems based on the guidelines used by physicians.
Furthermore, the integration of medical terminology in on-
tologies such as RadLex [80] and the Unified Medical
Language System [111] by learning correspondences be-
tween image features and text labels should also be investi-
gated for the case of multidimensional images.

Closer communication is needed with clinical staff to
ensure that medical CBIR research has outcomes that are
relevant to healthcare. Clinical staff should be involved in
the design of CBIR systems; medical specialists should be
consulted especially if a domain-specific paradigm [22] is
being adapted. An example of such research is given by
Depeursinge et al. [112], who implemented three clinical
workflows to assist students, radiologists, and physicians in

the diagnosis of interstitial lung disease using a hybrid de-

CBIR research as integral components of the clinical
workflow, as opposed to stand-alone applications, will facil-
itate its adoption in routine clinical practice [113].

Conclusions

In this review, we examined how state-of-the-art medical
CBIR studies have been applied in the retrieval of 2D im-
ages, images with multiple dimensions, and multimodality
images from repositories containing a diverse collection of
medical data. We also examined the manner in which
nonimage data were used to complement visual features
during the retrieval process.

Even though methods have evolved from 2D image re-
trieval to multidimensional and multimodality image retriev-
al, there still remain several challenges to face. In particular,
these challenges relate to retrieval visualization and interpre-
tation, feature selection from multiple modalities, efficient
image processing, and making retrieval algorithms and sys-
tems that are relevant for clinical applications. Further in-
vestigations in these areas should be pursued to produce
CBIR frameworks that are practical, usable, and most im-
portantly, have a positive impact on healthcare.
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